8/21/2022
Welcome to the Cyclistic bike-share analysis case study! In this case study, I will perform many real-world tasks of a junior data analyst. I will work for a fictional company, Cyclistic, and meet different characters and team members. In order to answer the key business questions, I will follow the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Along the way, the Case Study Roadmap tables
A caption
In 2016, Cyclistic launched a successful bike-share offering. Since then, the program has grown to a fleet of 5,824 bicycles that are geotracked and locked into a network of 692 stations across Chicago. The bikes can be unlocked from one station and returned to any other station in the system anytime.
Company believes that maximizing the number of annual members will be key to future growth. Rather than creating a marketing campaign that targets all-new customers,
The purpose of this script is to consolidate downloaded Divvy data into a single dataframe and then conduct simple analysis to help answer the key question: “In what ways do members and casual riders use Divvy bikes differently?”
In order to answer the key business questions, this case study follows these steps: ask, prepare, process, analyze, share, and act.
*1.How do annual members and casual riders use Cyclistic bikes differently?
*2.Why would casual riders buy Cyclistic annual memberships?
*3.How can Cyclistic use digital media to influence casual riders to become members?
library(tidyverse) #helps wrangle data
## -- Attaching packages --------------------------------------- tidyverse 1.3.2 --
## v ggplot2 3.3.6 v purrr 0.3.4
## v tibble 3.1.7 v dplyr 1.0.9
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(lubridate) #helps wrangle date attributes
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
library(ggplot2) #helps visualize data
getwd()
## [1] "C:/Users/TOSHIBA/Desktop"
setwd("C:/Users/TOSHIBA/Documents/R/Cyclistic-bike-share-analysis")
q2_2019 <- read_csv("Divvy_Trips_2019_Q2.csv")
## Rows: 1108163 Columns: 12
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (4): 03 - Rental Start Station Name, 02 - Rental End Station Name, User...
## dbl (5): 01 - Rental Details Rental ID, 01 - Rental Details Bike ID, 03 - R...
## dttm (2): 01 - Rental Details Local Start Time, 01 - Rental Details Local En...
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
q3_2019 <- read_csv("Divvy_Trips_2019_Q3.csv")
## Rows: 1640718 Columns: 12
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (4): from_station_name, to_station_name, usertype, gender
## dbl (5): trip_id, bikeid, from_station_id, to_station_id, birthyear
## dttm (2): start_time, end_time
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
q4_2019 <- read_csv("Divvy_Trips_2019_Q4.csv")
## Rows: 704054 Columns: 12
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (4): from_station_name, to_station_name, usertype, gender
## dbl (5): trip_id, bikeid, from_station_id, to_station_id, birthyear
## dttm (2): start_time, end_time
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
q1_2020 <- read_csv("Divvy_Trips_2020_Q1.csv")
## Rows: 426887 Columns: 13
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (5): ride_id, rideable_type, start_station_name, end_station_name, memb...
