Data
Search for Best Configuration
M1 <- 1000001
M2 <- 2000000
Xsum <- sapply(M1:M2, red_and_black)
names(Xsum) <- M1:M2
Xsum %>%
summary %>%
round(2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.41 16.36 20.35 21.02 24.95 69.91
Xsum %>%
sd %>%
round(2)
## [1] 6.5
Xsum %>%
`<=`(5) %>%
which %>%
`[`(Xsum, .) %>%
round(2)
## 1000531 1002641 1010872 1011832 1015250 1016384 1019881 1026185 1029162 1072260
## 4.74 3.22 4.29 3.62 4.80 4.16 4.76 3.98 4.19 2.41
## 1075152 1080303 1081004 1086899 1094467 1098386 1114372 1119120 1133105 1142000
## 4.67 4.97 4.66 4.78 4.72 4.55 4.35 4.42 3.75 4.86
## 1143028 1144048 1159631 1162840 1168348 1170496 1181296 1185517 1186704 1189797
## 4.72 3.71 4.99 4.34 4.55 4.60 4.89 4.81 4.43 4.97
## 1193650 1194159 1196676 1210773 1235972 1239033 1241312 1244844 1245070 1246166
## 4.37 4.09 4.82 4.31 3.41 4.78 3.67 3.96 4.65 4.28
## 1264663 1269117 1274767 1277015 1277391 1278239 1281257 1287212 1293870 1300671
## 4.64 4.58 4.62 4.98 4.85 4.28 3.97 3.30 4.95 4.38
## 1304821 1308300 1311007 1314152 1314536 1348487 1351993 1352761 1356548 1366025
## 3.59 4.76 4.79 4.14 4.79 4.95 3.49 4.92 2.74 4.21
## 1379547 1381513 1384602 1386343 1403197 1404542 1415007 1418081 1421554 1432843
## 4.86 4.61 4.52 5.00 4.29 4.43 4.70 4.61 4.10 4.52
## 1438879 1442231 1446039 1446953 1450132 1463932 1468249 1473410 1477441 1484286
## 4.91 3.89 3.97 4.19 4.33 4.90 3.66 3.84 4.65 4.78
## 1485222 1522273 1531415 1533386 1541529 1545369 1566616 1568051 1572683 1579681
## 4.93 4.25 3.98 4.75 4.51 4.78 4.72 4.16 4.88 4.61
## 1596021 1597066 1600580 1613987 1638338 1647342 1651666 1669980 1686911 1691633
## 4.52 4.66 4.01 4.41 4.86 4.50 4.96 3.21 4.79 4.53
## 1691728 1697462 1709587 1710001 1710640 1716877 1730015 1730076 1768564 1770939
## 4.80 4.85 3.75 4.32 4.38 4.96 3.95 4.10 4.46 4.36
## 1791409 1807078 1833969 1843930 1846135 1852432 1862096 1864778 1866058 1866762
## 4.96 4.25 4.98 4.47 4.55 4.71 3.85 4.29 4.32 4.92
## 1868036 1892824 1896061 1899446 1903496 1917659 1925504 1928458 1930156 1933680
## 4.75 4.90 4.81 4.98 4.29 3.52 4.71 4.12 4.21 4.81
## 1951293 1952544 1959928 1965224 1966455 1969621 1994752
## 4.40 4.45 4.53 3.97 4.38 3.98 4.87
Xmin <- names(Xsum[which(Xsum == min(Xsum))])
Xmin
## [1] "1072260"
Plot
hist(Xsum, prob = TRUE, nclass = 30, xlim = c(0, 50), ylim = c(0, 0.065))
x <- seq(0, 50, by = 0.1)
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

plot(density(Xsum), xlim = c(0, 50), ylim = c(0, 0.065), main = "Density Estimation of Xsum")
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

Randomization
set.seed(Xmin)
N <- nrow(class_roll)
class_roll$group <-
sample(1:N) %%
2 %>%
factor(levels = c(0, 1), labels = c("Red", "Black"))
red_and_black(Xmin)
## [1] 2.413016
학번
class_roll$id_2 <-
class_roll$id %>%
ifelse(. <= 2016, "2016", .)
tbl1 <- class_roll %$%
table(.$group, .$id_2 %>% substr(1, 4)) %>%
`colnames<-`(c("2016 이전", 2017:2022))
tbl1 %>%
pander
Red |
15 |
31 |
58 |
64 |
41 |
69 |
228 |
Black |
15 |
27 |
54 |
67 |
43 |
67 |
234 |
X1min <- tbl1 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X1min
## X-squared
## 0.6413879
학번 홀짝
tbl2 <- class_roll$id %>%
as.numeric %>%
`%%`(2) %>%
factor(levels = c(1, 0), labels = c("홀", "짝")) %>%
table(class_roll$group, .)
tbl2 %>%
pander
Red |
271 |
235 |
Black |
267 |
240 |
X2min <- tbl2 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X2min
## X-squared
## 0.08138427
학적 상태
tbl3 <- class_roll$status %>%
table(class_roll$group, .)
tbl3 %>%
pander
X3min <- tbl3 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X3min
## X-squared
## 0.05631977
e-mail 서비스업체
tbl4 <- class_roll$email %>%
strsplit("@", fixed = TRUE) %>%
sapply("[", 2) %>%
`==`("naver.com") %>%
ifelse("네이버", "기타서비스") %>%
factor(levels = c("네이버", "기타서비스")) %>%
table(class_roll$group, .)
tbl4 %>%
pander
X4min <- tbl4 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X4min
## X-squared
## 0.1677261
전화번호의 분포
cut_label <- paste(paste0(0:9, "000"), paste0(0:9, "999"),
sep = "~")
tbl5 <- class_roll$cell_no %>%
substr(start = 8, stop = 11) %>%
sapply(as.numeric) %>%
cut(labels = cut_label,
breaks = seq(0, 10000, by = 1000)) %>%
table(class_roll$group, .)
tbl5 %>%
pander
Red |
50 |
47 |
44 |
49 |
59 |
51 |
56 |
59 |
43 |
48 |
Black |
43 |
45 |
48 |
51 |
58 |
54 |
60 |
55 |
42 |
51 |
X5min <- tbl5 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X5min
## X-squared
## 1.258504
성씨 분포
f_name <- class_roll$name %>%
substring(first = 1, last = 1)
tbl6 <- f_name %>%
`%in%`(c("김", "이", "박")) %>%
ifelse(f_name, "기타") %>%
factor(levels = c("김", "이", "박", "기타")) %>%
table(class_roll$group, .)
tbl6 %>%
pander
Red |
117 |
69 |
38 |
282 |
Black |
117 |
73 |
40 |
277 |
X6min <- tbl6 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X6min
## X-squared
## 0.2076939
Sum of Chi_Squares
Xsum_min <- X1min + X2min + X3min + X4min + X5min + X6min
Xsum_min
## X-squared
## 2.413016