Read in data

data_path <- here("data-analysis","data","v1","processed", "emogo-v1-alldata-anonymized.csv")
d <- read_csv(data_path)
## Rows: 20700 Columns: 43
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (30): trial_type, internal_node_id, subject, hitId, assignmentId, struct...
## dbl (11): trial_index, time_elapsed, rt, start_time, end_time, choice_index,...
## lgl  (2): success, timeout
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
d <- d %>%
  filter(
    !(trial_type %in% c("show-reward"))
  )

Adding some useful columns

Adding columns to characterize participant choices.

d <- d %>%
  mutate(
    trial_number = case_when(
      trial_index<8 ~ trial_index,
      trial_index<199 ~ 7+(trial_index-7)/2,
      TRUE ~ trial_index-96
    )
  ) %>%
  relocate(trial_number,.after=trial_index) %>%
  mutate(
    test_trial_number = case_when(
      trial_number<7 ~ NA_real_,
      trial_number<103 ~ trial_number-6,
      TRUE ~ NA_real_
    )
  ) %>%
  relocate(test_trial_number,.after=trial_number) %>%
  mutate(
    block_trial_number = case_when(
      test_trial_number < 49 ~ test_trial_number,
      TRUE ~ test_trial_number - 48),
    block_trial_number_c = block_trial_number - 24.5
  ) %>%
  relocate(block_trial_number,.after=test_trial_number) %>%
  relocate(block_trial_number_c,.after=block_trial_number) %>%
  mutate(
    explore_block = case_when(
      test_trial_number<9 ~ 1,
      test_trial_number<17 ~ 2,
      test_trial_number<25 ~ 3,
      test_trial_number<33 ~ 4,
      test_trial_number < 41 ~ 5,
      test_trial_number < 49 ~ 6,
      test_trial_number < 57 ~ 7,
      test_trial_number<65 ~ 8,
      test_trial_number<73 ~ 9,
      test_trial_number<81 ~ 10,
      test_trial_number <89 ~ 11,
      test_trial_number <97 ~ 12,
      TRUE ~ NA_real_
    )
  ) %>%
  mutate(
    max_reward_choice = case_when(
      reward_score_unadjusted ==8 ~ 1,
      !is.na(test_trial_number) ~ 0,
      TRUE ~ NA_real_
    )
  ) %>%
  mutate(
    cur_structure_condition=case_when(
      test_trial_number < 49 ~ structure_condition,
      !is.na(test_trial_number) & match_condition == "match" ~ structure_condition,
       test_trial_number >= 49 & structure_condition == "emotion" ~ "model",
      test_trial_number >= 49 & structure_condition == "model" ~ "emotion"
    )
  ) %>%
  mutate(block = case_when(
      test_trial_number < 49 ~ 1,
      test_trial_number >= 49 ~ 2,
      TRUE ~ NA_real_
    ))

Check data

attention_check <- d %>%
  filter(trial_index %in% c(4,5)) %>%
  mutate(
    attention_check_correct_choice = case_when(
      trial_index == 4 ~ "stimuli/horse.jpg",
      trial_index == 5 ~ "stimuli/hammer.jpg"
    ),
    check_correct = ifelse(attention_check_correct_choice==choiceImage,1,0)
  ) %>%
  group_by(subject) %>%
  summarize(
    N=n(),
    avg_correct = mean(check_correct)
  )

passed_attention_check <- attention_check %>%
  filter(avg_correct ==1) %>%
  pull(subject)

d %>%
  filter(subject %in% passed_attention_check) %>%
  distinct(subject,structure_condition,match_condition) %>%
  group_by(structure_condition,match_condition) %>%
  tally()
## # A tibble: 4 × 3
## # Groups:   structure_condition [2]
##   structure_condition match_condition     n
##   <chr>               <chr>           <int>
## 1 emotion             match              25
## 2 emotion             mismatch           25
## 3 model               match              25
## 4 model               mismatch           25
reward_rank <- d %>%
  filter(subject %in% passed_attention_check) %>%
  filter(test_trial_number==96) %>%
  select(subject,structure_condition,match_condition,score_after_trial)
ggplot(reward_rank,aes(x=score_after_trial,color=match_condition))+
  geom_density()+
  facet_wrap(~structure_condition)

