Paquetes utilizados

Se hará uso de la base de datos recolectada la cual consta de 80 observaciones y 105 variables de mujeres con cáncer de mama en la ciudad de Cali, concretando algunos parámetros para las simulaciones y el MCMC para obtener la convergencia de los parámetros esperados. Donde se parametrizara el numero de muestras de calentamiento (BURNIN1), el número de iteraciones(SAMPLE1) y el numero de cadenas (NCHAINS1).

options(mc.cores = parallel::detectCores())
set.seed(535535)
datos2 <- readRDS("data/datos2.RDS")
datos <- datos2

set.seed(535535)
BURNIN1 = 8000 #3000
SAMPLE1 = 12000 #6500
NCHAINS1 =  12  #6

#para cargar con menos numero de iteraciones y cadenas
BURNIN = 3000 # 2500
SAMPLE = 7000 # 6500 
CHAINS = 6    # 6

MODELOS PLANTEADOS

Modelos finales con 8000 muestras, 5000 de calentamiento y 10 cadenas, Todo usado para SEM BAYESIANO por medio de Cadenas de Markov de Monte Carlo. A partir del análisis de los modelos propuestos por Wilson & Cleary para predimiento confirmatorio basados en los estudios realizado la RELACIÓN ENTRE SÍNTOMAS, FUNCIONALIDAD, PERCEPCIÓN DE SALUD Y CALIDAD DE VIDA EN MUJERES CON CÁNCER DE MAMA SOMETIDAS A QUIMIOTERAPIA. CALI-COLOMBIA.

set.seed(535535)
model_ref_bio_ind_sinedad <- '
  # measurement model
    funcionalidad =~ prior("normal(0,15)")*f_br23 + prior("normal(0,15)")*f_c30
    sintomas =~ prior("normal(0,15)")*s_br23 + prior("normal(0,15)")*s_c30
    
    biologicas =~ her2_pos + comorb + estadio_avz

  # regressions
    cv_gral ~ salud + sintomas + funcionalidad
    salud   ~ funcionalidad
    funcionalidad ~ sintomas
    sintomas ~ biologicas

  # residual correlations

'

model_ref_bio_ind_sinedad_sinher2 <- '
  # measurement model
    funcionalidad =~ prior("normal(0,15)")*f_br23 + prior("normal(0,15)")*f_c30
    sintomas =~ prior("normal(0,15)")*s_br23 + prior("normal(0,15)")*s_c30
    
    biologicas =~  comorb + estadio_avz

  # regressions
    cv_gral ~ salud + sintomas + funcionalidad
    salud   ~ funcionalidad
    funcionalidad ~ sintomas
    sintomas ~ biologicas

  # residual correlations

'

Exploracion de funcion bsem

De el paquete Blavaan que ayuda a ejecutar la estimacion de los modelos bayesianos para ecuaciones de modelos estructurales, por medio Markov Chain Monte Carlo (MCMC) el cual es un metodo de simulación para generar muestras de las distribuciones a posteriori y estimar cantidades de interes a posteriori.

#MODELO FINAL
#EFECTOS SOBRE CALIDAD DE VIDA,BIOLOGICAS,SIN EDAD
set.seed(535535)
fitref_bio_ind_sinedad <- bsem(
  model = model_ref_bio_ind_sinedad,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  save.lvs = TRUE,
  inits = "prior", 
  sample = BURNIN1,
  burnin = SAMPLE1,
  n.chains = NCHAINS1)
Computing posterior predictives...
set.seed(535535)
fitref_bio_ind_sinedad_sinher2 <- bsem(
  model = model_ref_bio_ind_sinedad_sinher2,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  save.lvs = TRUE,
  inits = "prior", 
  sample = BURNIN1,
  burnin = SAMPLE1,
  n.chains = NCHAINS1)
Computing posterior predictives...

