prior_m1_interaction_gen <- c(
prior(normal(0, 1), class = "Intercept"),
prior(normal(-2.85, 0.98), class = "b", coef = "Age"),
prior(normal(3.00, 0.98), class = "b", coef = "dominance_Sum"),
prior(normal(-0.02, 0.98), class = "b", coef = "dominance_Sum:Gender2"),
prior(normal(-3.02, 1.00), class = "b", coef = "Gender2"),
prior(normal(0.05, 0.98), class = "b", coef = "Gender2:leadership_Sum"),
prior(normal(0.05, 0.99), class = "b", coef = "Gender2:prestige_Sum"),
prior(normal(-1.91, 0.98), class = "b", coef = "leadership_Sum"),
prior(normal(0.09, 0.98), class = "b", coef = "prestige_Sum"),
prior(normal(0, 1), class = "b", coef = "PNI_Sum"),
prior(normal(0, 1), class = "b", coef = "Gender2:PNI_Sum")
)
prior_m1_interaction_gen_no_pni <- c(
prior(normal(-2.85, 0.98), class = "b", coef = "Age"),
prior(normal(3.00, 0.98), class = "b", coef = "dominance_Sum"),
prior(normal(-0.02, 0.98), class = "b", coef = "dominance_Sum:Gender2"),
prior(normal(-3.02, 1.00), class = "b", coef = "Gender2"),
prior(normal(0.05, 0.98), class = "b", coef = "Gender2:leadership_Sum"),
prior(normal(0.05, 0.99), class = "b", coef = "Gender2:prestige_Sum"),
prior(normal(-1.91, 0.98), class = "b", coef = "leadership_Sum"),
prior(normal(0.09, 0.98), class = "b", coef = "prestige_Sum")
)
prior_m1 <- c(
prior(normal(0, 1), class = "Intercept"),
prior(normal(-2.86, 0.99), class = "b", coef = "Age"),
prior(normal(3.00, 0.99), class = "b", coef = "dominance_Sum"),
prior(normal(-3.02, 0.99), class = "b", coef = "Gender2"),
prior(normal(-1.91, 0.99), class = "b", coef = "leadership_Sum"),
prior(normal(0.09, 0.99), class = "b", coef = "prestige_Sum"),
prior(normal(0, 1), class = "b", coef = "PNI_Sum")
)
prior_m2 <- c(
# Risk
prior(normal(-0.121402797, 0.317918624), class = "Intercept", resp = "riskSumz"),
prior(normal(0, 1), class = "sigma", resp = "riskSumz"),
prior(normal(0.39426886, 0.097544417), class = "b", coef = "dominance_Sum", resp = "riskSumz"),
prior(normal(0.168132287, 0.097451296), class = "b", coef = "prestige_Sum", resp = "riskSumz"),
prior(normal(-0.009328966, 0.09515019), class = "b", coef = "leadership_Sum", resp = "riskSumz"),
prior(normal(0.000831313, 0.010064451), class = "b", coef = "Age", resp = "riskSumz"),
prior(normal(0.200477395, 0.179578595), class = "b", coef = "Gender2", resp = "riskSumz"),
prior(normal(0, 1), class = "b", coef = "PNI_Sum", resp = "riskSumz"),
# Risk Perception
prior(normal(0.541755102, 0.343784152), class = "Intercept", resp = "riskPerceptionSumz"),
prior(normal(0, 1), class = "sigma", resp = "riskPerceptionSumz"),
prior(normal(-0.270748615, 0.108267928), class = "b", coef = "dominance_Sum", resp = "riskPerceptionSumz"),
prior(normal(0.210735032, 0.108341126), class = "b", coef = "prestige_Sum", resp = "riskPerceptionSumz"),
prior(normal(0.031158527, 0.105772838), class = "b", coef = "leadership_Sum", resp = "riskPerceptionSumz"),
prior(normal(-0.017714536, 0.010901932), class = "b", coef = "Age", resp = "riskPerceptionSumz"),
prior(normal(-0.187998634, 0.194431114), class = "b", coef = "Gender2", resp = "riskPerceptionSumz"),
prior(normal(-0.0, 1), class = "b", coef = "PNI_Sum", resp = "riskPerceptionSumz"),
# Risk Benefit
prior(normal(-0.373633372, 0.33954029), class = "Intercept", resp = "riskBenefitSumz"),
prior(normal(0, 1), class = "sigma", resp = "riskBenefitSumz"),
prior(normal(0.248770622, 0.104869086), class = "b", coef = "dominance_Sum", resp = "riskBenefitSumz"),
prior(normal(0.142274426, 0.104666143), class = "b", coef = "prestige_Sum", resp = "riskBenefitSumz"),
prior(normal(-0.025816283, 0.102197521), class = "b", coef = "leadership_Sum", resp = "riskBenefitSumz"),
prior(normal(0.007281249, 0.010703955), class = "b", coef = "Age", resp = "riskBenefitSumz"),
prior(normal(0.297908079, 0.194394947), class = "b", coef = "Gender2", resp = "riskBenefitSumz"),
prior(normal(0, 1), class = "b", coef = "PNI_Sum", resp = "riskBenefitSumz")
)
prior_m2_interaction_gender <- c(
prior(normal(0.211359466039411, 0.122792310103859), class = "Intercept", resp = "riskSumz"),
prior(normal(-0.233748907829191, 0.131188637761139), class = "Intercept", resp = "riskPerceptionSumz"),
prior(normal(0.249317104065427, 0.133157381895898), class = "Intercept", resp = "riskBenefitSumz"),
prior(normal(0.653445259241636, 0.149635216859058), class = "b", coef = "dominance_Sum", resp = "riskSumz"),
prior(normal(-0.495103273346896, 0.177473117281467), class = "b", coef = "Gender2", resp = "riskSumz"),
prior(normal(0.0990458133895065, 0.140168789301184), class = "b", coef = "prestige_Sum", resp = "riskSumz"),
prior(normal(-0.0285312341213451, 0.134246520912695), class = "b", coef = "leadership_Sum", resp = "riskSumz"),
prior(normal(0.0162970878783793, 0.0908982500875085), class = "b", coef = "Age", resp = "riskSumz"),
prior(normal(0, 1), class = "b", coef = "PNI_Sum", resp = "riskSumz"),
prior(normal(-0.47831593537673, 0.190465828006423), class = "b", coef = "dominance_Sum:Gender2", resp = "riskSumz"),
prior(normal(0.095717435377145, 0.188962898776915), class = "b", coef = "Gender2:prestige_Sum", resp = "riskSumz"),
prior(normal(0.0358118424670447, 0.182068107768659), class = "b", coef = "Gender2:leadership_Sum", resp = "riskSumz"),
prior(normal(0, 1), class = "b", coef = "Gender2:PNI_Sum", resp = "riskSumz"),
prior(normal(-0.226410040336677, 0.163334625155952), class = "b", coef = "dominance_Sum", resp = "riskPerceptionSumz"),
prior(normal(0.426961907181259, 0.191507665064676), class = "b", coef = "Gender2", resp = "riskPerceptionSumz"),
prior(normal(0.305553399549671, 0.152964977686876), class = "b", coef = "prestige_Sum", resp = "riskPerceptionSumz"),
prior(normal(-0.191711084170981, 0.147449563411409), class = "b", coef = "leadership_Sum", resp = "riskPerceptionSumz"),
prior(normal(-0.170813512027718, 0.0989265773273746), class = "b", coef = "Age", resp = "riskPerceptionSumz"),