Summarize

subject_by_block <- d %>%
  filter(!is.na(explore_block)) %>%
  group_by(subject,match_condition,structure_condition,explore_block) %>%
  summarize(
    max_choice_percent=mean(max_reward_choice)
  )
## `summarise()` has grouped output by 'subject', 'match_condition',
## 'structure_condition'. You can override using the `.groups` argument.
summarize_by_block <- subject_by_block %>%
  group_by(explore_block) %>%
  summarize(
    N=n(),
    max_choice = mean(max_choice_percent),
    se = sqrt(var(max_choice_percent, na.rm = TRUE)/N),
    ci=qt(0.975, N-1)*sd(max_choice_percent,na.rm=TRUE)/sqrt(N),
    lower_ci=max_choice-ci,
    upper_ci=max_choice+ci,
    lower_se=max_choice-se,
    upper_se=max_choice+se
  )

summarize_by_block_by_condition <- subject_by_block %>%
  group_by(match_condition,structure_condition,explore_block) %>%
  summarize(
     N=n(),
    max_choice = mean(max_choice_percent),
    se = sqrt(var(max_choice_percent, na.rm = TRUE)/N),
    ci=qt(0.975, N-1)*sd(max_choice_percent,na.rm=TRUE)/sqrt(N),
    lower_ci=max_choice-ci,
    upper_ci=max_choice+ci,
    lower_se=max_choice-se,
    upper_se=max_choice+se
  )
## `summarise()` has grouped output by 'match_condition', 'structure_condition'.
## You can override using the `.groups` argument.

Plots

ggplot(subject_by_block,aes(explore_block,max_choice_percent, color=subject))+
  geom_point(size=1.5,alpha=0.5)+
  geom_line(alpha=0.5)+
  geom_point(data=summarize_by_block,aes(y=max_choice),size=2,color="black")+
  geom_line(data=summarize_by_block,aes(y=max_choice),size=1.2,color="black")+
  geom_errorbar(data=summarize_by_block,aes(y=max_choice,ymin=lower_se,ymax=upper_se),width=0,color="black")+
  geom_vline(xintercept=6.5,linetype="dotted")+
  geom_hline(yintercept=0.25,linetype="dashed")+
  theme(legend.position="none")+
  scale_x_continuous(breaks=seq(1,12))+
  xlab("Block (8 Trials = 1 Block)")+
  ylab("Percent reward-maximizing choices")

ggplot(summarize_by_block_by_condition,aes(explore_block,max_choice, color=structure_condition,shape=match_condition,linetype=match_condition))+
  geom_point(size=1.5,alpha=0.5)+
  geom_line(alpha=0.5)+
  geom_point(aes(y=max_choice),size=2)+
  geom_line(aes(y=max_choice),size=1.2)+
  geom_errorbar(aes(y=max_choice,ymin=lower_se,ymax=upper_se),width=0)+
  geom_vline(xintercept=6.5,linetype="dotted")+
  geom_hline(yintercept=0.25,linetype="dashed")+
  #theme(legend.position="none")+
  scale_x_continuous(breaks=seq(1,12))+
  xlab("Block (8 Trials = 1 Block)")+
  ylab("Percent reward-maximizing choices")

ggplot(subject_by_block,aes(explore_block,max_choice_percent, group=subject))+
  #geom_point(size=1.5,alpha=0.5)+
  geom_line(alpha=0.5)+
  geom_vline(xintercept=6.5,linetype="dotted")+
  geom_hline(yintercept=0.25,linetype="dashed")+
  theme(legend.position="none")+
  facet_wrap(~structure_condition+match_condition)+
  scale_x_continuous(breaks=seq(1,12))+
  xlab("Block (8 Trials = 1 Block)")+
  ylab("Percent reward-maximizing choices")

Model

#recenter vars
d <- d %>%
  mutate(
    structure_condition_c = case_when(
      structure_condition == "model" ~ -0.5,
      structure_condition == "emotion" ~ 0.5),
    cur_structure_condition_c = case_when(
      cur_structure_condition == "model" ~ -0.5,
      cur_structure_condition == "emotion" ~ 0.5),
    match_condition_c = case_when(
      match_condition == "match" ~ 0.5,
      match_condition == "mismatch" ~ -0.5
    ),
    block_c = case_when(
      test_trial_number < 49 ~ -0.5,
      TRUE ~ 0.5
    )
  )

#fit model
#m <- glmer(max_reward_choice ~ cur_structure_condition_c*match_condition_c*block_c*block_trial_number_c + (1+block_c*block_trial_number_c|subject)+(1|choiceImage),data=d, family=binomial)
#m <- glmer(max_reward_choice ~ cur_structure_condition_c*match_condition_c*block_c*block_trial_number_c + (1+block_trial_number_c||subject)+(1|choiceImage),data=d, family=binomial,glmerControl(optimizer="bobyqa"))