Resumen del modelo

summary(fitref_bio_ind_sinedad,standardized = TRUE, rsquare=TRUE)#esta
## ** WARNING ** blavaan (0.4-1) did NOT converge after 12000 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -916.499       0.064
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     f_br23            1.000                               0.428    0.710
##     f_c30             0.221    4.213  -14.876    1.794    0.094    0.324
##   sintomas =~                                                           
##     s_br23            1.000                               0.294    0.543
##     s_c30             2.365    0.478    1.681    3.522    0.696    0.934
##   biologicas =~                                                         
##     her2_pos          1.000                               0.033    0.064
##     comorb            0.105    6.184  -13.483   13.817    0.003    0.007
##     estadio_avz      -1.059    9.705  -19.347   18.309   -0.035   -0.078
##      Rhat    Prior       
##                          
##                          
##     4.112    normal(0,15)
##                          
##                          
##     1.005    normal(0,15)
##                          
##                          
##     1.000    normal(0,10)
##     1.000    normal(0,10)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   cv_gral ~                                                             
##     salud             0.759    0.067    0.627    0.893    0.759    0.770
##     sintomas         -0.665    5.374  -13.124   11.416   -0.196   -0.153
##     funcionalidad     0.290    4.016   -8.723    9.015    0.124    0.097
##   salud ~                                                               
##     funcionalidad     0.586    6.888  -24.151    3.418    0.250    0.193
##   funcionalidad ~                                                       
##     sintomas         -1.396    0.571   -2.301    0.201   -0.961   -0.961
##   sintomas ~                                                            
##     biologicas        0.470    8.916  -17.712   17.857    0.052    0.052
##      Rhat    Prior       
##                          
##     1.004    normal(0,10)
##     1.001    normal(0,10)
##     1.001    normal(0,10)
##                          
##     4.381    normal(0,10)
##                          
##     1.828    normal(0,10)
##                          
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .f_br23            2.342    0.073    2.199    2.486    2.342    3.891
##    .f_c30             2.438    0.088    2.264    2.610    2.438    8.371
##    .s_br23            1.765    0.063    1.640    1.890    1.765    3.259
##    .s_c30             2.164    0.090    1.986    2.341    2.164    2.904
##    .her2_pos          0.438    0.057    0.327    0.549    0.438    0.860
##    .comorb            0.337    0.055    0.230    0.444    0.337    0.704
##    .estadio_avz       0.337    0.054    0.232    0.444    0.337    0.764
##    .cv_gral           0.806    0.306    0.209    1.411    0.806    0.631
##    .salud             4.337    0.206    3.931    4.743    4.337    3.349
##    .funcionalidad     0.000                               0.000    0.000
##    .sintomas          0.000                               0.000    0.000
##     biologicas        0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.004    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .f_br23            0.180    0.097    0.105    0.513    0.180    0.496
##    .f_c30             0.076    0.029    0.018    0.137    0.076    0.895
##    .s_br23            0.207    0.036    0.148    0.287    0.207    0.705
##    .s_c30             0.071    0.041    0.001    0.148    0.071    0.128
##    .her2_pos          0.258    0.042    0.188    0.354    0.258    0.996
##    .comorb            0.229    0.043    0.156    0.320    0.229    1.000
##    .estadio_avz       0.194    0.065    0.019    0.301    0.194    0.994
##    .cv_gral           0.447    0.099    0.238    0.642    0.447    0.274
##    .salud             1.614    0.288    1.138    2.261    1.614    0.963
##    .funcionalidad     0.014    0.017    0.000    0.058    0.077    0.077
##    .sintomas          0.086    0.047    0.003    0.188    0.997    0.997
##     biologicas        0.001    0.003    0.000    0.007    1.000    1.000
##      Rhat    Prior       
##     2.739 gamma(1,.5)[sd]
##     1.004 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.033 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.005 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.033 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
## 
## R-Square:
##                    Estimate
##     f_br23            0.504
##     f_c30             0.105
##     s_br23            0.295
##     s_c30             0.872
##     her2_pos          0.004
##     comorb            0.000
##     estadio_avz       0.006
##     cv_gral           0.726
##     salud             0.037
##     funcionalidad     0.923
##     sintomas          0.003
summary(fitref_bio_ind_sinedad_sinher2,standardized = TRUE, rsquare=TRUE)#