prior(normal(0, 1), class = "b", coef = "PNI_Sum", resp = "riskPerceptionSumz"),
prior(normal(-0.055455232784238, 0.206139416132584), class = "b", coef = "dominance_Sum:Gender2", resp = "riskPerceptionSumz"),
prior(normal(-0.192454377436851, 0.20943763365537), class = "b", coef = "Gender2:prestige_Sum", resp = "riskPerceptionSumz"),
prior(normal(0.431973601346632, 0.200374884521192), class = "b", coef = "Gender2:leadership_Sum", resp = "riskPerceptionSumz"),
prior(normal(0, 1), class = "b", coef = "Gender2:PNI_Sum", resp = "riskPerceptionSumz"),
prior(normal(0.384554988587524, 0.162183757747619), class = "b", coef = "dominance_Sum", resp = "riskBenefitSumz"),
prior(normal(-0.595963440527305, 0.190748625267443), class = "b", coef = "Gender2", resp = "riskBenefitSumz"),
prior(normal(0.0215234988730571, 0.151796284179672), class = "b", coef = "prestige_Sum", resp = "riskBenefitSumz"),
prior(normal(-0.028365512364167, 0.145804876707747), class = "b", coef = "leadership_Sum", resp = "riskBenefitSumz"),
prior(normal(0.0737186614972512, 0.0976640041773247), class = "b", coef = "Age", resp = "riskBenefitSumz"),
prior(normal(0, 1), class = "b", coef = "PNI_Sum", resp = "riskBenefitSumz"),
prior(normal(-0.26549479719041, 0.208575601040728), class = "b", coef = "dominance_Sum:Gender2", resp = "riskBenefitSumz"),
prior(normal(0.217074362051788, 0.206053971873005), class = "b", coef = "Gender2:prestige_Sum", resp = "riskBenefitSumz"),
prior(normal(-0.0022324287109488, 0.197145691092869), class = "b", coef = "Gender2:leadership_Sum", resp = "riskBenefitSumz"),
prior(normal(0, 1), class = "b", coef = "Gender2:PNI_Sum", resp = "riskBenefitSumz")
)
prior_m3 <- c(
prior(normal(3.61135311921322, 0.398349216512441), class = "Intercept", resp = "ethicalPreferencez"),
prior(normal(8.60471748613202, 0.565601362688251), class = "Intercept", resp = "financialPreferencez"),
prior(normal(10.024592015549, 0.877847943744065), class = "Intercept", resp = "socialPreferencez"),
prior(normal(5.62829428110632, 0.486128699758622), class = "Intercept", resp = "healthAndSafetyPreferencez"),
prior(normal(1.66534684425098, 0.395641365631446), class = "Intercept", resp = "recreationalPreferencez"),
prior(normal(0, 1), class = "sigma", resp = "ethicalPreferencez"),
prior(normal(0, 1), class = "sigma", resp = "financialPreferencez"),
prior(normal(0, 1), class = "sigma", resp = "socialPreferencez"),
prior(normal(0, 1), class = "sigma", resp = "healthAndSafetyPreferencez"),
prior(normal(0, 1), class = "sigma", resp = "recreationalPreferencez"),
prior(normal(1.01820236866574, 0.230324886400241), class = "b", coef = "dominance_Sum", resp = "ethicalPreferencez"),
prior(normal(-0.0448056408845481, 0.227661535353379), class = "b", coef = "prestige_Sum", resp = "ethicalPreferencez"),
prior(normal(0.0644149801605582, 0.220754430664067), class = "b", coef = "leadership_Sum", resp = "ethicalPreferencez"),
prior(normal(-0.0807925790683574, 0.342054140420214), class = "b", coef = "Gender2", resp = "ethicalPreferencez"),
prior(normal(0.257535398706787, 0.213176289264519), class = "b", coef = "Age", resp = "ethicalPreferencez"),
prior(normal(0, 1), class = "b", coef = "PNI_Sum", resp = "ethicalPreferencez"),
prior(normal(0.770897209832422, 0.323196910570939), class = "b", coef = "dominance_Sum", resp = "financialPreferencez"),
prior(normal(0.218932574933387, 0.312178873831866), class = "b", coef = "prestige_Sum", resp = "financialPreferencez"),
prior(normal(-0.0527566662392789, 0.30751451857796), class = "b", coef = "leadership_Sum", resp = "financialPreferencez"),
prior(normal(-0.122615013279046, 0.465191008236103), class = "b", coef = "Gender2", resp = "financialPreferencez"),
prior(normal(-0.0756269171084713, 0.30176572695622), class = "b", coef = "Age", resp = "financialPreferencez"),
prior(normal(0, 1), class = "b", coef = "PNI_Sum", resp = "financialPreferencez"),
prior(normal(1.45607644842891, 0.521662114182799), class = "b", coef = "dominance_Sum", resp = "socialPreferencez"),
prior(normal(0.490922123303897, 0.513950094547241), class = "b", coef = "prestige_Sum", resp = "socialPreferencez"),
prior(normal(0.178147050305328, 0.516402464149945), class = "b", coef = "leadership_Sum", resp = "socialPreferencez"),
prior(normal(-0.540788557994253, 0.708620378346552), class = "b", coef = "Gender2", resp = "socialPreferencez"),
prior(normal(-0.130724948888778, 0.499035382854254), class = "b", coef = "Age", resp = "socialPreferencez"),
prior(normal(0, 1), class = "b", coef = "PNI_Sum", resp = "socialPreferencez"),
prior(normal(1.09239737499994, 0.281490924431951), class = "b", coef = "dominance_Sum", resp = "healthAndSafetyPreferencez"),
prior(normal(-0.00413639061471685, 0.278414215040186), class = "b", coef = "prestige_Sum", resp = "healthAndSafetyPreferencez"),
prior(normal(-0.0730575993095214, 0.277181969750254), class = "b", coef = "leadership_Sum", resp = "healthAndSafetyPreferencez"),
prior(normal(0.0371780082169458, 0.409955298320128), class = "b", coef = "Gender2", resp = "healthAndSafetyPreferencez"),
prior(normal(0.290053188796595, 0.26225865354914), class = "b", coef = "Age", resp = "healthAndSafetyPreferencez"),
prior(normal(0, 1), class = "b", coef = "PNI_Sum", resp = "healthAndSafetyPreferencez"),
prior(normal(1.20303099592023, 0.229344906845703), class = "b", coef = "dominance_Sum", resp = "recreationalPreferencez"),
prior(normal(-0.288711309452481, 0.223487787997842), class = "b", coef = "prestige_Sum", resp = "recreationalPreferencez"),
prior(normal(-0.103324574146601, 0.220311845696074), class = "b", coef = "leadership_Sum", resp = "recreationalPreferencez"),
prior(normal(-1.12995776527766, 0.341594265540998), class = "b", coef = "Gender2", resp = "recreationalPreferencez"),
