Data
Search for Best Configuration
M1 <- 1
M2 <- 1000000
Xsum <- sapply(M1:M2, red_and_black)
names(Xsum) <- M1:M2
Xsum %>%
summary %>%
round(2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.98 16.35 20.34 21.01 24.96 69.56
Xsum %>%
sd %>%
round(2)
## [1] 6.49
Xsum %>%
`<=`(5) %>%
which %>%
`[`(Xsum, .) %>%
round(2)
## 10416 12781 19444 23956 25830 26457 33610 38777 41592 43746 44506
## 4.86 4.82 4.71 3.99 4.96 4.88 4.97 4.78 3.68 4.91 3.78
## 46006 51385 53516 65560 66869 72377 79442 82333 89243 90999 106229
## 4.74 4.92 4.96 3.25 4.65 4.56 4.05 4.24 4.56 4.12 4.70
## 121540 133690 135284 135564 141590 181736 185079 201144 220535 224397 225279
## 4.70 4.81 4.54 4.91 4.79 4.63 3.49 4.70 4.99 3.46 4.95
## 225867 229815 232181 260386 267025 272411 289550 296160 324502 332978 338188
## 4.64 4.59 4.81 4.47 4.38 4.88 4.53 4.52 4.48 5.00 4.98
## 351081 352731 370131 382344 402852 412377 413962 415170 417522 421164 430841
## 4.61 4.19 4.83 5.00 4.22 4.94 4.08 3.93 4.16 4.23 4.90
## 430880 445541 448275 448551 449242 451948 457907 464801 465271 466870 476266
## 4.86 4.93 4.27 4.54 3.65 4.93 4.90 4.88 3.99 4.08 4.74
## 485658 486448 487400 490740 493598 499221 502896 523300 538391 540895 544712
## 4.98 4.07 4.66 4.68 4.83 4.56 4.63 3.11 4.63 4.67 4.18
## 569749 591489 592157 600134 621601 626309 647011 658089 665981 678325 680452
## 4.95 4.83 4.86 4.59 4.85 4.87 4.83 4.33 4.91 4.60 4.84
## 682920 685741 708913 718034 719529 719610 730211 743524 752463 759878 760633
## 4.71 4.35 4.18 4.68 3.66 4.76 4.36 4.39 4.95 4.00 4.25
## 767020 768756 772177 773208 778069 788555 806133 816210 818950 825090 833679
## 4.45 3.42 4.92 4.68 4.59 4.84 4.48 4.99 4.13 4.55 3.93
## 833867 839579 849323 870482 880075 884659 887059 888339 911597 921454 944073
## 4.65 2.98 4.67 4.11 3.94 3.69 3.81 4.37 4.37 4.39 4.97
## 944807 950722 966591 973439 989835 994882
## 4.95 4.85 4.75 4.80 4.70 4.87
Xmin <- names(Xsum[which(Xsum == min(Xsum))])
Xmin
## [1] "839579"
Plot
hist(Xsum, prob = TRUE, nclass = 30, xlim = c(0, 50), ylim = c(0, 0.065))
x <- seq(0, 50, by = 0.1)
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

plot(density(Xsum), xlim = c(0, 50), ylim = c(0, 0.065), main = "Density Estimation of Xsum")
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

Randomization
set.seed(Xmin)
N <- nrow(class_roll)
class_roll$group <-
sample(1:N) %%
2 %>%
factor(levels = c(0, 1), labels = c("Red", "Black"))
red_and_black(Xmin)
## [1] 2.978919
학번
class_roll$id_2 <-
class_roll$id %>%
ifelse(. <= 2016, "2016", .)
tbl1 <- class_roll %$%
table(.$group, .$id_2 %>% substr(1, 4)) %>%
`colnames<-`(c("2016 이전", 2017:2022))
tbl1 %>%
pander
Red |
15 |
29 |
56 |
66 |
42 |
65 |
233 |
Black |
15 |
29 |
56 |
65 |
42 |
71 |
229 |
X1min <- tbl1 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X1min
## X-squared
## 0.3059846
학번 홀짝
tbl2 <- class_roll$id %>%
as.numeric %>%
`%%`(2) %>%
factor(levels = c(1, 0), labels = c("홀", "짝")) %>%
table(class_roll$group, .)
tbl2 %>%
pander
Red |
265 |
241 |
Black |
273 |
234 |
X2min <- tbl2 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X2min
## X-squared
## 0.2211301
학적 상태
tbl3 <- class_roll$status %>%
table(class_roll$group, .)
tbl3 %>%
pander
X3min <- tbl3 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X3min
## X-squared
## 0.04770835
e-mail 서비스업체
tbl4 <- class_roll$email %>%
strsplit("@", fixed = TRUE) %>%
sapply("[", 2) %>%
`==`("naver.com") %>%
ifelse("네이버", "기타서비스") %>%
factor(levels = c("네이버", "기타서비스")) %>%
table(class_roll$group, .)
tbl4 %>%
pander
X4min <- tbl4 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X4min
## X-squared
## 0.1430955
전화번호의 분포
cut_label <- paste(paste0(0:9, "000"), paste0(0:9, "999"),
sep = "~")
tbl5 <- class_roll$cell_no %>%
substr(start = 8, stop = 11) %>%
sapply(as.numeric) %>%
cut(labels = cut_label,
breaks = seq(0, 10000, by = 1000)) %>%
table(class_roll$group, .)
tbl5 %>%
pander
Red |
45 |
45 |
46 |
53 |
56 |
49 |
60 |
60 |
41 |
51 |
Black |
48 |
47 |
46 |
47 |
61 |
56 |
56 |
54 |
44 |
48 |
X5min <- tbl5 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X5min
## X-squared
## 1.830121
성씨 분포
f_name <- class_roll$name %>%
substring(first = 1, last = 1)
tbl6 <- f_name %>%
`%in%`(c("김", "이", "박")) %>%
ifelse(f_name, "기타") %>%
factor(levels = c("김", "이", "박", "기타")) %>%
table(class_roll$group, .)
tbl6 %>%
pander
Red |
120 |
72 |
37 |
277 |
Black |
114 |
70 |
41 |
282 |
X6min <- tbl6 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X6min
## X-squared
## 0.4308793
Sum of Chi_Squares
Xsum_min <- X1min + X2min + X3min + X4min + X5min + X6min
Xsum_min
## X-squared
## 2.978919