Data
Search for Best Configuration
M1 <- 2000001
M2 <- 3000000
Xsum <- sapply(M1:M2, red_and_black)
names(Xsum) <- M1:M2
Xsum %>%
summary %>%
round(2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.48 16.35 20.36 21.03 24.97 72.86
Xsum %>%
sd %>%
round(2)
## [1] 6.51
Xsum %>%
`<=`(5) %>%
which %>%
`[`(Xsum, .) %>%
round(2)
## 2008542 2009887 2016026 2018191 2027012 2031288 2032062 2042553 2042593 2043239
## 4.30 5.00 4.20 4.53 3.19 4.94 2.79 4.71 4.87 4.69
## 2045409 2050842 2063147 2077520 2086384 2090547 2094189 2096773 2100037 2100061
## 3.66 4.08 4.47 4.90 4.89 4.38 4.71 4.88 4.60 2.79
## 2100783 2101190 2122086 2134318 2138988 2139084 2139411 2142418 2146889 2161475
## 4.81 4.62 4.23 4.77 4.27 4.42 3.56 3.44 4.79 4.77
## 2191239 2198337 2210948 2213452 2213526 2213527 2232209 2235043 2249349 2255963
## 4.78 4.25 4.46 4.97 3.86 4.17 4.81 4.95 4.93 4.63
## 2260427 2268217 2271979 2291853 2292859 2293638 2293801 2294994 2307718 2310514
## 4.39 3.97 4.75 4.53 2.72 4.86 4.90 4.99 4.99 4.25
## 2315928 2322875 2323240 2343854 2356223 2357822 2358518 2362574 2384826 2393927
## 4.47 4.14 3.81 4.10 4.84 4.42 4.80 4.01 4.17 4.10
## 2397947 2415101 2450142 2454283 2454562 2456378 2461273 2466049 2466423 2472376
## 4.87 4.69 4.63 4.85 3.38 4.89 4.75 3.28 4.76 3.88
## 2475452 2488225 2506909 2508300 2527836 2528062 2536468 2562849 2574206 2579032
## 4.99 3.63 4.95 3.97 4.46 4.65 4.66 4.93 3.92 3.90
## 2593500 2605944 2616586 2637560 2644387 2645202 2647153 2669902 2671240 2697668
## 4.59 4.89 4.40 4.77 3.82 4.84 4.96 4.74 4.75 4.62
## 2701660 2703278 2725618 2728827 2730178 2738546 2747482 2766021 2766798 2775923
## 4.55 4.92 3.73 4.09 3.99 4.86 4.33 4.19 4.82 4.17
## 2781054 2787205 2803775 2821305 2821817 2828108 2830495 2833915 2836477 2851055
## 4.13 4.84 4.89 4.16 4.90 4.33 4.78 3.85 4.14 2.48
## 2856185 2861025 2866570 2866582 2867286 2870271 2894826 2895761 2904764 2905927
## 4.91 4.66 4.94 4.76 4.60 4.69 4.91 4.62 4.46 4.59
## 2913794 2942072 2945523 2946310 2946870 2957198 2957831 2965075 2985837 2993696
## 4.16 3.79 3.87 4.96 4.15 4.55 3.92 4.42 4.20 4.80
Xmin <- names(Xsum[which(Xsum == min(Xsum))])
Xmin
## [1] "2851055"
Plot
hist(Xsum, prob = TRUE, nclass = 30, xlim = c(0, 50), ylim = c(0, 0.065))
x <- seq(0, 50, by = 0.1)
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

plot(density(Xsum), xlim = c(0, 50), ylim = c(0, 0.065), main = "Density Estimation of Xsum")
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

Randomization
set.seed(Xmin)
N <- nrow(class_roll)
class_roll$group <-
sample(1:N) %%
2 %>%
factor(levels = c(0, 1), labels = c("Red", "Black"))
red_and_black(Xmin)
## [1] 2.481618
학번
class_roll$id_2 <-
class_roll$id %>%
ifelse(. <= 2016, "2016", .)
tbl1 <- class_roll %$%
table(.$group, .$id_2 %>% substr(1, 4)) %>%
`colnames<-`(c("2016 이전", 2017:2022))
tbl1 %>%
pander
Red |
14 |
28 |
56 |
66 |
43 |
70 |
229 |
Black |
16 |
30 |
56 |
65 |
41 |
66 |
233 |
X1min <- tbl1 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X1min
## X-squared
## 0.4088438
학번 홀짝
tbl2 <- class_roll$id %>%
as.numeric %>%
`%%`(2) %>%
factor(levels = c(1, 0), labels = c("홀", "짝")) %>%
table(class_roll$group, .)
tbl2 %>%
pander
Red |
273 |
233 |
Black |
265 |
242 |
X2min <- tbl2 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X2min
## X-squared
## 0.2884985
학적 상태
tbl3 <- class_roll$status %>%
table(class_roll$group, .)
tbl3 %>%
pander
X3min <- tbl3 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X3min
## X-squared
## 8.925952e-05
e-mail 서비스업체
tbl4 <- class_roll$email %>%
strsplit("@", fixed = TRUE) %>%
sapply("[", 2) %>%
`==`("naver.com") %>%
ifelse("네이버", "기타서비스") %>%
factor(levels = c("네이버", "기타서비스")) %>%
table(class_roll$group, .)
tbl4 %>%
pander
Red |
406 |
100 |
Black |
406 |
101 |
X4min <- tbl4 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X4min
## X-squared
## 0.003987961
전화번호의 분포
cut_label <- paste(paste0(0:9, "000"), paste0(0:9, "999"),
sep = "~")
tbl5 <- class_roll$cell_no %>%
substr(start = 8, stop = 11) %>%
sapply(as.numeric) %>%
cut(labels = cut_label,
breaks = seq(0, 10000, by = 1000)) %>%
table(class_roll$group, .)
tbl5 %>%
pander
Red |
46 |
46 |
48 |
53 |
60 |
52 |
60 |
54 |
39 |
48 |
Black |
47 |
46 |
44 |
47 |
57 |
53 |
56 |
60 |
46 |
51 |
X5min <- tbl5 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X5min
## X-squared
## 1.751227
성씨 분포
f_name <- class_roll$name %>%
substring(first = 1, last = 1)
tbl6 <- f_name %>%
`%in%`(c("김", "이", "박")) %>%
ifelse(f_name, "기타") %>%
factor(levels = c("김", "이", "박", "기타")) %>%
table(class_roll$group, .)
tbl6 %>%
pander
Red |
117 |
70 |
39 |
280 |
Black |
117 |
72 |
39 |
279 |
X6min <- tbl6 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X6min
## X-squared
## 0.02897078
Sum of Chi_Squares
Xsum_min <- X1min + X2min + X3min + X4min + X5min + X6min
Xsum_min
## X-squared
## 2.481618