prior(normal(0.443085112592513, 0.209303734303984), class = "b", coef = "Age", resp = "recreationalPreferencez"),
prior(normal(0, 1), class = "b", coef = "PNI_Sum", resp = "recreationalPreferencez")
)
prior_m3_interaction_gender <- c(
prior(normal(3.60556936655962, 0.396580813334836), class = "Intercept", resp = "ethicalPreferencez"),
prior(normal(8.60016846571163, 0.55989827635477), class = "Intercept", resp = "financialPreferencez"),
prior(normal(9.98313800859403, 0.870783002602423), class = "Intercept", resp = "socialPreferencez"),
prior(normal(5.5993299179946, 0.494545763665189), class = "Intercept", resp = "healthAndSafetyPreferencez"),
prior(normal(1.67501584950533, 0.395261603649963), class = "Intercept", resp = "recreationalPreferencez"),
prior(normal(0, 1), class = "sigma", resp = "ethicalPreferencez"),
prior(normal(0, 1), class = "sigma", resp = "financialPreferencez"),
prior(normal(0, 1), class = "sigma", resp = "socialPreferencez"),
prior(normal(0, 1), class = "sigma", resp = "healthAndSafetyPreferencez"),
prior(normal(0, 1), class = "sigma", resp = "recreationalPreferencez"),
prior(normal(1.15219692310003, 0.280496121652513), class = "b", coef = "dominance_Sum", resp = "ethicalPreferencez"),
prior(normal(-0.0904502715842434, 0.337483849502847), class = "b", coef = "Gender2", resp = "ethicalPreferencez"),
prior(normal(-0.22598791634437, 0.273713173932402), class = "b", coef = "prestige_Sum", resp = "ethicalPreferencez"),
prior(normal(0.0308646711551821, 0.258538873662647), class = "b", coef = "leadership_Sum", resp = "ethicalPreferencez"),
prior(normal(0.270330442109019, 0.212089881486683), class = "b", coef = "Age", resp = "ethicalPreferencez"),
prior(normal(0, 1), class = "b", coef = "PNI_Sum", resp = "ethicalPreferencez"),
prior(normal(-0.301180433615289, 0.340641941157536), class = "b", coef = "dominance_Sum:Gender2", resp = "ethicalPreferencez"),
prior(normal(0.402692272506763, 0.342934073772113), class = "b", coef = "Gender2:prestige_Sum", resp = "ethicalPreferencez"),
prior(normal(0, 1), class = "b", coef = "Gender2:leadership_Sum", resp = "ethicalPreferencez"),
prior(normal(0.0502639776850436, 0.329985134655418), class = "b", coef = "Gender2:PNI_Sum", resp = "ethicalPreferencez"),
prior(normal(0.865622123607589, 0.372240213681623), class = "b", coef = "dominance_Sum", resp = "financialPreferencez"),
prior(normal(-0.127788500245137, 0.463896897597577), class = "b", coef = "Gender2", resp = "financialPreferencez"),
prior(normal(0.0311011331505854, 0.36633048162564), class = "b", coef = "prestige_Sum", resp = "financialPreferencez"),
prior(normal(-0.00757281760064025, 0.35387521728573), class = "b", coef = "leadership_Sum", resp = "financialPreferencez"),
prior(normal(-0.0576019017149339, 0.297779255969678), class = "b", coef = "Age", resp = "financialPreferencez"),
prior(normal(0, 1), class = "b", coef = "PNI_Sum", resp = "financialPreferencez"),
prior(normal(-0.284327282526985, 0.443947922626661), class = "b", coef = "dominance_Sum:Gender2", resp = "financialPreferencez"),
prior(normal(0.473660365039343, 0.456992923507399), class = "b", coef = "Gender2:prestige_Sum", resp = "financialPreferencez"),
prior(normal(-0.107204442773651, 0.44522509325961), class = "b", coef = "Gender2:leadership_Sum", resp = "financialPreferencez"),
prior(normal(0, 1), class = "b", coef = "Gender2:PNI_Sum", resp = "financialPreferencez"),
prior(normal(1.81050537949088, 0.57441374280994), class = "b", coef = "dominance_Sum", resp = "socialPreferencez"),
prior(normal(-0.551234838177188, 0.710533759227118), class = "b", coef = "Gender2", resp = "socialPreferencez"),
prior(normal(0.576829094824566, 0.570410077343782), class = "b", coef = "prestige_Sum", resp = "socialPreferencez"),
prior(normal(0.143240540516643, 0.557318279915116), class = "b", coef = "leadership_Sum", resp = "socialPreferencez"),
prior(normal(-0.121074350979943, 0.50181515854942), class = "b", coef = "Age", resp = "socialPreferencez"),
prior(normal(0, 1), class = "b", coef = "PNI_Sum", resp = "socialPreferencez"),
prior(normal(-0.869028894989823, 0.675225455650546), class = "b", coef = "dominance_Sum:Gender2", resp = "socialPreferencez"),
prior(normal(-0.0294477702432216, 0.680282522915085), class = "b", coef = "Gender2:prestige_Sum", resp = "socialPreferencez"),
prior(normal(0.064613231262165, 0.682913631130467), class = "b", coef = "Gender2:leadership_Sum", resp = "socialPreferencez"),
prior(normal(0, 1), class = "b", coef = "Gender2:PNI_Sum", resp = "socialPreferencez"),
prior(normal(1.08508992869999, 0.34337702887508), class = "b", coef = "dominance_Sum", resp = "healthAndSafetyPreferencez"),
prior(normal(0.0278355144042715, 0.422659766789246), class = "b", coef = "Gender2", resp = "healthAndSafetyPreferencez"),
prior(normal(0.0973594822885823, 0.326608098927675), class = "b", coef = "prestige_Sum", resp = "healthAndSafetyPreferencez"),
prior(normal(0.00875269191510724, 0.318469718048124), class = "b", coef = "leadership_Sum", resp = "healthAndSafetyPreferencez"),
prior(normal(0.29128133142697, 0.268017521856451), class = "b", coef = "Age", resp = "healthAndSafetyPreferencez"),
prior(normal(0, 1), class = "b", coef = "PNI_Sum", resp = "healthAndSafetyPreferencez"),
prior(normal(-0.0999481706002996, 0.401775133599389), class = "b", coef = "dominance_Sum:Gender2", resp = "healthAndSafetyPreferencez"),
prior(normal(-0.10403479994876, 0.406001141965322), class = "b", coef = "Gender2:prestige_Sum", resp = "healthAndSafetyPreferencez"),
prior(normal(-0.168768978826444, 0.40639358037353), class = "b", coef = "Gender2:leadership_Sum", resp = "healthAndSafetyPreferencez"),
prior(normal(0, 1), class = "b", coef = "Gender2:PNI_Sum", resp = "healthAndSafetyPreferencez"),
prior(normal(1.21601692610744, 0.273519339038594), class = "b", coef = "dominance_Sum", resp = "recreationalPreferencez"),