## blavaan (0.4-1) results of 8000 samples after 12000 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -653.562       0.087
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     f_br23            1.000                               0.443    0.750
##     f_c30             1.453    0.161    1.179    1.810    0.644    0.919
##   sintomas =~                                                           
##     s_br23            1.000                               0.279    0.523
##     s_c30             2.338    0.456    1.674    3.422    0.651    0.924
##   biologicas =~                                                         
##     comorb            1.000                               0.049    0.102
##     estadio_avz      -0.538    8.767  -17.855   17.028   -0.027   -0.063
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.001    normal(0,10)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   cv_gral ~                                                             
##     salud             0.758    0.068    0.625    0.889    0.758    0.780
##     sintomas         -0.451    5.515  -12.915   12.280   -0.126   -0.075
##     funcionalidad     0.435    3.649   -7.722    8.863    0.193    0.116
##   salud ~                                                               
##     funcionalidad     2.609    0.394    1.901    3.451    1.156    0.674
##   funcionalidad ~                                                       
##     sintomas         -1.525    0.320   -2.271   -1.037   -0.959   -0.959
##   sintomas ~                                                            
##     biologicas       -0.333    7.825  -16.094   15.709   -0.059   -0.059
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##                          
##     1.001    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .f_br23            2.343    0.072    2.200    2.485    2.343    3.964
##    .f_c30             2.437    0.088    2.264    2.611    2.437    3.477
##    .s_br23            1.765    0.064    1.640    1.889    1.765    3.313
##    .s_c30             2.164    0.090    1.986    2.341    2.164    3.068
##    .comorb            0.338    0.054    0.231    0.444    0.338    0.694
##    .estadio_avz       0.337    0.055    0.230    0.445    0.337    0.804
##    .cv_gral           0.813    0.306    0.221    1.420    0.813    0.487
##    .salud             4.337    0.206    3.934    4.741    4.337    2.526
##    .funcionalidad     0.000                               0.000    0.000
##    .sintomas          0.000                               0.000    0.000
##     biologicas        0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .f_br23            0.153    0.029    0.104    0.217    0.153    0.437
##    .f_c30             0.077    0.028    0.025    0.135    0.077    0.156
##    .s_br23            0.206    0.036    0.147    0.286    0.206    0.726
##    .s_c30             0.073    0.040    0.001    0.147    0.073    0.146
##    .comorb            0.234    0.039    0.170    0.322    0.234    0.990
##    .estadio_avz       0.175    0.073    0.005    0.292    0.175    0.996
##    .cv_gral           0.444    0.101    0.222    0.638    0.444    0.159
##    .salud             1.610    0.285    1.137    2.252    1.610    0.546
##    .funcionalidad     0.016    0.017    0.000    0.059    0.080    0.080
##    .sintomas          0.077    0.048    0.001    0.180    0.997    0.997
##     biologicas        0.002    0.005    0.000    0.014    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
## 
## R-Square:
##                    Estimate
##     f_br23            0.563
##     f_c30             0.844
##     s_br23            0.274
##     s_c30             0.854
##     comorb            0.010
##     estadio_avz       0.004
##     cv_gral           0.841
##     salud             0.454
##     funcionalidad     0.920
##     sintomas          0.003

