Data
Search for Best Configuration
M1 <- 8000001
M2 <- 9000000
Xsum <- sapply(M1:M2, red_and_black)
names(Xsum) <- M1:M2
Xsum %>%
summary %>%
round(2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.48 16.36 20.35 21.02 24.97 67.80
Xsum %>%
sd %>%
round(2)
## [1] 6.49
Xsum %>%
`<=`(5) %>%
which %>%
`[`(Xsum, .) %>%
round(2)
## 8004270 8006298 8015783 8030538 8035483 8036233 8043725 8054933 8055383 8056171
## 4.96 4.66 4.89 4.93 4.34 4.78 4.72 4.48 4.96 4.70
## 8064920 8070521 8074361 8075393 8079322 8091918 8099683 8103402 8104143 8114250
## 3.37 4.95 4.48 4.96 4.69 4.45 4.60 3.64 4.85 4.66
## 8150811 8158787 8169541 8169914 8172715 8187551 8207794 8211438 8220933 8243946
## 4.48 4.72 4.37 4.99 3.95 4.81 4.46 4.92 3.54 4.39
## 8250609 8254590 8257799 8261598 8271777 8274045 8277171 8279547 8281502 8285687
## 3.89 4.74 4.39 4.98 4.65 4.96 4.62 4.69 3.92 4.48
## 8294502 8295003 8295803 8296097 8300261 8306056 8316593 8328167 8337350 8342004
## 4.54 4.48 3.81 4.65 2.48 4.81 3.94 3.84 4.93 4.87
## 8344497 8345629 8345636 8359382 8364267 8366442 8380458 8380590 8382479 8404685
## 4.35 4.21 4.82 4.74 3.60 3.82 3.91 4.41 4.96 4.38
## 8405160 8405414 8408741 8423973 8444246 8446121 8452247 8458507 8461695 8463382
## 4.86 3.87 4.68 4.33 3.85 4.88 4.48 4.97 4.54 2.88
## 8472484 8475397 8481819 8486243 8488683 8499716 8510688 8513265 8515187 8516943
## 3.82 4.88 3.78 4.29 4.57 4.17 3.93 4.91 4.60 3.94
## 8520747 8534949 8544561 8556019 8560368 8566677 8568919 8573199 8584043 8605782
## 4.80 4.78 3.78 4.83 4.31 3.87 4.29 4.95 4.06 4.42
## 8620895 8625865 8638610 8652692 8652984 8656731 8658025 8668709 8669741 8671463
## 4.11 4.98 4.75 4.77 4.95 4.56 4.89 3.50 4.84 4.94
## 8674938 8677050 8686810 8690367 8697464 8697826 8715291 8719886 8727970 8729939
## 4.73 3.45 4.94 3.57 4.23 4.38 3.11 4.36 4.43 4.81
## 8742692 8758118 8778737 8796542 8803157 8810101 8811099 8831413 8874683 8882953
## 4.02 4.85 4.96 3.68 3.23 4.25 4.94 3.85 4.59 4.61
## 8899380 8903761 8912003 8925155 8944100 8954457 8959840 8967224 8971428 8975355
## 4.66 4.79 4.48 4.83 3.49 4.11 4.08 4.89 4.53 4.16
## 8993502 8994654 8996645
## 4.90 4.33 4.60
Xmin <- names(Xsum[which(Xsum == min(Xsum))])
Xmin
## [1] "8300261"
Plot
hist(Xsum, prob = TRUE, nclass = 30, xlim = c(0, 50), ylim = c(0, 0.065))
x <- seq(0, 50, by = 0.1)
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

plot(density(Xsum), xlim = c(0, 50), ylim = c(0, 0.065), main = "Density Estimation of Xsum")
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

Randomization
set.seed(Xmin)
N <- nrow(class_roll)
class_roll$group <-
sample(1:N) %%
2 %>%
factor(levels = c(0, 1), labels = c("Red", "Black"))
red_and_black(Xmin)
## [1] 2.48382
학번
class_roll$id_2 <-
class_roll$id %>%
ifelse(. <= 2016, "2016", .)
tbl1 <- class_roll %$%
table(.$group, .$id_2 %>% substr(1, 4)) %>%
`colnames<-`(c("2016 이전", 2017:2022))
tbl1 %>%
pander
Red |
14 |
28 |
55 |
66 |
45 |
70 |
228 |
Black |
16 |
30 |
57 |
65 |
39 |
66 |
234 |
X1min <- tbl1 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X1min
## X-squared
## 0.868801
학번 홀짝
tbl2 <- class_roll$id %>%
as.numeric %>%
`%%`(2) %>%
factor(levels = c(1, 0), labels = c("홀", "짝")) %>%
table(class_roll$group, .)
tbl2 %>%
pander
Red |
271 |
235 |
Black |
267 |
240 |
X2min <- tbl2 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X2min
## X-squared
## 0.08138427
학적 상태
tbl3 <- class_roll$status %>%
table(class_roll$group, .)
tbl3 %>%
pander
X3min <- tbl3 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X3min
## X-squared
## 0.04770835
e-mail 서비스업체
tbl4 <- class_roll$email %>%
strsplit("@", fixed = TRUE) %>%
sapply("[", 2) %>%
`==`("naver.com") %>%
ifelse("네이버", "기타서비스") %>%
factor(levels = c("네이버", "기타서비스")) %>%
table(class_roll$group, .)
tbl4 %>%
pander
X4min <- tbl4 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X4min
## X-squared
## 0.321612
전화번호의 분포
cut_label <- paste(paste0(0:9, "000"), paste0(0:9, "999"),
sep = "~")
tbl5 <- class_roll$cell_no %>%
substr(start = 8, stop = 11) %>%
sapply(as.numeric) %>%
cut(labels = cut_label,
breaks = seq(0, 10000, by = 1000)) %>%
table(class_roll$group, .)
tbl5 %>%
pander
Red |
48 |
44 |
44 |
53 |
58 |
53 |
59 |
56 |
42 |
49 |
Black |
45 |
48 |
48 |
47 |
59 |
52 |
57 |
58 |
43 |
50 |
X5min <- tbl5 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X5min
## X-squared
## 0.913121
성씨 분포
f_name <- class_roll$name %>%
substring(first = 1, last = 1)
tbl6 <- f_name %>%
`%in%`(c("김", "이", "박")) %>%
ifelse(f_name, "기타") %>%
factor(levels = c("김", "이", "박", "기타")) %>%
table(class_roll$group, .)
tbl6 %>%
pander
Red |
116 |
70 |
41 |
279 |
Black |
118 |
72 |
37 |
280 |
X6min <- tbl6 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X6min
## X-squared
## 0.2511932
Sum of Chi_Squares
Xsum_min <- X1min + X2min + X3min + X4min + X5min + X6min
Xsum_min
## X-squared
## 2.48382