## the above models don't converge - will go through the pruning process more rigorously

m <- glmer(max_reward_choice ~ cur_structure_condition_c*match_condition_c*block_c*block_trial_number_c+ (1|subject)+(1|choiceImage),data=d, family=binomial,glmerControl(optimizer="bobyqa",optCtrl=list(maxfun=20000)))
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: max_reward_choice ~ cur_structure_condition_c * match_condition_c *  
##     block_c * block_trial_number_c + (1 | subject) + (1 | choiceImage)
##    Data: d
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 20000))
## 
##      AIC      BIC   logLik deviance df.resid 
##   9897.9  10026.9  -4930.9   9861.9     9582 
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -24.7884  -0.5927   0.2121   0.5820   7.3011 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  choiceImage (Intercept) 1.012    1.006   
##  subject     (Intercept) 1.614    1.270   
## Number of obs: 9600, groups:  choiceImage, 256; subject, 100
## 
## Fixed effects:
##                                                                           Estimate
## (Intercept)                                                               0.366047
## cur_structure_condition_c                                                -0.639332
## match_condition_c                                                         1.250502
## block_c                                                                  -0.087783
## block_trial_number_c                                                      0.040263
## cur_structure_condition_c:match_condition_c                              -0.337584
## cur_structure_condition_c:block_c                                        -0.313915
## match_condition_c:block_c                                                 0.807373
## cur_structure_condition_c:block_trial_number_c                           -0.018359
## match_condition_c:block_trial_number_c                                    0.011373
## block_c:block_trial_number_c                                             -0.001101
## cur_structure_condition_c:match_condition_c:block_c                       0.450306
## cur_structure_condition_c:match_condition_c:block_trial_number_c         -0.020151
## cur_structure_condition_c:block_c:block_trial_number_c                    0.016785
## match_condition_c:block_c:block_trial_number_c                            0.001334
## cur_structure_condition_c:match_condition_c:block_c:block_trial_number_c -0.013667
##                                                                          Std. Error
## (Intercept)                                                                0.145031
## cur_structure_condition_c                                                  0.189257
## match_condition_c                                                          0.261312
## block_c                                                                    0.057312
## block_trial_number_c                                                       0.001997
## cur_structure_condition_c:match_condition_c                                0.378206
## cur_structure_condition_c:block_c                                          0.377759
## match_condition_c:block_c                                                  0.116377
## cur_structure_condition_c:block_trial_number_c                             0.003943
## match_condition_c:block_trial_number_c                                     0.003967
## block_c:block_trial_number_c                                               0.003885
## cur_structure_condition_c:match_condition_c:block_c                        0.755394
## cur_structure_condition_c:match_condition_c:block_trial_number_c           0.007888
## cur_structure_condition_c:block_c:block_trial_number_c                     0.007783
## match_condition_c:block_c:block_trial_number_c                             0.007756
## cur_structure_condition_c:match_condition_c:block_c:block_trial_number_c   0.015612
##                                                                          z value
## (Intercept)                                                                2.524
## cur_structure_condition_c                                                 -3.378
## match_condition_c                                                          4.785
## block_c                                                                   -1.532
## block_trial_number_c                                                      20.160
## cur_structure_condition_c:match_condition_c                               -0.893
## cur_structure_condition_c:block_c                                         -0.831
## match_condition_c:block_c                                                  6.938
## cur_structure_condition_c:block_trial_number_c                            -4.655
## match_condition_c:block_trial_number_c                                     2.867
## block_c:block_trial_number_c                                              -0.283
## cur_structure_condition_c:match_condition_c:block_c                        0.596
## cur_structure_condition_c:match_condition_c:block_trial_number_c          -2.555
## cur_structure_condition_c:block_c:block_trial_number_c                     2.157
## match_condition_c:block_c:block_trial_number_c                             0.172
## cur_structure_condition_c:match_condition_c:block_c:block_trial_number_c  -0.875
##                                                                          Pr(>|z|)
## (Intercept)                                                               0.01161
## cur_structure_condition_c                                                 0.00073
## match_condition_c                                                        1.71e-06
## block_c                                                                   0.12560
## block_trial_number_c                                                      < 2e-16
## cur_structure_condition_c:match_condition_c                               0.37208
## cur_structure_condition_c:block_c                                         0.40598
## match_condition_c:block_c                                                3.99e-12
## cur_structure_condition_c:block_trial_number_c                           3.23e-06
## match_condition_c:block_trial_number_c                                    0.00414
## block_c:block_trial_number_c                                              0.77689
## cur_structure_condition_c:match_condition_c:block_c                       0.55109
## cur_structure_condition_c:match_condition_c:block_trial_number_c          0.01063
## cur_structure_condition_c:block_c:block_trial_number_c                    0.03103
## match_condition_c:block_c:block_trial_number_c                            0.86345
## cur_structure_condition_c:match_condition_c:block_c:block_trial_number_c  0.38134
##                                                                             
## (Intercept)                                                              *  
## cur_structure_condition_c                                                ***
## match_condition_c                                                        ***
## block_c                                                                     
## block_trial_number_c                                                     ***
## cur_structure_condition_c:match_condition_c                                 
## cur_structure_condition_c:block_c                                           
## match_condition_c:block_c                                                ***
## cur_structure_condition_c:block_trial_number_c                           ***
## match_condition_c:block_trial_number_c                                   ** 
## block_c:block_trial_number_c                                                
## cur_structure_condition_c:match_condition_c:block_c                         
## cur_structure_condition_c:match_condition_c:block_trial_number_c         *  
## cur_structure_condition_c:block_c:block_trial_number_c                   *  
## match_condition_c:block_c:block_trial_number_c                              
## cur_structure_condition_c:match_condition_c:block_c:block_trial_number_c    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 16 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it

