Data
Search for Best Configuration
M1 <- 9000001
M2 <- 10000000
Xsum <- sapply(M1:M2, red_and_black)
names(Xsum) <- M1:M2
Xsum %>%
summary %>%
round(2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.59 16.36 20.36 21.03 24.98 67.39
Xsum %>%
sd %>%
round(2)
## [1] 6.5
Xsum %>%
`<=`(5) %>%
which %>%
`[`(Xsum, .) %>%
round(2)
## 9004066 9018708 9023741 9026180 9028697 9032827 9034215 9047732 9050124 9051521
## 4.86 4.86 4.44 4.46 4.24 2.59 3.66 5.00 4.06 4.59
## 9053346 9061087 9068264 9083029 9109328 9112192 9115218 9125567 9128243 9129459
## 4.87 4.89 3.97 4.66 4.89 4.34 4.69 4.63 3.57 4.20
## 9130667 9141661 9150714 9156091 9165595 9185245 9186522 9190959 9191711 9194677
## 4.61 4.66 4.56 3.77 4.18 4.87 4.83 4.84 4.95 4.97
## 9195318 9200792 9207814 9214653 9219163 9223666 9223972 9224654 9226262 9227529
## 4.91 4.81 4.72 4.45 4.75 4.25 4.91 4.44 4.68 4.92
## 9235361 9239307 9251127 9275533 9286134 9290669 9297417 9298831 9302743 9316079
## 4.55 3.67 4.57 3.37 3.71 4.67 4.98 4.69 4.93 4.73
## 9317354 9326232 9336148 9351316 9360077 9361481 9367655 9386609 9391141 9392934
## 4.96 4.49 4.84 3.65 4.26 4.91 4.60 4.64 4.83 3.92
## 9397651 9402948 9404973 9411311 9413348 9415595 9418756 9424593 9463619 9465704
## 4.33 3.39 4.28 4.66 4.93 4.94 5.00 4.27 3.97 4.79
## 9474036 9474078 9474202 9477422 9487376 9491456 9529265 9542671 9545073 9547950
## 4.80 4.96 4.54 4.87 4.88 4.08 4.78 4.77 4.66 4.23
## 9554301 9563923 9566022 9586941 9592365 9597328 9613489 9613734 9615388 9615479
## 3.74 4.70 4.96 4.49 4.74 4.68 4.76 4.87 4.93 3.92
## 9617012 9631105 9644452 9645532 9651019 9652046 9663938 9672318 9673081 9683108
## 4.85 2.90 4.17 4.37 4.56 3.87 4.70 5.00 4.73 4.72
## 9693532 9714275 9728662 9733924 9734934 9748293 9761145 9766838 9771341 9775688
## 4.80 4.53 4.47 4.56 4.58 4.97 4.43 3.63 4.65 4.88
## 9786042 9793043 9794109 9815159 9817124 9818944 9825446 9826464 9831394 9837016
## 4.97 4.95 4.64 4.52 4.91 4.87 4.59 4.32 4.67 3.06
## 9837471 9840891 9857715 9876386 9883643 9885422 9887339 9889983 9898994 9901736
## 4.45 4.98 4.50 4.97 4.44 4.95 4.57 3.12 4.33 3.81
## 9907203 9907557 9913016 9918059 9924312 9969824 9984365
## 4.64 4.92 3.76 3.94 3.61 3.69 4.88
Xmin <- names(Xsum[which(Xsum == min(Xsum))])
Xmin
## [1] "9032827"
Plot
hist(Xsum, prob = TRUE, nclass = 30, xlim = c(0, 50), ylim = c(0, 0.065))
x <- seq(0, 50, by = 0.1)
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

plot(density(Xsum), xlim = c(0, 50), ylim = c(0, 0.065), main = "Density Estimation of Xsum")
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

Randomization
set.seed(Xmin)
N <- nrow(class_roll)
class_roll$group <-
sample(1:N) %%
2 %>%
factor(levels = c(0, 1), labels = c("Red", "Black"))
red_and_black(Xmin)
## [1] 2.590867
학번
class_roll$id_2 <-
class_roll$id %>%
ifelse(. <= 2016, "2016", .)
tbl1 <- class_roll %$%
table(.$group, .$id_2 %>% substr(1, 4)) %>%
`colnames<-`(c("2016 이전", 2017:2022))
tbl1 %>%
pander
Red |
15 |
28 |
54 |
70 |
41 |
68 |
230 |
Black |
15 |
30 |
58 |
61 |
43 |
68 |
232 |
X1min <- tbl1 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X1min
## X-squared
## 0.885434
학번 홀짝
tbl2 <- class_roll$id %>%
as.numeric %>%
`%%`(2) %>%
factor(levels = c(1, 0), labels = c("홀", "짝")) %>%
table(class_roll$group, .)
tbl2 %>%
pander
Red |
269 |
237 |
Black |
269 |
238 |
X2min <- tbl2 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X2min
## X-squared
## 0.001118097
학적 상태
tbl3 <- class_roll$status %>%
table(class_roll$group, .)
tbl3 %>%
pander
X3min <- tbl3 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X3min
## X-squared
## 0.1991771
e-mail 서비스업체
tbl4 <- class_roll$email %>%
strsplit("@", fixed = TRUE) %>%
sapply("[", 2) %>%
`==`("naver.com") %>%
ifelse("네이버", "기타서비스") %>%
factor(levels = c("네이버", "기타서비스")) %>%
table(class_roll$group, .)
tbl4 %>%
pander
Red |
406 |
100 |
Black |
406 |
101 |
X4min <- tbl4 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X4min
## X-squared
## 0.003987961
전화번호의 분포
cut_label <- paste(paste0(0:9, "000"), paste0(0:9, "999"),
sep = "~")
tbl5 <- class_roll$cell_no %>%
substr(start = 8, stop = 11) %>%
sapply(as.numeric) %>%
cut(labels = cut_label,
breaks = seq(0, 10000, by = 1000)) %>%
table(class_roll$group, .)
tbl5 %>%
pander
Red |
46 |
48 |
44 |
49 |
58 |
54 |
59 |
56 |
42 |
50 |
Black |
47 |
44 |
48 |
51 |
59 |
51 |
57 |
58 |
43 |
49 |
X5min <- tbl5 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X5min
## X-squared
## 0.5832897
성씨 분포
f_name <- class_roll$name %>%
substring(first = 1, last = 1)
tbl6 <- f_name %>%
`%in%`(c("김", "이", "박")) %>%
ifelse(f_name, "기타") %>%
factor(levels = c("김", "이", "박", "기타")) %>%
table(class_roll$group, .)
tbl6 %>%
pander
Red |
119 |
72 |
35 |
280 |
Black |
115 |
70 |
43 |
279 |
X6min <- tbl6 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X6min
## X-squared
## 0.9178605
Sum of Chi_Squares
Xsum_min <- X1min + X2min + X3min + X4min + X5min + X6min
Xsum_min
## X-squared
## 2.590867