## dbl (6): start_station_id, end_station_id, start_lat, start_lng, end_lat, e...
## dttm (2): started_at, ended_at
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
colnames(q3_2019)
## [1] "trip_id" "start_time" "end_time"
## [4] "bikeid" "tripduration" "from_station_id"
## [7] "from_station_name" "to_station_id" "to_station_name"
## [10] "usertype" "gender" "birthyear"
colnames(q4_2019)
## [1] "trip_id" "start_time" "end_time"
## [4] "bikeid" "tripduration" "from_station_id"
## [7] "from_station_name" "to_station_id" "to_station_name"
## [10] "usertype" "gender" "birthyear"
colnames(q2_2019)
## [1] "01 - Rental Details Rental ID"
## [2] "01 - Rental Details Local Start Time"
## [3] "01 - Rental Details Local End Time"
## [4] "01 - Rental Details Bike ID"
## [5] "01 - Rental Details Duration In Seconds Uncapped"
## [6] "03 - Rental Start Station ID"
## [7] "03 - Rental Start Station Name"
## [8] "02 - Rental End Station ID"
## [9] "02 - Rental End Station Name"
## [10] "User Type"
## [11] "Member Gender"
## [12] "05 - Member Details Member Birthday Year"
colnames(q1_2020)
## [1] "ride_id" "rideable_type" "started_at"
## [4] "ended_at" "start_station_name" "start_station_id"
## [7] "end_station_name" "end_station_id" "start_lat"
## [10] "start_lng" "end_lat" "end_lng"
## [13] "member_casual"
(q4_2019 <- rename(q4_2019
,ride_id = trip_id
,rideable_type = bikeid
,started_at = start_time
,ended_at = end_time
,start_station_name = from_station_name
,start_station_id = from_station_id
,end_station_name = to_station_name
,end_station_id = to_station_id
,member_casual = usertype))
## # A tibble: 704,054 x 12
## ride_id started_at ended_at rideable_type tripduration
## <dbl> <dttm> <dttm> <dbl> <dbl>
## 1 25223640 2019-10-01 00:01:39 2019-10-01 00:17:20 2215 940
## 2 25223641 2019-10-01 00:02:16 2019-10-01 00:06:34 6328 258
## 3 25223642 2019-10-01 00:04:32 2019-10-01 00:18:43 3003 850
## 4 25223643 2019-10-01 00:04:32 2019-10-01 00:43:43 3275 2350
## 5 25223644 2019-10-01 00:04:34 2019-10-01 00:35:42 5294 1867
## 6 25223645 2019-10-01 00:04:38 2019-10-01 00:10:51 1891 373
## 7 25223646 2019-10-01 00:04:52 2019-10-01 00:22:45 1061 1072
## 8 25223647 2019-10-01 00:04:57 2019-10-01 00:29:16 1274 1458
## 9 25223648 2019-10-01 00:05:20 2019-10-01 00:29:18 6011 1437
## 10 25223649 2019-10-01 00:05:20 2019-10-01 02:23:46 2957 8306
## # ... with 704,044 more rows, and 7 more variables: start_station_id <dbl>,
## # start_station_name <chr>, end_station_id <dbl>, end_station_name <chr>,
## # member_casual <chr>, gender <chr>, birthyear <dbl>
(q3_2019 <- rename(q3_2019
,ride_id = trip_id
,rideable_type = bikeid
,started_at = start_time
,ended_at = end_time
,start_station_name = from_station_name
,start_station_id = from_station_id
,end_station_name = to_station_name
,end_station_id = to_station_id
,member_casual = usertype))
## # A tibble: 1,640,718 x 12
## ride_id started_at ended_at rideable_type tripduration
## <dbl> <dttm> <dttm> <dbl> <dbl>
## 1 23479388 2019-07-01 00:00:27 2019-07-01 00:20:41 3591 1214
## 2 23479389 2019-07-01 00:01:16 2019-07-01 00:18:44 5353 1048
## 3 23479390 2019-07-01 00:01:48 2019-07-01 00:27:42 6180 1554
## 4 23479391 2019-07-01 00:02:07 2019-07-01 00:27:10 5540 1503
## 5 23479392 2019-07-01 00:02:13 2019-07-01 00:22:26 6014 1213
## 6 23479393 2019-07-01 00:02:21 2019-07-01 00:07:31 4941 310
## 7 23479394 2019-07-01 00:02:24 2019-07-01 00:23:12 3770 1248
## 8 23479395 2019-07-01 00:02:26 2019-07-01 00:28:16 5442 1550
## 9 23479396 2019-07-01 00:02:34 2019-07-01 00:28:57 2957 1583
## 10 23479397 2019-07-01 00:02:45 2019-07-01 00:29:14 6091 1589
## # ... with 1,640,708 more rows, and 7 more variables: start_station_id <dbl>,
## # start_station_name <chr>, end_station_id <dbl>, end_station_name <chr>,
## # member_casual <chr>, gender <chr>, birthyear <dbl>
(q2_2019 <- rename(q2_2019