Follow-up models

trying to sort out how to look at individual conditions and blocks

m <- glmer(max_reward_choice ~ cur_structure_condition_c*block_trial_number_c+ (1+block_trial_number_c|subject)+(1|choiceImage),data=d, family=binomial)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00326546 (tol = 0.002, component 1)
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## max_reward_choice ~ cur_structure_condition_c * block_trial_number_c +  
##     (1 + block_trial_number_c | subject) + (1 | choiceImage)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##   9727.9   9785.3  -4856.0   9711.9     9592 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -61.540  -0.584   0.129   0.578   4.434 
## 
## Random effects:
##  Groups      Name                 Variance Std.Dev. Corr
##  choiceImage (Intercept)          1.070949 1.03487      
##  subject     (Intercept)          2.822172 1.67993      
##              block_trial_number_c 0.002424 0.04923  0.82
## Number of obs: 9600, groups:  choiceImage, 256; subject, 100
## 
## Fixed effects:
##                                                 Estimate Std. Error z value
## (Intercept)                                     0.540477   0.184289   2.933
## cur_structure_condition_c                      -0.487870   0.074955  -6.509
## block_trial_number_c                            0.051945   0.005535   9.385
## cur_structure_condition_c:block_trial_number_c -0.014268   0.004723  -3.021
##                                                Pr(>|z|)    
## (Intercept)                                     0.00336 ** 
## cur_structure_condition_c                      7.58e-11 ***
## block_trial_number_c                            < 2e-16 ***
## cur_structure_condition_c:block_trial_number_c  0.00252 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cr_s__ blc___
## cr_strctr__ -0.001              
## blck_trl_n_  0.714 -0.009       
## cr_st__:___ -0.006  0.147 -0.009
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00326546 (tol = 0.002, component 1)
m <- glmer(max_reward_choice ~ match_condition_c*block_trial_number_c*block_c+ (1+block_trial_number_c|subject)+(1|choiceImage),data=d, family=binomial)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0591377 (tol = 0.002, component 1)
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: max_reward_choice ~ match_condition_c * block_trial_number_c *  
##     block_c + (1 + block_trial_number_c | subject) + (1 | choiceImage)
##    Data: d
## 
##      AIC      BIC   logLik deviance df.resid 
##   9704.6   9790.6  -4840.3   9680.6     9588 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -64.509  -0.584   0.130   0.579   4.570 
## 
## Random effects:
##  Groups      Name                 Variance Std.Dev. Corr
##  choiceImage (Intercept)          1.075042 1.03684      
##  subject     (Intercept)          2.409021 1.55210      
##              block_trial_number_c 0.002417 0.04916  0.82
## Number of obs: 9600, groups:  choiceImage, 256; subject, 100
## 
## Fixed effects:
##                                                 Estimate Std. Error z value
## (Intercept)                                     0.543771   0.172797   3.147
## match_condition_c                               1.443057   0.319467   4.517
## block_trial_number_c                            0.051998   0.005534   9.395
## block_c                                        -0.092464   0.058178  -1.589
## match_condition_c:block_trial_number_c          0.025082   0.010945   2.292
## match_condition_c:block_c                       0.838523   0.118100   7.100
## block_trial_number_c:block_c                   -0.001361   0.003934  -0.346
## match_condition_c:block_trial_number_c:block_c  0.005426   0.007861   0.690
##                                                Pr(>|z|)    
## (Intercept)                                     0.00165 ** 
## match_condition_c                              6.27e-06 ***
## block_trial_number_c                            < 2e-16 ***
## block_c                                         0.11199    
## match_condition_c:block_trial_number_c          0.02193 *  