prior(normal(-1.14450749448218, 0.349856438123967), class = "b", coef = "Gender2", resp = "recreationalPreferencez"),
prior(normal(-0.520251439573338, 0.268087046058269), class = "b", coef = "prestige_Sum", resp = "recreationalPreferencez"),
prior(normal(0.0170805281214146, 0.261190196429715), class = "b", coef = "leadership_Sum", resp = "recreationalPreferencez"),
prior(normal(0.45864492029498, 0.210442768414193), class = "b", coef = "Age", resp = "recreationalPreferencez"),
prior(normal(0, 1), class = "b", coef = "PNI_Sum", resp = "recreationalPreferencez"),
prior(normal(-0.0844462213487249, 0.337748960519003), class = "b", coef = "dominance_Sum:Gender2", resp = "recreationalPreferencez"),
prior(normal(0.521288662601058, 0.33914921337773), class = "b", coef = "Gender2:prestige_Sum", resp = "recreationalPreferencez"),
prior(normal(-0.246293286419541, 0.346071807160438), class = "b", coef = "Gender2:leadership_Sum", resp = "recreationalPreferencez"),
prior(normal(0, 1), class = "b", coef = "Gender2:PNI_Sum", resp = "recreationalPreferencez")
)
Experiment_2_demographics$Gender <- as.factor(Experiment_2_demographics$Gender)
demo_table_j <- d2
label(demo_table_j$Ethnic_Origin) <- "Ethnic Origin"
table1(~ Gender + Age + Education + Ethnicity + Ethnic_Origin, data = demo_table_j)
| Overall (N=289) |
|
|---|---|
| Gender | |
| Female | 124 (42.9%) |
| Male | 155 (53.6%) |
| Gender Non-Binary | 8 (2.8%) |
| Prefer not to respond | 2 (0.7%) |
| Age | |
| Mean (SD) | 29.3 (9.84) |
| Median [Min, Max] | 26.0 [18.0, 78.0] |
| Education | |
| Primary School | 5 (1.7%) |
| GCSEs or Equivalent | 18 (6.2%) |
| A-Levels or Equivalent | 65 (22.5%) |
| University Undergraduate Program | 130 (45.0%) |
| University Post-Graduate Program | 62 (21.5%) |
| Doctoral Degree | 4 (1.4%) |
| Prefer not to respond | 5 (1.7%) |
| Ethnicity | |
| White | 222 (76.8%) |
| Mixed or Multi-ethnic | 7 (2.4%) |
| Asian or Asian Scottish or Asian British | 5 (1.7%) |
| African | 51 (17.6%) |
| Other ethnicity | 3 (1.0%) |
| Prefer not to respond | 1 (0.3%) |
| Ethnic Origin | |
| English | 16 (5.5%) |
| European | 200 (69.2%) |
| Latin American | 6 (2.1%) |
| Asian | 7 (2.4%) |
| African | 50 (17.3%) |
| Other | 10 (3.5%) |
Experiment_2_demographics$Gender <- as.factor(Experiment_2_demographics$Gender)
ggplot(d2, aes(x = Gender, fill = Gender)) +
geom_histogram(stat = "count") +
labs(x = "Gender2") +
scale_x_discrete(labels = c("Female", "Male", "Gender \nNon-Binary", "Prefer not \nto respond"), guide = "prism_offset") +
scale_y_continuous(breaks = seq(0, 160, 10), guide = "prism_offset") +
theme(legend.position = "none")
## Warning: Ignoring unknown parameters: binwidth, bins, pad
Experiment_2_demographics_Gender$Gender <- as.factor(Experiment_2_demographics_Gender$Gender)
d2 <- Experiment_2_demographics_Gender %>%
mutate_at(vars(locfunc(Experiment_2_demographics_Gender, "Gender")), ~ as.factor(recode(., "1" = "Female", "2" = "Male")))
age_plot <- ggplot(d2, aes(x = Age, fill = Gender)) +
geom_bar(data = subset(d2, Gender == "Female")) +
geom_bar(data = subset(d2, Gender == "Male"), aes(y = ..count.. * (-1))) +
scale_y_continuous(breaks = seq(-30, 30, 1), labels = abs(seq(-30, 30, 1))) +
scale_x_continuous(breaks = seq(20, 80, 5)) +
ylab("Number of Participants") +
xlab("Age of Participants (In years)") +
geom_hline(yintercept = 0) +
coord_flip()
ggplotly(age_plot)
## Warning: `gather_()` was deprecated in tidyr 1.2.0.
## Please use `gather()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
Experiment_2_demographics$Ethnicity <- as.factor(Experiment_2_demographics$Ethnicity)
ggplot(Experiment_2_demographics, aes(x = Ethnicity, fill = Ethnicity)) +
geom_histogram(stat = "count") +
scale_x_discrete(labels = c("White ", "Mixed \nor \nMulti-ethnic ", "Asian \nor \nAsian Scottish \nor \nAsian British", "African", "Caribbean \nor \nBlack", "Arab ", "Other ethnicity", "Prefer not \nto respond"), guide = "prism_offset") +
scale_y_continuous(breaks = seq(0, 250, 20), guide = "prism_offset") +
theme(legend.position = "none")
## Warning: Ignoring unknown parameters: binwidth, bins, pad
Experiment_2_demographics$Ethnic_Origin <- as.factor(Experiment_2_demographics$Ethnic_Origin)
ggplot(Experiment_2_demographics, aes(x = Ethnic_Origin, fill = Ethnic_Origin)) +
geom_histogram(stat = "count") +
scale_x_discrete(labels = c("Scottish", "English", "European", "Latin \nAmerican", "Asian", "Arab", "African", "Other", "Prefer not \nto respond"), guide = "prism_offset") +
scale_y_continuous(breaks = seq(0, 250, 20), guide = "prism_offset") +
theme(legend.position = "none")
## Warning: Ignoring unknown parameters: binwidth, bins, pad
Experiment_2_demographics$Education <- as.factor(Experiment_2_demographics$Education)
ggplot(Experiment_2_demographics, aes(x = Education, fill = Education)) +
geom_histogram(stat = "count") +
scale_x_discrete(labels = c("Primary School ", "GCSEs \nor \nEquivalent", "A-Levels \nor \nEquivalent", "University \nUndergraduate \nProgram", "University \nPost-Graduate \nProgram", "Doctoral \nDegree", "Prefer not \nto respond"), guide = "prism_offset") +
scale_y_continuous(breaks = seq(0, 250, 20), guide = "prism_offset") +
theme(legend.position = "none")
## Warning: Ignoring unknown parameters: binwidth, bins, pad
Experiment_2_demographics_Gender$riskBenefitSum_z <- scale(Experiment_2_demographics_Gender$riskBenefitSum)
correlation_df <- Experiment_2_demographics_Gender[, columns_names$x]
correlation_df$dominance_Sum_z <- Experiment_2_demographics$dominance_Sum_z
correlation_df$prestige_Sum_z <- Experiment_2_demographics$prestige_Sum_z
correlation_df$leadership_Sum_z <- Experiment_2_demographics$leadership_Sum_z
correlation_df$PNI_Sum <- as.numeric(scale(Experiment_2_demographics_Gender$PNI_Sum))
correlation_df <- correlation_df %>% rename(