,ride_id = "01 - Rental Details Rental ID"
,rideable_type = "01 - Rental Details Bike ID"
,started_at = "01 - Rental Details Local Start Time"
,ended_at = "01 - Rental Details Local End Time"
,start_station_name = "03 - Rental Start Station Name"
,start_station_id = "03 - Rental Start Station ID"
,end_station_name = "02 - Rental End Station Name"
,end_station_id = "02 - Rental End Station ID"
,member_casual = "User Type"))
## # A tibble: 1,108,163 x 12
## ride_id started_at ended_at rideable_type
## <dbl> <dttm> <dttm> <dbl>
## 1 22178529 2019-04-01 00:02:22 2019-04-01 00:09:48 6251
## 2 22178530 2019-04-01 00:03:02 2019-04-01 00:20:30 6226
## 3 22178531 2019-04-01 00:11:07 2019-04-01 00:15:19 5649
## 4 22178532 2019-04-01 00:13:01 2019-04-01 00:18:58 4151
## 5 22178533 2019-04-01 00:19:26 2019-04-01 00:36:13 3270
## 6 22178534 2019-04-01 00:19:39 2019-04-01 00:23:56 3123
## 7 22178535 2019-04-01 00:26:33 2019-04-01 00:35:41 6418
## 8 22178536 2019-04-01 00:29:48 2019-04-01 00:36:11 4513
## 9 22178537 2019-04-01 00:32:07 2019-04-01 01:07:44 3280
## 10 22178538 2019-04-01 00:32:19 2019-04-01 01:07:39 5534
## # ... with 1,108,153 more rows, and 8 more variables:
## # `01 - Rental Details Duration In Seconds Uncapped` <dbl>,
## # start_station_id <dbl>, start_station_name <chr>, end_station_id <dbl>,
## # end_station_name <chr>, member_casual <chr>, `Member Gender` <chr>,
## # `05 - Member Details Member Birthday Year` <dbl>
str(q1_2020)
## spec_tbl_df [426,887 x 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ ride_id : chr [1:426887] "EACB19130B0CDA4A" "8FED874C809DC021" "789F3C21E472CA96" "C9A388DAC6ABF313" ...
## $ rideable_type : chr [1:426887] "docked_bike" "docked_bike" "docked_bike" "docked_bike" ...
## $ started_at : POSIXct[1:426887], format: "2020-01-21 20:06:59" "2020-01-30 14:22:39" ...
## $ ended_at : POSIXct[1:426887], format: "2020-01-21 20:14:30" "2020-01-30 14:26:22" ...
## $ start_station_name: chr [1:426887] "Western Ave & Leland Ave" "Clark St & Montrose Ave" "Broadway & Belmont Ave" "Clark St & Randolph St" ...
## $ start_station_id : num [1:426887] 239 234 296 51 66 212 96 96 212 38 ...
## $ end_station_name : chr [1:426887] "Clark St & Leland Ave" "Southport Ave & Irving Park Rd" "Wilton Ave & Belmont Ave" "Fairbanks Ct & Grand Ave" ...
## $ end_station_id : num [1:426887] 326 318 117 24 212 96 212 212 96 100 ...
## $ start_lat : num [1:426887] 42 42 41.9 41.9 41.9 ...
## $ start_lng : num [1:426887] -87.7 -87.7 -87.6 -87.6 -87.6 ...
## $ end_lat : num [1:426887] 42 42 41.9 41.9 41.9 ...
## $ end_lng : num [1:426887] -87.7 -87.7 -87.7 -87.6 -87.6 ...
## $ member_casual : chr [1:426887] "member" "member" "member" "member" ...
## - attr(*, "spec")=
## .. cols(
## .. ride_id = col_character(),
## .. rideable_type = col_character(),
## .. started_at = col_datetime(format = ""),
## .. ended_at = col_datetime(format = ""),
## .. start_station_name = col_character(),
## .. start_station_id = col_double(),
## .. end_station_name = col_character(),
## .. end_station_id = col_double(),
## .. start_lat = col_double(),
## .. start_lng = col_double(),
## .. end_lat = col_double(),
## .. end_lng = col_double(),
## .. member_casual = col_character()
## .. )
## - attr(*, "problems")=<externalptr>
str(q4_2019)
## spec_tbl_df [704,054 x 12] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ ride_id : num [1:704054] 25223640 25223641 25223642 25223643 25223644 ...
