This code is the PhotosynQ analysis for cowpea screen 2, performed from April 7th through April 21st, 2022. Measurements were taken twice, April 13th and April 20th 2022.
#Load the data
list.files(pattern=".csv")
## [1] "EVT_exp2.csv" "FW_DW.csv" "Photosynq_exp2.csv"
## [4] "Pot_Geno.csv"
pot_geno_exp2 <- read.csv("Pot_Geno.csv")
colnames(pot_geno_exp2)[1] <- "Pot.Number"
pot_geno_exp2
photo_2exp <- read.csv("Photosynq_exp2.csv")
colnames(photo_2exp)
## [1] "Datum.ID" "Repeat"
## [3] "Pot.Number" "Treatment"
## [5] "time" "leaf.angle"
## [7] "test_data_raw_PAM" "pump"
## [9] "ECS_averaged_trace" "fitinput"
## [11] "outdata" "ECSt.mAU"
## [13] "ECS_tau" "gH."
## [15] "vH." "P700_DIRK_averaged_trace"
## [17] "P700_fitinput" "P700_outdata"
## [19] "P700_DIRK_ampl" "tP700"
## [21] "kP700" "v_initial_P700"
## [23] "LEFd_trace" "data_raw_PAM"
## [25] "Fs" "FoPrime"
## [27] "Phi2" "PhiNPQ"
## [29] "qL" "NPQt"
## [31] "PhiNO" "FvP_over_FmP"
## [33] "FmPrime" "PSI_data_absorbance"
## [35] "PS1.Active.Centers" "PS1.Open.Centers"
## [37] "PS1.Over.Reduced.Centers" "PS1.Oxidized.Centers"
## [39] "humidity_K" "humidity2_K"
## [41] "air_temp_kinetics" "leaf_thickness"
## [43] "LEAF_temp" "Light.Intensity..PAR."
## [45] "Ambient.Temperature" "Ambient.Humidity"
## [47] "Ambient.Pressure" "Leaf.Temperature"
## [49] "Leaf.Temperature.Differential" "LEF"
## [51] "Leaf.Temperature.Differenial" "SPAD"
## [53] "User" "Device.ID"
## [55] "Status" "Notes"
## [57] "Latitude" "Longitude"
photo_interest_exp2 <- photo_2exp[,c(3:5, 26, 28, 32:33, 35:38, 42, 48, 52)]
photo_interest_exp2
###Merge the dataframes and select desired columns
photo_geno_2exp <- merge(photo_interest_exp2, pot_geno_exp2, all = TRUE)
photo_geno_2exp <- na.omit(photo_geno_2exp)
photo_geno_2exp[order(photo_geno_2exp$time),]
photo_geno_2exp$time <- as.factor(photo_geno_2exp$time)
photo_geno_2exp$day.of.stress <- photo_geno_2exp$time
photo_geno_2exp$day.of.stress <- gsub("4/20/2022", "14", photo_geno_2exp$day.of.stress)
photo_geno_2exp$day.of.stress <- gsub("4/13/2022", "7", photo_geno_2exp$day.of.stress)
colnames(photo_geno_2exp)
## [1] "Pot.Number" "Treatment"
## [3] "time" "FoPrime"
## [5] "PhiNPQ" "FvP_over_FmP"
## [7] "FmPrime" "PS1.Active.Centers"
## [9] "PS1.Open.Centers" "PS1.Over.Reduced.Centers"
## [11] "PS1.Oxidized.Centers" "leaf_thickness"
## [13] "Leaf.Temperature" "SPAD"
## [15] "Genotype" "day.of.stress"
photo_geno_2exp <- photo_geno_2exp[,c(1:2, 16, 4:15)]
photo_geno_2exp$PS1.Open.Centers <- as.numeric(photo_geno_2exp$PS1.Open.Centers)
photo_geno_2exp$PS1.Over.Reduced.Centers <- as.numeric(photo_geno_2exp$PS1.Over.Reduced.Centers)
photo_geno_2exp$PS1.Oxidized.Centers <- as.numeric(photo_geno_2exp$PS1.Oxidized.Centers)
photo_geno_2exp
#write.csv(photo_geno_2exp, "photosynQ_geno_exp2.csv", row.names = TRUE)
###Load the libraries
library("ggplot2")
library("cowplot")
library("ggpubr")
##
## Attaching package: 'ggpubr'
## The following object is masked from 'package:cowplot':
##
## get_legend
library("reshape2")
###Histograms
FoPrime_exp2_h <- gghistogram(photo_geno_2exp, x = "FoPrime", binwidth = 20,
add = "mean", rug = TRUE,
color = "Treatment", fill = "Treatment", facet.by = "day.of.stress",