"Ethical Preference" = "ethicalPreference_z",
"Financial Preference" = "financialPreference_z",
"Health and Safety Preference" = "healthAndSafetyPreference_z",
"Social Preference" = "socialPreference_z",
"Recreational Preference" = "recreationalPreference_z",
"Dominance" = "dominance_Sum",
"Prestige" = "prestige_Sum",
"Leadership" = "leadership_Sum",
"UMS Affiliation" = "UMSAffiliationSum_z",
"UMS Intimacy" = "UMSIntimacySum_z",
"UMS Sum" = "UMSSum_z",
"B-PNI" = "PNI_Sum",
"Risk Perception" = "riskPerceptionSum_z",
"Risk Benefit" = "riskBenefitSum_z",
"Risk Sum" = "riskSum_z",
"General Expected Benefits" = "generalExpectedBenefits_z",
"General Risk Preference" = "generalRiskPreference_z"
)
corr_1 <- correlation(correlation_df, bayesian = TRUE, method = "auto")
saveRDS(corr_1, "corr_1.rds")
corr_1 <- readRDS("corr_1.rds")
print(summary(corr_1))
## # Correlation Matrix (auto-method)
##
## Parameter | General Risk Preference | General Expected Benefits | Risk Sum | Risk Benefit | Risk Perception | B-PNI | UMS Sum | UMS Intimacy | UMS Affiliation | Leadership | Prestige | Dominance | Social Preference | Recreational Preference | Health and Safety Preference | Financial Preference
## ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
## Ethical Preference | 0.68*** | 0.67*** | 0.42*** | 0.68*** | -0.30*** | 0.18** | -0.05 | -0.02 | -0.14* | -0.10 | 0.02 | 0.33*** | 0.08 | 0.28*** | 0.56*** | 0.38***
## Financial Preference | 0.60*** | 0.68*** | 0.37*** | 0.68*** | -0.09 | 0.05 | 0.02 | 0.06 | -0.08 | 0.10 | 0.06 | 0.14* | 0.23*** | 0.27*** | 0.25*** |
## Health and Safety Preference | 0.71*** | 0.74*** | 0.44*** | 0.74*** | -0.24*** | 0.15** | -0.02 | 0.02 | -0.12* | 6.14e-03 | -0.07 | 0.27*** | 0.28*** | 0.50*** | |
## Recreational Preference | 0.68*** | 0.70*** | 0.43*** | 0.70*** | -0.23*** | 0.13* | 0.05 | 0.09 | -0.07 | 0.12* | -0.01 | 0.21*** | 0.38*** | | |
## Social Preference | 0.43*** | 0.56*** | 0.22*** | 0.56*** | 0.08 | 0.27*** | 0.28*** | 0.27*** | 0.24*** | 0.32*** | 0.22*** | 0.09 | | | |
## Dominance | 0.33*** | 0.30*** | 0.35*** | 0.30*** | -0.19*** | 0.47*** | 0.11* | 0.13* | 0.01 | 0.29*** | 0.30*** | | | | |
## Prestige | 0.03 | 0.06 | 0.17** | 0.06 | 0.05 | 0.45*** | 0.66*** | 0.62*** | 0.55*** | 0.46*** | | | | | |
## Leadership | 0.08 | 0.13* | 0.14* | 0.13* | 0.07 | 0.29*** | 0.42*** | 0.40*** | 0.35*** | | | | | | |
## UMS Affiliation | -0.12* | -0.06 | -0.09 | -0.06 | 0.19*** | 0.34*** | 0.74*** | 0.56*** | | | | | | | |
## UMS Intimacy | 0.09 | 0.12* | 0.21*** | 0.12* | 0.03 | 0.27*** | 0.97*** | | | | | | | | |
## UMS Sum | 0.04 | 0.08 | 0.14** | 0.08 | 0.07 | 0.31*** | | | | | | | | | |
## B-PNI | 0.17** | 0.22*** | 0.26*** | 0.22*** | 0.04 | | | | | | | | | | |
## Risk Perception | -0.58*** | -0.23*** | -0.39*** | -0.23*** | | | | | | | | | | | |
## Risk Benefit | 0.92*** | 1.00*** | 0.56*** | | | | | | | | | | | | |
## Risk Sum | 0.62*** | 0.56*** | | | | | | | | | | | | | |
## General Expected Benefits | 0.92*** | | | | | | | | | | | | | | |
ggcorrplot(corr_1, type = "lower", lab = TRUE, insig = "blank", show.diag = TRUE, sig.level = 0.05) + scale_x_discrete(labels = 1:17) + theme(axis.text.x = element_text(angle = 0, hjust = .5))
apa_table(correlation_table_1, landscape = TRUE, row.names = FALSE, placement = "ht", note = "* denotes significance level", caption = "General Correlaiton Matrix | Experiment 2")
| Parameter | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 | X16 | X17 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ethical Preference | 0.68*** | 0.67*** | 0.42*** | 0.68*** | -0.30*** | 0.18** | -0.05 | -0.02 | -0.14* | -0.10 | 0.02 | 0.33*** | 0.08 | 0.28*** | 0.56*** | 0.38*** | 1 |
| Financial Preference | 0.60*** | 0.68*** | 0.37*** | 0.68*** | -0.09 | 0.05 | 0.02 | 0.06 | -0.08 | 0.10 | 0.06 | 0.14* | 0.23*** | 0.27*** | 0.25*** | 1.00 | |
| Health and Safety Preference | 0.71*** | 0.74*** | 0.44*** | 0.74*** | -0.24*** | 0.15** | -0.02 | 0.02 | -0.12* | 0.01 | -0.07 | 0.27*** | 0.28*** | 0.50*** | 1.00 | ||
| Recreational Preference | 0.68*** | 0.70*** | 0.43*** | 0.70*** | -0.23*** | 0.13* | 0.05 | 0.09 | -0.07 | 0.12* | -0.01 | 0.21*** | 0.38*** | 1.00 | |||
| Social Preference | 0.43*** | 0.56*** | 0.22*** | 0.56*** | 0.08 | 0.27*** | 0.28*** | 0.27*** | 0.24*** | 0.32*** | 0.22*** | 0.09 | 1.00 | ||||
| Dominance | 0.33*** | 0.30*** | 0.35*** | 0.30*** | -0.19*** | 0.47*** | 0.11* | 0.13* | 0.01 | 0.29*** | 0.30*** | 1.00 | |||||
| Prestige | 0.03 | 0.06 | 0.17** | 0.06 | 0.05 | 0.45*** | 0.66*** | 0.62*** | 0.55*** | 0.46*** | 1.00 | ||||||
| Leadership | 0.08 | 0.13* | 0.14* | 0.13* | 0.07 | 0.29*** | 0.42*** | 0.40*** | 0.35*** | 1.00 | |||||||
| UMS Affiliation | -0.12* | -0.06 | -0.09 | -0.06 | 0.19*** | 0.34*** | 0.74*** | 0.56*** | 1.00 | ||||||||
| UMS Intimacy | 0.09 | 0.12* | 0.21*** | 0.12* | 0.03 | 0.27*** | 0.97*** | 1.00 | |||||||||
| UMS Sum | 0.04 | 0.08 | 0.14** | 0.08 | 0.07 | 0.31*** | 1.00 | ||||||||||
| B-PNI | 0.17** | 0.22*** | 0.26*** | 0.22*** | 0.04 | 1.00 | |||||||||||
| Risk Perception | -0.58 | -0.23*** | -0.39*** | -0.23*** | 1.00 | ||||||||||||
| Risk Benefit | 0.92*** | 1.00*** | 0.56*** | 1.00 | |||||||||||||
| Risk Sum | 0.62*** | 0.56*** | 1.00 | ||||||||||||||
| General Expected Benefits | 0.92*** | 1.00 | |||||||||||||||
| General Risk Preference | 1.00 |
Note. * denotes significance level
Â
## B-PNI distribution
B_PNI_1 <- ggplot(Experiment_2_demographics, aes(x = Age, y = PNI_Sum)) +
geom_point(size = 0.7, alpha = 0.8, position = "jitter") +
geom_smooth(method = "lm", se = FALSE, size = 2, alpha = 0.8)
ggplotly(B_PNI_1)
## brms SEM attempt
riska <- lm(riskBenefitSum ~ riskSum, data = Experiment_2_demographics)
riskb <- lm(riskBenefitSum ~ riskPerceptionSum, data = Experiment_2_demographics)