## $ started_at : POSIXct[1:704054], format: "2019-10-01 00:01:39" "2019-10-01 00:02:16" ...
## $ ended_at : POSIXct[1:704054], format: "2019-10-01 00:17:20" "2019-10-01 00:06:34" ...
## $ rideable_type : num [1:704054] 2215 6328 3003 3275 5294 ...
## $ tripduration : num [1:704054] 940 258 850 2350 1867 ...
## $ start_station_id : num [1:704054] 20 19 84 313 210 156 84 156 156 336 ...
## $ start_station_name: chr [1:704054] "Sheffield Ave & Kingsbury St" "Throop (Loomis) St & Taylor St" "Milwaukee Ave & Grand Ave" "Lakeview Ave & Fullerton Pkwy" ...
## $ end_station_id : num [1:704054] 309 241 199 290 382 226 142 463 463 336 ...
## $ end_station_name : chr [1:704054] "Leavitt St & Armitage Ave" "Morgan St & Polk St" "Wabash Ave & Grand Ave" "Kedzie Ave & Palmer Ct" ...
## $ member_casual : chr [1:704054] "Subscriber" "Subscriber" "Subscriber" "Subscriber" ...
## $ gender : chr [1:704054] "Male" "Male" "Female" "Male" ...
## $ birthyear : num [1:704054] 1987 1998 1991 1990 1987 ...
## - attr(*, "spec")=
## .. cols(
## .. trip_id = col_double(),
## .. start_time = col_datetime(format = ""),
## .. end_time = col_datetime(format = ""),
## .. bikeid = col_double(),
## .. tripduration = col_number(),
## .. from_station_id = col_double(),
## .. from_station_name = col_character(),
## .. to_station_id = col_double(),
## .. to_station_name = col_character(),
## .. usertype = col_character(),
## .. gender = col_character(),
## .. birthyear = col_double()
## .. )
## - attr(*, "problems")=<externalptr>
str(q3_2019)
## spec_tbl_df [1,640,718 x 12] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ ride_id : num [1:1640718] 23479388 23479389 23479390 23479391 23479392 ...
## $ started_at : POSIXct[1:1640718], format: "2019-07-01 00:00:27" "2019-07-01 00:01:16" ...
## $ ended_at : POSIXct[1:1640718], format: "2019-07-01 00:20:41" "2019-07-01 00:18:44" ...
## $ rideable_type : num [1:1640718] 3591 5353 6180 5540 6014 ...
## $ tripduration : num [1:1640718] 1214 1048 1554 1503 1213 ...
## $ start_station_id : num [1:1640718] 117 381 313 313 168 300 168 313 43 43 ...
## $ start_station_name: chr [1:1640718] "Wilton Ave & Belmont Ave" "Western Ave & Monroe St" "Lakeview Ave & Fullerton Pkwy" "Lakeview Ave & Fullerton Pkwy" ...
## $ end_station_id : num [1:1640718] 497 203 144 144 62 232 62 144 195 195 ...
## $ end_station_name : chr [1:1640718] "Kimball Ave & Belmont Ave" "Western Ave & 21st St" "Larrabee St & Webster Ave" "Larrabee St & Webster Ave" ...
## $ member_casual : chr [1:1640718] "Subscriber" "Customer" "Customer" "Customer" ...
## $ gender : chr [1:1640718] "Male" NA NA NA ...
## $ birthyear : num [1:1640718] 1992 NA NA NA NA ...
## - attr(*, "spec")=
## .. cols(
## .. trip_id = col_double(),
## .. start_time = col_datetime(format = ""),
## .. end_time = col_datetime(format = ""),
## .. bikeid = col_double(),
## .. tripduration = col_number(),
## .. from_station_id = col_double(),
## .. from_station_name = col_character(),
## .. to_station_id = col_double(),
## .. to_station_name = col_character(),
## .. usertype = col_character(),
## .. gender = col_character(),
## .. birthyear = col_double()
## .. )
## - attr(*, "problems")=<externalptr>
str(q2_2019)
## spec_tbl_df [1,108,163 x 12] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ ride_id : num [1:1108163] 22178529 22178530 22178531 22178532 22178533 ...