## match_condition_c:block_c                      1.25e-12 ***
## block_trial_number_c:block_c                    0.72940    
## match_condition_c:block_trial_number_c:block_c  0.49009    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) mtch__ blc___ blck_c mt__:___ mt__:_ b___:_
## mtch_cndtn_  0.023                                            
## blck_trl_n_  0.706  0.040                                     
## block_c      0.001  0.002  0.000                              
## mtch_c_:___  0.037  0.763  0.068  0.007                       
## mtch_cnd_:_  0.005  0.011  0.013  0.127  0.003                
## blck_tr__:_ -0.001  0.003  0.006  0.159  0.009    0.106       
## mtc__:___:_  0.004  0.001  0.008  0.107  0.007    0.166  0.111
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.0591377 (tol = 0.002, component 1)
m <- glmer(max_reward_choice ~ match_condition_c*block_trial_number_c+ (1+block_trial_number_c|subject)+(1|choiceImage),data=filter(d,block==2), family=binomial)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00482086 (tol = 0.002, component 1)
summary(m)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: max_reward_choice ~ match_condition_c * block_trial_number_c +  
##     (1 + block_trial_number_c | subject) + (1 | choiceImage)
##    Data: filter(d, block == 2)
## 
##      AIC      BIC   logLik deviance df.resid 
##   3918.6   3970.4  -1951.3   3902.6     4792 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -47.118  -0.368   0.022   0.348   7.633 
## 
## Random effects:
##  Groups      Name                 Variance Std.Dev. Corr
##  choiceImage (Intercept)          4.650239 2.15644      
##  subject     (Intercept)          8.345391 2.88884      
##              block_trial_number_c 0.009313 0.09651  0.86
## Number of obs: 4800, groups:  choiceImage, 255; subject, 100
## 
## Fixed effects:
##                                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                             0.76174    0.33594   2.268   0.0234 *  
## match_condition_c                       2.36000    0.60452   3.904 9.47e-05 ***
## block_trial_number_c                    0.08098    0.01137   7.125 1.04e-12 ***
## match_condition_c:block_trial_number_c  0.04376    0.02172   2.015   0.0439 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) mtch__ blc___
## mtch_cndtn_ 0.042               
## blck_trl_n_ 0.743  0.068        
## mtch_c_:___ 0.057  0.816  0.093 
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00482086 (tol = 0.002, component 1)
m <- glmer(max_reward_choice ~ match_condition_c*block_trial_number_c+ (1+block_trial_number_c|subject)+(1|choiceImage),data=filter(d,block==1), family=binomial)
summary(m)#not really sure why there should be a match effect here... Noise?
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: max_reward_choice ~ match_condition_c * block_trial_number_c +  
##     (1 + block_trial_number_c | subject) + (1 | choiceImage)
##    Data: filter(d, block == 1)
## 
##      AIC      BIC   logLik deviance df.resid 
##   4321.7   4373.5  -2152.8   4305.7     4792 
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -11.1178  -0.3982   0.1015   0.4471   6.8175 
## 
## Random effects:
##  Groups      Name                 Variance Std.Dev. Corr
##  choiceImage (Intercept)          3.607795 1.89942      
##  subject     (Intercept)          4.671596 2.16139      
##              block_trial_number_c 0.004254 0.06522  0.78
## Number of obs: 4800, groups:  choiceImage, 251; subject, 100
## 
## Fixed effects:
##                                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                            0.458122   0.257661   1.778   0.0754 .  
## match_condition_c                      1.034323   0.449788   2.300   0.0215 *  
## block_trial_number_c                   0.063418   0.007741   8.192 2.57e-16 ***
## match_condition_c:block_trial_number_c 0.011691   0.015113   0.774   0.4392    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) mtch__ blc___
## mtch_cndtn_ 0.018               
## blck_trl_n_ 0.616  0.036        
## mtch_c_:___ 0.029  0.707  0.050