Experiment_2_demographics$generalRiskPreference <- (Experiment_2_J_Analysis[, "riskBenefitSum"] * riska$coefficients[2]) + (Experiment_2_J_Analysis[, "riskPerceptionSum"] * riskb$coefficients[2])
Experiment_2_demographics_Gender$generalExpectedBenefits <- (Experiment_2_J_Analysis[, "riskBenefitSum"] * riska$coefficients[2])
Experiment_2_demographics_Gender$generalPerceievedRisk <- (Experiment_2_J_Analysis[, "riskPerceptionSum"] * riskb$coefficients[2])
Experiment_2_demographics_Gender$riskBenefitSum_z <- scale(Experiment_2_demographics_Gender$riskBenefitSum)
Experiment_2_demographics_Gender$generalRiskPreference_z <- scale(Experiment_2_demographics$generalRiskPreference)
Experiment_2_demographics_Gender$generalExpectedBenefits_z <- scale(Experiment_2_demographics$generalExpectedBenefits)
Experiment_2_demographics_Gender$generalPerceievedRisk_z <- scale(Experiment_2_demographics$generalPerceievedRisk)
Experiment_2_demographics$UMSSum_z <- scale(Experiment_2_demographics$UMSSum)
Experiment_2_demographics$UMSAffiliationSum_z <- scale(Experiment_2_demographics$UMSAffiliationSum)
Experiment_2_demographics$UMSIntimacySum_z <- scale(Experiment_2_demographics$UMSIntimacySum)
Experiment_2_demographics_Gender <- Experiment_2_demographics[!(Experiment_2_demographics$Gender == "3" | Experiment_2_demographics$Gender == "6"), ]
m1_interaction <- brm(generalRiskPreference_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum * Gender + Age, data = Experiment_2_demographics_Gender, warmup = 1000, iter = 10000, prior = prior_m1_interaction_gen, save_pars = save_pars(all = T), cores = parallel::detectCores(), backend = "cmdstanr")
saveRDS(m1_interaction, "m1_interaction.rds")
m1_interaction_no_pni <- brm(generalRiskPreference_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Age, data = Experiment_2_demographics_Gender, warmup = 1000, iter = 10000, prior = prior_m1_interaction_gen_no_pni, save_pars = save_pars(all = T), cores = parallel::detectCores(), backend = "cmdstanr")
saveRDS(m1_interaction_no_pni, "m1_interaction_no_pni.rds")
# Model without PNI is favored over model with PNI
m1 <- brm(generalRiskPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum + Gender + Age, data = Experiment_2_demographics_Gender, warmup = 1000, iter = 10000, , cores = parallel::detectCores(), backend = "cmdstanr", prior = prior_m1, save_pars = save_pars(all = T))
saveRDS(m1, "m1.rds")
m1_fixef <- MutateHDI::mutate_each_hdi_no_save(brms::fixef(m1))
kable(m1_fixef[
sign_match(m1_fixef[, 4]) == sign_match(m1_fixef[, 5]),
c("Parameter", "Estimate", "CI", "CI Low", "CI High")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
kable_styling(full_width = T) %>%
remove_column(1)
| Parameter | Estimate | CI | CI Low | CI High |
|---|---|---|---|---|
| Intercept | 0.59 | 0.95 | 0.22 | 0.95 |
| Dominance | 0.28 | 0.95 | 0.16 | 0.41 |
| Gender | 0.23 | 0.95 | 0.02 | 0.45 |
| Age | -0.03 | 0.95 | -0.04 | -0.01 |
m1_comparison <- loo(m1, m1_interaction)
m1_comparison
bayes_factor(m1, m1_interaction)
# m1_interaction over m1
m2 <- brm(mvbind(riskSum_z, riskBenefitSum_z, riskPerceptionSum_z) ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum + Gender + Age, data = Experiment_2_demographics_Gender, warmup = 1000, iter = 10000, prior = prior_m2, save_pars = save_pars(all = T), cores = parallel::detectCores(), backend = "cmdstanr")
saveRDS(m2, "m2.rds")
m2_fixef <- MutateHDI::mutate_each_hdi_no_save(brms::fixef(m2))
kable(m2_fixef[
sign_match(m2_fixef[, 4]) == sign_match(m2_fixef[, 5]),
c("Parameter", "Estimate", "CI", "CI Low", "CI High")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
kable_styling(full_width = T) %>%
remove_column(1)
| Parameter | Estimate | CI | CI Low | CI High |
|---|---|---|---|---|
| Risk Benefit * Intercept | 0.39 | 0.95 | 0.06 | 0.71 |
| Risk * Dominance | 0.3 | 0.95 | 0.2 | 0.4 |
| Risk * Gender | 0.25 | 0.95 | 0.06 | 0.43 |
| Risk Benefit * Dominance | 0.24 | 0.95 | 0.14 | 0.35 |
| Risk Benefit * Age | -0.02 | 0.95 | -0.03 | -0.01 |
| Risk Perception * Dominance | -0.27 | 0.95 | -0.38 | -0.16 |
| Risk Perception * Gender | -0.29 | 0.95 | -0.48 | -0.09 |
m2_interaction_gender <- brm(mvbind(riskSum_z, riskBenefitSum_z, riskPerceptionSum_z) ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum * Gender + Age, data = Experiment_2_demographics_Gender, warmup = 1000, iter = 10000, prior = prior_m2_interaction_gender, save_pars = save_pars(all = T), cores = parallel::detectCores(), backend = "cmdstanr")
saveRDS(m2_interaction_gender, "m2_interaction_gender.rds")
m2_interaction_gender_fixef <- MutateHDI::mutate_each_hdi_no_save(brms::fixef(m2_interaction_gender))
kable(m2_interaction_gender_fixef[
sign_match(m2_interaction_gender_fixef[, 4]) == sign_match(m2_interaction_gender_fixef[, 5]),
c("Parameter", "Estimate", "CI", "CI Low", "CI High")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
kable_styling(full_width = T) %>%
remove_column(1)
| Parameter | Estimate | CI | CI Low | CI High |
|---|---|---|---|---|
| Risk * Intercept | 0.42 | 0.95 | 0.05 | 0.81 |
| Risk Benefit * Intercept | 0.88 | 0.95 | 0.5 | 1.26 |
| Risk * Dominance | 0.5 | 0.95 | 0.35 | 0.65 |
| Risk * Dominance : Gender | -0.26 | 0.95 | -0.45 | -0.06 |
| Risk Benefit * Dominance | 0.32 | 0.95 | 0.16 | 0.48 |
| Risk Benefit * Age | -0.02 | 0.95 | -0.04 | -0.01 |
| Risk Perception * Dominance | -0.3 | 0.95 | -0.47 | -0.14 |
| Risk Perception * Leadership : Gender | 0.27 | 0.95 | 0.07 | 0.47 |
m2_comparison <- loo(m2, m2_interaction_gender)
m2_comparison
bayes_factor(m2_interaction_gender, m2)
# m2 over m2_interaction_gender
m3 <- brm(mvbind(ethicalPreference_z, financialPreference_z, healthAndSafetyPreference_z, recreationalPreference_z, socialPreference_z) ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum + Gender + Age, data = Experiment_2_demographics_Gender, warmup = 1000, iter = 10000, prior = prior_m3, save_pars = save_pars(all = T), cores = parallel::detectCores(), backend = "cmdstanr")
