Data
Search for Best Configuration
M1 <- 4000001
M2 <- 5000000
Xsum <- sapply(M1:M2, red_and_black)
names(Xsum) <- M1:M2
Xsum %>%
summary %>%
round(2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.97 16.36 20.36 21.02 24.95 67.28
Xsum %>%
sd %>%
round(2)
## [1] 6.5
Xsum %>%
`<=`(5) %>%
which %>%
`[`(Xsum, .) %>%
round(2)
## 4004877 4018491 4023275 4027159 4040521 4058390 4058396 4065647 4084134 4084627
## 3.29 4.20 4.97 4.58 4.51 4.78 4.84 4.91 3.90 4.78
## 4092374 4107382 4107951 4126911 4133966 4135043 4144343 4169092 4169286 4184810
## 4.90 4.25 4.21 3.44 3.09 4.35 4.55 4.41 4.58 4.75
## 4188171 4195555 4200546 4208482 4231325 4236657 4239493 4245495 4251195 4251368
## 4.83 2.97 4.06 4.66 4.79 4.73 4.90 4.86 4.22 4.70
## 4258817 4267177 4276517 4284672 4309360 4315364 4317539 4328171 4329316 4330931
## 4.81 4.99 4.42 4.86 4.79 4.87 4.90 4.92 3.96 4.61
## 4336858 4364450 4372179 4382787 4386986 4398324 4401147 4419716 4428469 4438827
## 3.52 3.54 4.57 4.98 4.73 4.96 3.79 4.78 4.22 4.82
## 4441110 4444460 4444617 4445342 4458597 4470145 4488665 4519806 4541221 4558858
## 3.93 4.16 4.72 4.75 4.73 4.98 4.68 4.88 4.34 4.76
## 4570772 4576927 4579205 4607198 4625536 4631582 4644482 4649764 4651712 4677569
## 4.11 4.47 4.91 4.62 4.96 4.96 4.76 3.75 3.42 4.91
## 4678611 4700599 4705171 4710318 4710889 4718523 4720848 4721740 4727034 4730532
## 4.16 3.94 4.53 4.45 4.33 4.10 4.68 4.49 4.24 3.88
## 4737841 4753517 4754464 4755323 4761267 4768698 4774808 4781081 4788783 4807666
## 4.70 4.15 4.58 3.53 4.04 4.65 4.28 3.83 4.25 4.61
## 4812205 4817971 4833698 4839610 4844918 4845155 4889184 4913262 4914959 4916936
## 4.64 4.77 4.96 4.95 4.66 4.98 4.69 4.95 3.88 3.58
## 4916962 4922817 4929978 4930149 4938123 4940398 4944902 4968994 4981963 4982391
## 3.56 4.92 4.61 4.85 4.82 3.81 4.96 4.93 5.00 4.55
## 4986325
## 4.89
Xmin <- names(Xsum[which(Xsum == min(Xsum))])
Xmin
## [1] "4195555"
Plot
hist(Xsum, prob = TRUE, nclass = 30, xlim = c(0, 50), ylim = c(0, 0.065))
x <- seq(0, 50, by = 0.1)
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

plot(density(Xsum), xlim = c(0, 50), ylim = c(0, 0.065), main = "Density Estimation of Xsum")
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

Randomization
set.seed(Xmin)
N <- nrow(class_roll)
class_roll$group <-
sample(1:N) %%
2 %>%
factor(levels = c(0, 1), labels = c("Red", "Black"))
red_and_black(Xmin)
## [1] 2.974019
학번
class_roll$id_2 <-
class_roll$id %>%
ifelse(. <= 2016, "2016", .)
tbl1 <- class_roll %$%
table(.$group, .$id_2 %>% substr(1, 4)) %>%
`colnames<-`(c("2016 이전", 2017:2022))
tbl1 %>%
pander
Red |
15 |
30 |
54 |
66 |
42 |
69 |
230 |
Black |
15 |
28 |
58 |
65 |
42 |
67 |
232 |
X1min <- tbl1 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X1min
## X-squared
## 0.2565391
학번 홀짝
tbl2 <- class_roll$id %>%
as.numeric %>%
`%%`(2) %>%
factor(levels = c(1, 0), labels = c("홀", "짝")) %>%
table(class_roll$group, .)
tbl2 %>%
pander
Red |
268 |
238 |
Black |
270 |
237 |
X2min <- tbl2 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X2min
## X-squared
## 0.008553049
학적 상태
tbl3 <- class_roll$status %>%
table(class_roll$group, .)
tbl3 %>%
pander
X3min <- tbl3 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X3min
## X-squared
## 0.04770835
e-mail 서비스업체
tbl4 <- class_roll$email %>%
strsplit("@", fixed = TRUE) %>%
sapply("[", 2) %>%
`==`("naver.com") %>%
ifelse("네이버", "기타서비스") %>%
factor(levels = c("네이버", "기타서비스")) %>%
table(class_roll$group, .)
tbl4 %>%
pander
X4min <- tbl4 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X4min
## X-squared
## 0.1430955
전화번호의 분포
cut_label <- paste(paste0(0:9, "000"), paste0(0:9, "999"),
sep = "~")
tbl5 <- class_roll$cell_no %>%
substr(start = 8, stop = 11) %>%
sapply(as.numeric) %>%
cut(labels = cut_label,
breaks = seq(0, 10000, by = 1000)) %>%
table(class_roll$group, .)
tbl5 %>%
pander
Red |
47 |
42 |
50 |
47 |
61 |
52 |
58 |
57 |
41 |
51 |
Black |
46 |
50 |
42 |
53 |
56 |
53 |
58 |
57 |
44 |
48 |
X5min <- tbl5 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X5min
## X-squared
## 2.181062
성씨 분포
f_name <- class_roll$name %>%
substring(first = 1, last = 1)
tbl6 <- f_name %>%
`%in%`(c("김", "이", "박")) %>%
ifelse(f_name, "기타") %>%
factor(levels = c("김", "이", "박", "기타")) %>%
table(class_roll$group, .)
tbl6 %>%
pander
Red |
116 |
70 |
37 |
283 |
Black |
118 |
72 |
41 |
276 |
X6min <- tbl6 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X6min
## X-squared
## 0.3370609
Sum of Chi_Squares
Xsum_min <- X1min + X2min + X3min + X4min + X5min + X6min
Xsum_min
## X-squared
## 2.974019