## $ started_at : POSIXct[1:1108163], format: "2019-04-01 00:02:22" "2019-04-01 00:03:02" ...
## $ ended_at : POSIXct[1:1108163], format: "2019-04-01 00:09:48" "2019-04-01 00:20:30" ...
## $ rideable_type : num [1:1108163] 6251 6226 5649 4151 3270 ...
## $ 01 - Rental Details Duration In Seconds Uncapped: num [1:1108163] 446 1048 252 357 1007 ...
## $ start_station_id : num [1:1108163] 81 317 283 26 202 420 503 260 211 211 ...
## $ start_station_name : chr [1:1108163] "Daley Center Plaza" "Wood St & Taylor St" "LaSalle St & Jackson Blvd" "McClurg Ct & Illinois St" ...
## $ end_station_id : num [1:1108163] 56 59 174 133 129 426 500 499 211 211 ...
## $ end_station_name : chr [1:1108163] "Desplaines St & Kinzie St" "Wabash Ave & Roosevelt Rd" "Canal St & Madison St" "Kingsbury St & Kinzie St" ...
## $ member_casual : chr [1:1108163] "Subscriber" "Subscriber" "Subscriber" "Subscriber" ...
## $ Member Gender : chr [1:1108163] "Male" "Female" "Male" "Male" ...
## $ 05 - Member Details Member Birthday Year : num [1:1108163] 1975 1984 1990 1993 1992 ...
## - attr(*, "spec")=
## .. cols(
## .. `01 - Rental Details Rental ID` = col_double(),
## .. `01 - Rental Details Local Start Time` = col_datetime(format = ""),
## .. `01 - Rental Details Local End Time` = col_datetime(format = ""),
## .. `01 - Rental Details Bike ID` = col_double(),
## .. `01 - Rental Details Duration In Seconds Uncapped` = col_number(),
## .. `03 - Rental Start Station ID` = col_double(),
## .. `03 - Rental Start Station Name` = col_character(),
## .. `02 - Rental End Station ID` = col_double(),
## .. `02 - Rental End Station Name` = col_character(),
## .. `User Type` = col_character(),
## .. `Member Gender` = col_character(),
## .. `05 - Member Details Member Birthday Year` = col_double()
## .. )
## - attr(*, "problems")=<externalptr>
q4_2019 <- mutate(q4_2019, ride_id = as.character(ride_id)
,rideable_type = as.character(rideable_type))
q3_2019 <- mutate(q3_2019, ride_id = as.character(ride_id)
,rideable_type = as.character(rideable_type))
q2_2019 <- mutate(q2_2019, ride_id = as.character(ride_id)
,rideable_type = as.character(rideable_type))
###Stacking individual quarter’s data frames into one big data frame
all_trips <- bind_rows(q2_2019, q3_2019, q4_2019, q1_2020)
all_trips <- all_trips %>%
select(-c(start_lat, start_lng, end_lat, end_lng, birthyear, gender, "01 - Rental Details Duration In Seconds Uncapped", "05 - Member Details Member Birthday Year", "Member Gender", "tripduration"))
colnames(all_trips) #List of column names
## [1] "ride_id" "started_at" "ended_at"
## [4] "rideable_type" "start_station_id" "start_station_name"
## [7] "end_station_id" "end_station_name" "member_casual"
nrow(all_trips) #How many rows are in data frame?
## [1] 3879822
dim(all_trips) #Dimensions of the data frame?
## [1] 3879822 9
head(all_trips) #See the first 6 rows of data frame. Also tail(all_trips)
## # A tibble: 6 x 9
## ride_id started_at ended_at rideable_type start_station_id
## <chr> <dttm> <dttm> <chr> <dbl>
## 1 221785~ 2019-04-01 00:02:22 2019-04-01 00:09:48 6251 81
## 2 221785~ 2019-04-01 00:03:02 2019-04-01 00:20:30 6226 317
## 3 221785~ 2019-04-01 00:11:07 2019-04-01 00:15:19 5649 283
## 4 221785~ 2019-04-01 00:13:01 2019-04-01 00:18:58 4151 26
## 5 221785~ 2019-04-01 00:19:26 2019-04-01 00:36:13 3270 202
## 6 221785~ 2019-04-01 00:19:39 2019-04-01 00:23:56 3123 420
## # ... with 4 more variables: start_station_name <chr>, end_station_id <dbl>,
## # end_station_name <chr>, member_casual <chr>
str(all_trips) #See list of columns and data types (numeric, character, etc)