saveRDS(m3, "m3.rds")
m3_fixef <- MutateHDI::mutate_each_hdi_no_save(brms::fixef(m3))
kable(m3_fixef[
sign_match(m3_fixef[, 4]) == sign_match(m3_fixef[, 5]),
c("Parameter", "Estimate", "CI", "CI Low", "CI High")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
kable_styling(full_width = T) %>%
remove_column(1)
| Parameter | Estimate | CI | CI Low | CI High |
|---|---|---|---|---|
| Ethical Preference * Intercept | 0.56 | 0.95 | 0.19 | 0.93 |
| Health and Safety Preference * Intercept | 0.63 | 0.95 | 0.24 | 1.02 |
| Recreational Preference * Intercept | 0.84 | 0.95 | 0.46 | 1.23 |
| Social Preference * Intercept | 0.76 | 0.95 | 0.4 | 1.13 |
| Ethical Preference * Dominance | 0.4 | 0.95 | 0.28 | 0.53 |
| Ethical Preference * Leadership | -0.19 | 0.95 | -0.3 | -0.07 |
| Ethical Preference * Gender | 0.23 | 0.95 | 0.02 | 0.43 |
| Ethical Preference * Age | -0.02 | 0.95 | -0.03 | -0.01 |
| Financial Preference * Dominance | 0.18 | 0.95 | 0.05 | 0.32 |
| Health and Safety Preference * Dominance | 0.39 | 0.95 | 0.26 | 0.52 |
| Health and Safety Preference * Prestige | -0.2 | 0.95 | -0.33 | -0.07 |
| Recreational Preference * Dominance | 0.28 | 0.95 | 0.16 | 0.41 |
| Recreational Preference * Prestige | -0.18 | 0.95 | -0.31 | -0.05 |
| Recreational Preference * Age | -0.03 | 0.95 | -0.04 | -0.01 |
| Social Preference * Leadership | 0.24 | 0.95 | 0.12 | 0.36 |
| Social Preference * Gender | -0.49 | 0.95 | -0.71 | -0.27 |
m3_interaction_gender <- brm(mvbind(ethicalPreference_z, financialPreference_z, healthAndSafetyPreference_z, recreationalPreference_z, socialPreference_z) ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum * Gender + Age, data = Experiment_2_demographics_Gender, warmup = 1000, iter = 10000, prior = prior_m3_interaction_gender, save_pars = save_pars(all = T), cores = parallel::detectCores(), backend = "cmdstanr")
saveRDS(m3_interaction_gender, "m3_interaction_gender.rds")
m3_interaction_gender_fixef <- MutateHDI::mutate_each_hdi_no_save(brms::fixef(m3_interaction_gender))
kable(m3_interaction_gender_fixef[
sign_match(m3_interaction_gender_fixef[, 4]) == sign_match(m3_interaction_gender_fixef[, 5]),
c("Parameter", "Estimate", "CI", "CI Low", "CI High")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
kable_styling(full_width = T) %>%
remove_column(1)
| Parameter | Estimate | CI | CI Low | CI High |
|---|---|---|---|---|
| Ethical Preference * Intercept | 0.59 | 0.95 | 0.22 | 0.97 |
| Financial Preference * Intercept | 0.45 | 0.95 | 0.04 | 0.88 |
| Health and Safety Preference * Intercept | 0.63 | 0.95 | 0.23 | 1.03 |
| Recreational Preference * Intercept | 0.86 | 0.95 | 0.47 | 1.26 |
| Social Preference * Intercept | 0.79 | 0.95 | 0.4 | 1.16 |
| Ethical Preference * Dominance | 0.43 | 0.95 | 0.25 | 0.61 |
| Ethical Preference * Gender | 0.23 | 0.95 | 0.02 | 0.43 |
| Ethical Preference * Age | -0.02 | 0.95 | -0.03 | -0.01 |
| Financial Preference * Dominance | 0.28 | 0.95 | 0.07 | 0.49 |
| Health and Safety Preference * Dominance | 0.39 | 0.95 | 0.2 | 0.59 |
| Health and Safety Preference * Prestige | -0.36 | 0.95 | -0.55 | -0.17 |
| Health and Safety Preference * Prestige : Gender | 0.26 | 0.95 | 0.02 | 0.5 |
| Recreational Preference * Dominance | 0.35 | 0.95 | 0.16 | 0.54 |
| Recreational Preference * Prestige | -0.31 | 0.95 | -0.49 | -0.12 |
| Recreational Preference * Age | -0.03 | 0.95 | -0.04 | -0.01 |
| Recreational Preference * Gender: PNI | -0.31 | 0.95 | -0.58 | -0.04 |
| Social Preference * Gender | -0.49 | 0.95 | -0.71 | -0.27 |
| Social Preference * Leadership | 0.22 | 0.95 | 0.04 | 0.41 |
m3_comparison <- loo(m3, m3_interaction_gender)
m3_comparison
bayes_factor(m3_interaction_gender, m3)
# m3 over m3_interaction_gender
mediation_model.1 <- bf(riskSum_z ~ riskBenefitSum_z + riskPerceptionSum_z + PNI_Sum)
mediation_model.2 <- bf(riskBenefitSum_z ~ riskSum_z + riskPerceptionSum_z + PNI_Sum)
mediation_model_1 <- brm(mediation_model.1 + mediation_model.2 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = mediation_dataset, backend = "cmdstanr", cores = parallel::detectCores(), save_pars = save_pars(all = TRUE))
mediation_model.3 <- bf(riskSum_z ~ riskBenefitSum_z + riskPerceptionSum_z + dominance_Sum)
mediation_model.4 <- bf(riskBenefitSum_z ~ riskSum_z + riskPerceptionSum_z + dominance_Sum)
mediation_model_2 <- brm(mediation_model.3 + mediation_model.4 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = mediation_dataset, backend = "cmdstanr", cores = parallel::detectCores(), save_pars = save_pars(all = TRUE))
mediation_model.5 <- bf(riskSum_z ~ riskBenefitSum_z + riskPerceptionSum_z + prestige_Sum)
mediation_model.6 <- bf(riskBenefitSum_z ~ riskSum_z + riskPerceptionSum_z + prestige_Sum)
mediation_model_3 <- brm(mediation_model.5 + mediation_model.6 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = mediation_dataset, backend = "cmdstanr", cores = parallel::detectCores(), save_pars = save_pars(all = TRUE))
mediation_model.7 <- bf(riskSum_z ~ riskBenefitSum_z + riskPerceptionSum_z + leadership_Sum)
mediation_model.8 <- bf(riskBenefitSum_z ~ riskSum_z + riskPerceptionSum_z + leadership_Sum)
mediation_model_4 <- brm(mediation_model.7 + mediation_model.8 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = mediation_dataset, backend = "cmdstanr", cores = parallel::detectCores(), save_pars = save_pars(all = TRUE))
mediation_loo <- brms::loo(mediation_model_1, mediation_model_2, mediation_model_3, mediation_model_4)
mediation_comparison <- bayesfactor_models(mediation_model_1, mediation_model_2, mediation_model_3, mediation_model_4, denominator = mediation_model_4)
saveRDS(mediation_loo, "mediation_loo.rds")
saveRDS(mediation_comparison, "mediation_comparison.rds")
