Data
Search for Best Configuration
M1 <- 3000001
M2 <- 4000000
Xsum <- sapply(M1:M2, red_and_black)
names(Xsum) <- M1:M2
Xsum %>%
summary %>%
round(2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.75 16.36 20.35 21.02 24.97 68.35
Xsum %>%
sd %>%
round(2)
## [1] 6.5
Xsum %>%
`<=`(5) %>%
which %>%
`[`(Xsum, .) %>%
round(2)
## 3003155 3014324 3021965 3033272 3040635 3045211 3047669 3049713 3055251 3057520
## 4.78 4.95 4.69 4.87 4.22 4.77 4.75 3.66 2.75 4.09
## 3068669 3075337 3092233 3095165 3097913 3100068 3101475 3107528 3109487 3120024
## 4.80 4.56 4.85 4.57 4.71 4.28 4.92 3.52 4.95 4.82
## 3125052 3127948 3130544 3132523 3146165 3147683 3162792 3164721 3166288 3167717
## 3.97 4.93 4.23 4.43 4.51 4.71 4.41 4.60 4.54 4.91
## 3169517 3170471 3171466 3176729 3187040 3188650 3198647 3203500 3204617 3220994
## 4.76 4.29 4.50 3.83 3.93 4.91 3.64 4.32 4.91 4.92
## 3223953 3227899 3252175 3257569 3257785 3272917 3274903 3278990 3280901 3285562
## 4.63 4.63 4.78 4.49 3.19 3.15 3.53 4.01 4.47 4.14
## 3285999 3288653 3291512 3299486 3320138 3335711 3337561 3340264 3341394 3341455
## 4.20 4.86 4.90 3.34 4.83 4.51 4.68 4.78 4.50 4.70
## 3345460 3350125 3351526 3351720 3361770 3377092 3388394 3400685 3403447 3416434
## 4.84 4.39 4.79 4.80 4.94 4.45 4.59 3.66 4.67 4.92
## 3423818 3430141 3431271 3436340 3466467 3466824 3471138 3475991 3483959 3511774
## 4.14 3.65 4.76 4.92 4.73 4.85 4.81 4.22 4.77 4.45
## 3531818 3532860 3549366 3554124 3559951 3561208 3564421 3565934 3566993 3568558
## 4.79 4.11 4.75 4.64 3.68 4.82 4.49 4.80 4.36 3.90
## 3580421 3583145 3591595 3591813 3592416 3613077 3621577 3642611 3643053 3643838
## 4.57 3.46 4.72 4.16 4.52 4.60 4.22 4.93 3.67 3.92
## 3644273 3649014 3651041 3654101 3657302 3694245 3706817 3717726 3732856 3743214
## 4.56 4.97 4.90 4.88 4.91 4.92 4.99 3.93 4.62 4.01
## 3743810 3754127 3762242 3767506 3808318 3823264 3823302 3832603 3836716 3849107
## 4.47 3.65 4.62 4.89 3.99 4.68 4.18 4.75 4.93 3.78
## 3855340 3874088 3887493 3891912 3895982 3904456 3913467 3916078 3924496 3927228
## 4.43 4.02 4.53 4.95 4.82 4.44 4.84 4.75 4.03 4.98
## 3930785 3935504 3950515 3963477
## 4.72 4.92 4.56 4.05
Xmin <- names(Xsum[which(Xsum == min(Xsum))])
Xmin
## [1] "3055251"
Plot
hist(Xsum, prob = TRUE, nclass = 30, xlim = c(0, 50), ylim = c(0, 0.065))
x <- seq(0, 50, by = 0.1)
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

plot(density(Xsum), xlim = c(0, 50), ylim = c(0, 0.065), main = "Density Estimation of Xsum")
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

Randomization
set.seed(Xmin)
N <- nrow(class_roll)
class_roll$group <-
sample(1:N) %%
2 %>%
factor(levels = c(0, 1), labels = c("Red", "Black"))
red_and_black(Xmin)
## [1] 2.750325
학번
class_roll$id_2 <-
class_roll$id %>%
ifelse(. <= 2016, "2016", .)
tbl1 <- class_roll %$%
table(.$group, .$id_2 %>% substr(1, 4)) %>%
`colnames<-`(c("2016 이전", 2017:2022))
tbl1 %>%
pander
Red |
16 |
30 |
55 |
66 |
40 |
70 |
229 |
Black |
14 |
28 |
57 |
65 |
44 |
66 |
233 |
X1min <- tbl1 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X1min
## X-squared
## 0.5874154
학번 홀짝
tbl2 <- class_roll$id %>%
as.numeric %>%
`%%`(2) %>%
factor(levels = c(1, 0), labels = c("홀", "짝")) %>%
table(class_roll$group, .)
tbl2 %>%
pander
Red |
262 |
244 |
Black |
276 |
231 |
X2min <- tbl2 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X2min
## X-squared
## 0.7191153
학적 상태
tbl3 <- class_roll$status %>%
table(class_roll$group, .)
tbl3 %>%
pander
X3min <- tbl3 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X3min
## X-squared
## 0.1991771
e-mail 서비스업체
tbl4 <- class_roll$email %>%
strsplit("@", fixed = TRUE) %>%
sapply("[", 2) %>%
`==`("naver.com") %>%
ifelse("네이버", "기타서비스") %>%
factor(levels = c("네이버", "기타서비스")) %>%
table(class_roll$group, .)
tbl4 %>%
pander
Red |
405 |
101 |
Black |
407 |
100 |
X4min <- tbl4 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X4min
## X-squared
## 0.008914075
전화번호의 분포
cut_label <- paste(paste0(0:9, "000"), paste0(0:9, "999"),
sep = "~")
tbl5 <- class_roll$cell_no %>%
substr(start = 8, stop = 11) %>%
sapply(as.numeric) %>%
cut(labels = cut_label,
breaks = seq(0, 10000, by = 1000)) %>%
table(class_roll$group, .)
tbl5 %>%
pander
Red |
45 |
44 |
48 |
50 |
59 |
52 |
58 |
58 |
41 |
51 |
Black |
48 |
48 |
44 |
50 |
58 |
53 |
58 |
56 |
44 |
48 |
X5min <- tbl5 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X5min
## X-squared
## 0.6935638
성씨 분포
f_name <- class_roll$name %>%
substring(first = 1, last = 1)
tbl6 <- f_name %>%
`%in%`(c("김", "이", "박")) %>%
ifelse(f_name, "기타") %>%
factor(levels = c("김", "이", "박", "기타")) %>%
table(class_roll$group, .)
tbl6 %>%
pander
Red |
119 |
68 |
41 |
278 |
Black |
115 |
74 |
37 |
281 |
X6min <- tbl6 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X6min
## X-squared
## 0.5421389
Sum of Chi_Squares
Xsum_min <- X1min + X2min + X3min + X4min + X5min + X6min
Xsum_min
## X-squared
## 2.750325