## tibble [3,879,822 x 9] (S3: tbl_df/tbl/data.frame)
## $ ride_id : chr [1:3879822] "22178529" "22178530" "22178531" "22178532" ...
## $ started_at : POSIXct[1:3879822], format: "2019-04-01 00:02:22" "2019-04-01 00:03:02" ...
## $ ended_at : POSIXct[1:3879822], format: "2019-04-01 00:09:48" "2019-04-01 00:20:30" ...
## $ rideable_type : chr [1:3879822] "6251" "6226" "5649" "4151" ...
## $ start_station_id : num [1:3879822] 81 317 283 26 202 420 503 260 211 211 ...
## $ start_station_name: chr [1:3879822] "Daley Center Plaza" "Wood St & Taylor St" "LaSalle St & Jackson Blvd" "McClurg Ct & Illinois St" ...
## $ end_station_id : num [1:3879822] 56 59 174 133 129 426 500 499 211 211 ...
## $ end_station_name : chr [1:3879822] "Desplaines St & Kinzie St" "Wabash Ave & Roosevelt Rd" "Canal St & Madison St" "Kingsbury St & Kinzie St" ...
## $ member_casual : chr [1:3879822] "Subscriber" "Subscriber" "Subscriber" "Subscriber" ...
summary(all_trips) #Statistical summary of data. Mainly for numerics
## ride_id started_at ended_at
## Length:3879822 Min. :2019-04-01 00:02:22 Min. :2019-04-01 00:09:48
## Class :character 1st Qu.:2019-06-23 07:49:09 1st Qu.:2019-06-23 08:20:27
## Mode :character Median :2019-08-14 17:43:38 Median :2019-08-14 18:02:04
## Mean :2019-08-26 00:49:59 Mean :2019-08-26 01:14:37
## 3rd Qu.:2019-10-12 12:10:21 3rd Qu.:2019-10-12 12:36:16
## Max. :2020-03-31 23:51:34 Max. :2020-05-19 20:10:34
##
## rideable_type start_station_id start_station_name end_station_id
## Length:3879822 Min. : 1.0 Length:3879822 Min. : 1.0
## Class :character 1st Qu.: 77.0 Class :character 1st Qu.: 77.0
## Mode :character Median :174.0 Mode :character Median :174.0
## Mean :202.9 Mean :203.8
## 3rd Qu.:291.0 3rd Qu.:291.0
## Max. :675.0 Max. :675.0
## NA's :1
## end_station_name member_casual
## Length:3879822 Length:3879822
## Class :character Class :character
## Mode :character Mode :character
##
##
##
##
*-In the “member_casual” column, there are two names for members (“member” and “Subscriber”) and two names for casual riders (“Customer” and “casual”). We will need to consolidate that from four to two labels.
*-The data can only be aggregated at the ride-level, which is too granular. We will want to add some additional columns of data – such as day, month, year – that provide additional opportunities to aggregate the data.
*-We will want to add a calculated field for length of ride since the 2020Q1 data did not have the “tripduration” column. We will add “ride_length” to the entire dataframe for consistency.
*-There are some rides where tripduration shows up as negative, including several hundred rides where Divvy took bikes out of circulation for Quality Control reasons. We will want to delete these rides.
In the “member_casual” column, replace “Subscriber” with “member” and “Customer” with “casual”
Before 2020, Divvy used different labels for these two types of riders … we will want to make our dataframe consistent with their current nomenclature
table(all_trips$member_casual)
##
## casual Customer member Subscriber
## 48480 857474 378407 2595461
all_trips <- all_trips %>%
mutate(member_casual = recode(member_casual
,"Subscriber" = "member"
,"Customer" = "casual"))
table(all_trips$member_casual)
##
## casual member
## 905954 2973868
all_trips$date <- as.Date(all_trips$started_at) #The default format is yyyy-mm-dd
all_trips$month <- format(as.Date(all_trips$date), "%m")
all_trips$day <- format(as.Date(all_trips$date), "%d")
all_trips$year <- format(as.Date(all_trips$date), "%Y")
all_trips$day_of_week <- format(as.Date(all_trips$date), "%A")
all_trips$ride_length <- difftime(all_trips$ended_at,all_trips$started_at)
str(all_trips)