palette = c("blue", "orange")) + xlab("FoPrime (a.u)")
FoPrime_exp2_h
FmPrime_exp2_h <- gghistogram(photo_geno_2exp, x = "FmPrime", binwidth = 100,
add = "mean", rug = TRUE,
color = "Treatment", fill = "Treatment", facet.by = "day.of.stress",
palette = c("blue", "orange")) + xlab("FmPrime (a.u)")
FmPrime_exp2_h
FvP_over_FmP_exp2_h <- gghistogram(photo_geno_2exp, x = "FvP_over_FmP", binwidth = 0.01,
add = "mean", rug = TRUE,
color = "Treatment", fill = "Treatment", facet.by = "day.of.stress",
palette = c("blue", "orange")) + xlab("FvP over FmP (a.u)")
FvP_over_FmP_exp2_h
leaftemp_exp2_h <- gghistogram(photo_geno_2exp, x = "Leaf.Temperature", binwidth = 0.5,
add = "mean", rug = TRUE,
color = "Treatment", fill = "Treatment", facet.by = "day.of.stress",
palette = c("blue", "orange")) + xlab("Leaf Temperature (C)")
leaftemp_exp2_h
leafthickness_exp2_h <- gghistogram(photo_geno_2exp, x = "leaf_thickness", binwidth = 0.05,
add = "mean", rug = TRUE,
color = "Treatment", fill = "Treatment", facet.by = "day.of.stress",
palette = c("blue", "orange")) + xlab("Leaf Thickness (mm)")
leafthickness_exp2_h
PhiNPQ_exp2_h <- gghistogram(photo_geno_2exp, x = "PhiNPQ", binwidth = 0.01,
add = "mean", rug = TRUE,
color = "Treatment", fill = "Treatment", facet.by = "day.of.stress",
palette = c("blue", "orange")) + xlab("PhiNPQ (a.u.)")
PhiNPQ_exp2_h
PS1.Active.Centers_exp2_h <- gghistogram(photo_geno_2exp, x = "PS1.Active.Centers", binwidth = 1,
add = "mean", rug = TRUE,
color = "Treatment", fill = "Treatment", facet.by = "day.of.stress",
palette = c("blue", "orange")) + xlab("PS1.Active.Centers (a.u.)")
PS1.Active.Centers_exp2_h
PS1.Open.Centers_exp2_h <- gghistogram(photo_geno_2exp, x = "PS1.Open.Centers",
add = "mean", rug = TRUE,
color = "Treatment", fill = "Treatment", facet.by = "day.of.stress",
palette = c("blue", "orange")) + xlab("PS1.Open.Centers (a.u.)")
## Warning: Using `bins = 30` by default. Pick better value with the argument
## `bins`.
PS1.Open.Centers_exp2_h
PS1.Over.Reduced.Centers_exp2_h <- gghistogram(photo_geno_2exp, x = "PS1.Over.Reduced.Centers",
add = "mean", rug = TRUE,
color = "Treatment", fill = "Treatment", facet.by = "day.of.stress",
palette = c("blue", "orange")) + xlab("PS1.Over.Reduced.Centers (a.u.)")
## Warning: Using `bins = 30` by default. Pick better value with the argument
## `bins`.
PS1.Over.Reduced.Centers_exp2_h
PS1.Oxidized.Centers_exp2_h <- gghistogram(photo_geno_2exp, x = "PS1.Oxidized.Centers",
add = "mean", rug = TRUE,
color = "Treatment", fill = "Treatment", facet.by = "day.of.stress",
palette = c("blue", "orange")) + xlab("PS1.Oxidized.Centers (a.u.)")
## Warning: Using `bins = 30` by default. Pick better value with the argument
## `bins`.
PS1.Oxidized.Centers_exp2_h
SPAD_exp2_h <- gghistogram(photo_geno_2exp, x = "SPAD", binwidth = 2.5,
add = "mean", rug = TRUE,
color = "Treatment", fill = "Treatment", facet.by = "day.of.stress",
palette = c("blue", "orange")) + xlab("SPAD (a.u.)")
SPAD_exp2_h
###Look closer for potential outliers
off_PS1.Active.Centers <- subset(photo_geno_2exp, photo_geno_2exp$PS1.Active.Centers > 40)
off_PS1.Active.Centers
off_PS1.Oxidized.Centers <- subset(photo_geno_2exp, photo_geno_2exp$PS1.Oxidized.Centers < -10)
off_PS1.Oxidized.Centers