# I think this indicates that model 4 with dominance is the strongest predictor
mediation_loo
## Output of model 'mediation_model_1':
##
## Computed from 36000 by 279 log-likelihood matrix
##
## Estimate SE
## elpd_loo -668.6 23.8
## p_loo 11.7 1.6
## looic 1337.3 47.5
## ------
## Monte Carlo SE of elpd_loo is 0.0.
##
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
##
## Output of model 'mediation_model_2':
##
## Computed from 36000 by 279 log-likelihood matrix
##
## Estimate SE
## elpd_loo -667.7 23.3
## p_loo 11.5 1.5
## looic 1335.4 46.6
## ------
## Monte Carlo SE of elpd_loo is 0.0.
##
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
##
## Output of model 'mediation_model_3':
##
## Computed from 36000 by 279 log-likelihood matrix
##
## Estimate SE
## elpd_loo -670.6 23.5
## p_loo 11.7 1.5
## looic 1341.1 47.0
## ------
## Monte Carlo SE of elpd_loo is 0.0.
##
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
##
## Output of model 'mediation_model_4':
##
## Computed from 36000 by 279 log-likelihood matrix
##
## Estimate SE
## elpd_loo -673.7 24.1
## p_loo 11.7 1.5
## looic 1347.4 48.2
## ------
## Monte Carlo SE of elpd_loo is 0.0.
##
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
##
## Model comparisons:
## elpd_diff se_diff
## mediation_model_2 0.0 0.0
## mediation_model_1 -0.9 3.1
## mediation_model_3 -2.8 4.4
## mediation_model_4 -6.0 3.0
mediation_comparison
## Bayes Factors for Model Comparison
##
## Model BF
## [1] 143.64
## [2] 353.65
## [3] 21.68
##
## * Against Denominator: [4]
## * Bayes Factor Type: marginal likelihoods (bridgesampling)
m_model_1 <- bf(riskSum_z ~ riskBenefitSum_z + riskPerceptionSum_z + riskPerceptionSum_z + PNI_Sum)
m_model_2 <- bf(riskBenefitSum_z ~ PNI_Sum)
Mediation_comparison_1 <- brm(m_model_1 + m_model_2 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = mediation_dataset, backend = "cmdstanr", save_pars = save_pars(all = TRUE))
summary(Mediation_comparison_1)
## Family: MV(gaussian, gaussian)
## Links: mu = identity; sigma = identity
## mu = identity; sigma = identity
## Formula: riskSum_z ~ riskBenefitSum_z + riskPerceptionSum_z + riskPerceptionSum_z + PNI_Sum
## riskBenefitSum_z ~ PNI_Sum
## Data: mediation_dataset (Number of observations: 279)
## Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
## total post-warmup draws = 36000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## riskSumz_Intercept -0.01 0.05 -0.10 0.08 1.00 64647
## riskBenefitSumz_Intercept -0.00 0.06 -0.12 0.11 1.00 63908
## riskSumz_riskBenefitSum_z 0.46 0.05 0.36 0.55 1.00 56122
## riskSumz_riskPerceptionSum_z -0.30 0.05 -0.39 -0.21 1.00 59026
## riskSumz_PNI_Sum 0.17 0.05 0.08 0.26 1.00 63480
## riskBenefitSumz_PNI_Sum 0.22 0.06 0.11 0.34 1.00 64607
## Tail_ESS
## riskSumz_Intercept 25739
## riskBenefitSumz_Intercept 26697
## riskSumz_riskBenefitSum_z 30146
## riskSumz_riskPerceptionSum_z 28832
## riskSumz_PNI_Sum 29119
## riskBenefitSumz_PNI_Sum 25675
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_riskSumz 0.76 0.03 0.70 0.83 1.00 64866
## sigma_riskBenefitSumz 0.98 0.04 0.90 1.07 1.00 63886
## Tail_ESS
## sigma_riskSumz 27469
## sigma_riskBenefitSumz 27507
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
Mediation_comparison_1_fixef <- MutateHDI::mutate_each_hdi_no_save(brms::fixef(Mediation_comparison_1))
kable(Mediation_comparison_1_fixef[
sign_match(Mediation_comparison_1_fixef[, 4]) == sign_match(Mediation_comparison_1_fixef[, 5]),
c("Parameter", "Estimate", "CI", "CI Low", "CI High")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
kable_styling(full_width = T) %>%
remove_column(1)
| Parameter | Estimate | CI | CI Low | CI High |
|---|---|---|---|---|
| Risk * Risk Benefit | 0.46 | 0.95 | 0.36 | 0.55 |
| Risk * Risk Perception | -0.3 | 0.95 | -0.39 | -0.21 |
| Risk * PNI | 0.17 | 0.95 | 0.08 | 0.26 |
| Risk Benefit * PNI | 0.22 | 0.95 | 0.11 | 0.34 |
m_model_3 <- bf(riskSum_z ~ riskBenefitSum_z + riskPerceptionSum_z + PNI_Sum + dominance_Sum)
m_model_4 <- bf(riskBenefitSum_z ~ PNI_Sum + dominance_Sum)
Mediation_comparison_2 <- brm(m_model_3 + m_model_4 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = mediation_dataset, backend = "cmdstanr", save_pars = save_pars(all = TRUE))
saveRDS(Mediation_comparison_2, "Mediation_comparison_2.rds")
summary(Mediation_comparison_2)
## Family: MV(gaussian, gaussian)
## Links: mu = identity; sigma = identity
## mu = identity; sigma = identity
## Formula: riskSum_z ~ riskBenefitSum_z + riskPerceptionSum_z + PNI_Sum + dominance_Sum
## riskBenefitSum_z ~ PNI_Sum + dominance_Sum
## Data: mediation_dataset (Number of observations: 279)
## Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
## total post-warmup draws = 36000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat
## riskSumz_Intercept -0.01 0.05 -0.10 0.08 1.00
## riskBenefitSumz_Intercept -0.00 0.06 -0.11 0.11 1.00
## riskSumz_riskBenefitSum_z 0.44 0.05 0.34 0.54 1.00
## riskSumz_riskPerceptionSum_z -0.28 0.05 -0.37 -0.19 1.00
## riskSumz_PNI_Sum 0.12 0.05 0.01 0.22 1.00
## riskSumz_dominance_Sum 0.11 0.05 0.01 0.22 1.00
## riskBenefitSumz_PNI_Sum 0.10 0.07 -0.03 0.23 1.00
## riskBenefitSumz_dominance_Sum 0.26 0.06 0.13 0.38 1.00
## Bulk_ESS Tail_ESS
## riskSumz_Intercept 71590 26117
## riskBenefitSumz_Intercept 72103 27881
## riskSumz_riskBenefitSum_z 61552 27485
## riskSumz_riskPerceptionSum_z 63021 29332
## riskSumz_PNI_Sum 52292 30237
## riskSumz_dominance_Sum 53907 30708
## riskBenefitSumz_PNI_Sum 55044 30846
## riskBenefitSumz_dominance_Sum 54338 29457
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_riskSumz 0.76 0.03 0.70 0.83 1.00 68389
## sigma_riskBenefitSumz 0.96 0.04 0.88 1.04 1.00 64282
## Tail_ESS
## sigma_riskSumz 26952
## sigma_riskBenefitSumz 26142
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
Mediation_comparison_2_fixef <- MutateHDI::mutate_each_hdi_no_save(brms::fixef(Mediation_comparison_2))
kable(Mediation_comparison_2_fixef[
sign_match(Mediation_comparison_2_fixef[, 4]) == sign_match(Mediation_comparison_2_fixef[, 5]),
c("Parameter", "Estimate", "CI", "CI Low", "CI High")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
kable_styling(full_width = T) %>%
remove_column(1)
| Parameter | Estimate | CI | CI Low | CI High |
|---|---|---|---|---|
| Risk * Risk Benefit | 0.44 | 0.95 | 0.34 | 0.54 |
| Risk * Risk Perception | -0.28 | 0.95 | -0.37 | -0.19 |
| Risk * PNI | 0.12 | 0.95 | 0.01 | 0.22 |
| Risk * Dominance | 0.11 | 0.95 | 0.01 | 0.22 |
| Risk Benefit * Dominance | 0.26 | 0.95 | 0.13 | 0.38 |
m_model_5 <- bf(riskSum_z ~ riskBenefitSum_z + riskPerceptionSum_z + PNI_Sum + dominance_Sum + leadership_Sum + prestige_Sum)
m_model_6 <- bf(riskBenefitSum_z ~ PNI_Sum + dominance_Sum + leadership_Sum + prestige_Sum)
Mediation_comparison_3 <- brm(m_model_5 + m_model_6 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = mediation_dataset, backend = "cmdstanr", save_pars = save_pars(all = TRUE), cores = parallel::detectCores())
model_blavaan_test <- "
riskSum_z ~ riskBenefitSum_z + riskPerceptionSum_z + PNI_Sum + dominance_Sum
riskBenefitSum_z ~ PNI_Sum + dominance_Sum
"
fit2 <- sem(model_blavaan_test, data = mediation_dataset)
graph_sem(fit2)