## tibble [3,879,822 x 15] (S3: tbl_df/tbl/data.frame)
## $ ride_id : chr [1:3879822] "22178529" "22178530" "22178531" "22178532" ...
## $ started_at : POSIXct[1:3879822], format: "2019-04-01 00:02:22" "2019-04-01 00:03:02" ...
## $ ended_at : POSIXct[1:3879822], format: "2019-04-01 00:09:48" "2019-04-01 00:20:30" ...
## $ rideable_type : chr [1:3879822] "6251" "6226" "5649" "4151" ...
## $ start_station_id : num [1:3879822] 81 317 283 26 202 420 503 260 211 211 ...
## $ start_station_name: chr [1:3879822] "Daley Center Plaza" "Wood St & Taylor St" "LaSalle St & Jackson Blvd" "McClurg Ct & Illinois St" ...
## $ end_station_id : num [1:3879822] 56 59 174 133 129 426 500 499 211 211 ...
## $ end_station_name : chr [1:3879822] "Desplaines St & Kinzie St" "Wabash Ave & Roosevelt Rd" "Canal St & Madison St" "Kingsbury St & Kinzie St" ...
## $ member_casual : chr [1:3879822] "member" "member" "member" "member" ...
## $ date : Date[1:3879822], format: "2019-04-01" "2019-04-01" ...
## $ month : chr [1:3879822] "04" "04" "04" "04" ...
## $ day : chr [1:3879822] "01" "01" "01" "01" ...
## $ year : chr [1:3879822] "2019" "2019" "2019" "2019" ...
## $ day_of_week : chr [1:3879822] "Monday" "Monday" "Monday" "Monday" ...
## $ ride_length : 'difftime' num [1:3879822] 446 1048 252 357 ...
## ..- attr(*, "units")= chr "secs"
is.factor(all_trips$ride_length)
## [1] FALSE
all_trips$ride_length <- as.numeric(as.character(all_trips$ride_length))
is.numeric(all_trips$ride_length)
## [1] TRUE
Removeing “bad” data
The dataframe includes a few hundred entries when bikes were taken out of docks and checked for quality by Divvy or ride_length was negative
We will create a new version of the dataframe (v2) since data is being removed
all_trips_v2 <- all_trips[!(all_trips$start_station_name == "HQ QR" | all_trips$ride_length<0),]
mean(all_trips_v2$ride_length) #straight average (total ride length / rides)
## [1] 1479.139
median(all_trips_v2$ride_length) #midpoint number in the ascending array of ride lengths
## [1] 712
max(all_trips_v2$ride_length) #longest ride
## [1] 9387024
min(all_trips_v2$ride_length) #shortest ride
## [1] 1
summary(all_trips_v2$ride_length)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 412 712 1479 1289 9387024
aggregate(all_trips_v2$ride_length ~ all_trips_v2$member_casual, FUN = mean)
## all_trips_v2$member_casual all_trips_v2$ride_length
## 1 casual 3552.7502
## 2 member 850.0662
aggregate(all_trips_v2$ride_length ~ all_trips_v2$member_casual, FUN = median)
## all_trips_v2$member_casual all_trips_v2$ride_length
## 1 casual 1546
## 2 member 589
aggregate(all_trips_v2$ride_length ~ all_trips_v2$member_casual, FUN = max)
## all_trips_v2$member_casual all_trips_v2$ride_length
## 1 casual 9387024
## 2 member 9056634
aggregate(all_trips_v2$ride_length ~ all_trips_v2$member_casual, FUN = min)
## all_trips_v2$member_casual all_trips_v2$ride_length
## 1 casual 2
## 2 member 1
aggregate(all_trips_v2$ride_length ~ all_trips_v2$member_casual + all_trips_v2$day_of_week, FUN = mean)
## all_trips_v2$member_casual all_trips_v2$day_of_week all_trips_v2$ride_length
## 1 casual Friday 3773.8351
## 2 member Friday 824.5305
## 3 casual Monday 3372.2869
## 4 member Monday 842.5726
## 5 casual Saturday 3331.9138
## 6 member Saturday 968.9337
## 7 casual Sunday 3581.4054
## 8 member Sunday 919.9746
## 9 casual Thursday 3682.9847
## 10 member Thursday 823.9278
## 11 casual Tuesday 3596.3599
## 12 member Tuesday 826.1427
## 13 casual Wednesday 3718.6619
## 14 member Wednesday 823.9996
Noticed that the days of the week are out of order; fixing that.
all_trips_v2$day_of_week <- ordered(all_trips_v2$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
Again running, Average ride time by each day for members vs casual users
aggregate(all_trips_v2$ride_length ~ all_trips_v2$member_casual + all_trips_v2$day_of_week, FUN = mean)
## all_trips_v2$member_casual all_trips_v2$day_of_week all_trips_v2$ride_length
## 1 casual Sunday 3581.4054
## 2 member Sunday 919.9746
## 3 casual Monday 3372.2869
## 4 member Monday 842.5726
## 5 casual Tuesday 3596.3599
## 6 member Tuesday 826.1427
## 7 casual Wednesday 3718.6619
## 8 member Wednesday 823.9996
## 9 casual Thursday 3682.9847
## 10 member Thursday 823.9278
## 11 casual Friday 3773.8351
## 12 member Friday 824.5305
## 13 casual Saturday 3331.9138
## 14 member Saturday 968.9337
Analyzing ridership data by type and weekday
all_trips_v2 %>%
mutate(weekday = wday(started_at, label = TRUE)) %>% #creates weekday field using wday()
group_by(member_casual, weekday) %>% #groups by usertype and weekday
summarise(number_of_rides = n() #calculates the number of rides and average duration
,average_duration = mean(ride_length)) %>% # calculates the average duration
arrange(member_casual, weekday)
## `summarise()` has grouped output by 'member_casual'. You can override using the
## `.groups` argument.
## # A tibble: 14 x 4
## # Groups: member_casual [2]
## member_casual weekday number_of_rides average_duration
## <chr> <ord> <int> <dbl>
## 1 casual Sun 181293 3581.
## 2 casual Mon 103296 3372.
## 3 casual Tue 90510 3596.
## 4 casual Wed 92457 3719.
## 5 casual Thu 102679 3683.
## 6 casual Fri 122404 3774.
## 7 casual Sat 209543 3332.
## 8 member Sun 267965 920.
## 9 member Mon 472196 843.
## 10 member Tue 508445 826.
## 11 member Wed 500329 824.
## 12 member Thu 484177 824.
## 13 member Fri 452790 825.
## 14 member Sat 287958 969.
all_trips_v2 %>%
mutate(weekday = wday(started_at, label = TRUE)) %>%
group_by(member_casual, weekday) %>%
summarise(number_of_rides = n()
,average_duration = mean(ride_length)) %>%
arrange(member_casual, weekday) %>%
ggplot(aes(x = weekday, y = number_of_rides, fill = member_casual)) +
geom_col(position = "dodge")
## `summarise()` has grouped output by 'member_casual'. You can override using the
## `.groups` argument.
all_trips_v2 %>%
mutate(weekday = wday(started_at, label = TRUE)) %>%
group_by(member_casual, weekday) %>%
summarise(number_of_rides = n()
,average_duration = mean(ride_length)) %>%
arrange(member_casual, weekday) %>%
ggplot(aes(x = weekday, y = average_duration, fill = member_casual)) +
geom_col(position = "dodge")
## `summarise()` has grouped output by 'member_casual'. You can override using the
## `.groups` argument.
Based on the above findings,
*1.The first chart describes that the Subscription Members are in high but the Casual Members - no. of rides surpasses during weekends.
*2.The second chart average duration of rides, casual riders duration is higher throughout the week when compared to Subscribed Members.
It clearly states that Subscription Members taking more rides during weekdays and the Casual riders takes more duration when comparing to Subscribed Members.
My some suggestions to the company for converting the Casual Riders to Subscribed Members.
Discounts
*-Who is taking more duration time - since casual riders taking more duration when a discount applied to them, they may think to switch Casual rider to Subscribed Member
*-Additional discount for who is newly enrolling to Subscription (Only for new member and its one time offer)
*-Rewards - some kind of rewards for the existing subscribers may be based on the tenure. (to keep the existing subscribers)