Informacion del BRMSEA

Para la evaciacion de ajuste para ecuacuones de modelos estructurales en un análisis factorial confirmatorio bayesiano con tamaños de muestras grandes.

El estudio muestra que el error cuadrático medio de aproximación de la raíz bayesiana recientemente propuesto

por metodo ppp valor p predictivo posteriores de las cadenas de markov

set.seed(535535)
blavFitIndices(fitref_bio_ind_sinedad)
## Posterior mean (EAP) of devm-based fit indices:
## 
##       BRMSEA    BGammaHat adjBGammaHat          BMc 
##        0.120        0.927        0.830        0.840
blavFitIndices(fitref_bio_ind_sinedad_sinher2)
## Posterior mean (EAP) of devm-based fit indices:
## 
##       BRMSEA    BGammaHat adjBGammaHat          BMc 
##        0.106        0.945        0.879        0.891
summary(blavFitIndices(fitref_bio_ind_sinedad))
## 
## Posterior summary statistics and highest posterior density (HPD) 90% credible intervals for devm-based fit indices:
## 
##                EAP Median   MAP    SD lower upper
## BRMSEA       0.120  0.111 0.109 0.040 0.062 0.155
## BGammaHat    0.927  0.940 0.944 0.050 0.893 0.983
## adjBGammaHat 0.830  0.860 0.868 0.116 0.749 0.960
## BMc          0.840  0.867 0.875 0.105 0.763 0.961
summary(blavFitIndices(fitref_bio_ind_sinedad_sinher2))
## 
## Posterior summary statistics and highest posterior density (HPD) 90% credible intervals for devm-based fit indices:
## 
##                EAP Median   MAP    SD lower upper
## BRMSEA       0.106  0.106 0.108 0.022 0.070 0.142
## BGammaHat    0.945  0.947 0.948 0.021 0.913 0.980
## adjBGammaHat 0.879  0.882 0.886 0.046 0.807 0.955
## BMc          0.891  0.894 0.897 0.041 0.826 0.960

Informacion de R hat modelo de referencia

blavInspect(fitref_bio_ind_sinedad, 'rhat')
        funcionalidad=~f_c30              sintomas=~s_c30 
                   4.1122761                    1.0047093 
          biologicas=~comorb      biologicas=~estadio_avz 
                   1.0000765                    1.0002811 
               cv_gral~salud             cv_gral~sintomas 
                   1.0041027                    1.0013746 
       cv_gral~funcionalidad          salud~funcionalidad 
                   1.0011761                    4.3812789 
      funcionalidad~sintomas          sintomas~biologicas 
                   1.8283956                    1.0003418 
              f_br23~~f_br23                 f_c30~~f_c30 
                   2.7385768                    1.0035679 
              s_br23~~s_br23                 s_c30~~s_c30 
                   1.0007631                    1.0334320 
          her2_pos~~her2_pos               comorb~~comorb 
                   0.9999554                    1.0002715 
    estadio_avz~~estadio_avz             cv_gral~~cv_gral 
                   1.0003113                    1.0049023 
                salud~~salud funcionalidad~~funcionalidad 
                   1.0010730                    1.0325213 
          sintomas~~sintomas       biologicas~~biologicas 
                   1.0014568                    1.0002228 
                    f_br23~1                      f_c30~1 
                   1.0001791                    1.0001641 
                    s_br23~1                      s_c30~1 
                   1.0001126                    1.0002002 
                  her2_pos~1                     comorb~1 
                   0.9999440                    0.9999778 
               estadio_avz~1                    cv_gral~1 
                   0.9999621                    1.0039958 
                     salud~1 
                   1.0001298 
blavInspect(fitref_bio_ind_sinedad_sinher2, 'rhat')
        funcionalidad=~f_c30              sintomas=~s_c30 
                   1.0002123                    1.0002248 
     biologicas=~estadio_avz                cv_gral~salud 
                   1.0009251                    1.0000338 
            cv_gral~sintomas        cv_gral~funcionalidad 
                   1.0003094                    1.0002915 
         salud~funcionalidad       funcionalidad~sintomas 
                   1.0000917                    1.0003472 
         sintomas~biologicas               f_br23~~f_br23 
                   1.0010503                    0.9999669 
                f_c30~~f_c30               s_br23~~s_br23 
                   1.0000435                    0.9999784 
                s_c30~~s_c30               comorb~~comorb 
                   1.0000192                    0.9999825 
    estadio_avz~~estadio_avz             cv_gral~~cv_gral 
                   1.0001141                    1.0003690 
                salud~~salud funcionalidad~~funcionalidad 
                   1.0000350                    1.0001027 
          sintomas~~sintomas       biologicas~~biologicas 
                   1.0000603                    1.0001345 
                    f_br23~1                      f_c30~1 
                   1.0001157                    1.0001305 
                    s_br23~1                      s_c30~1 
                   1.0000474                    1.0001609 
                    comorb~1                estadio_avz~1 
                   0.9999909                    0.9999881 
                   cv_gral~1                      salud~1 
                   1.0000479                    1.0000663 

Informacion del neff modelo de referencia

blavInspect(fitref_bio_ind_sinedad, 'neff')
        funcionalidad=~f_c30              sintomas=~s_c30 
                6.380909e+00                 2.171555e+04 
          biologicas=~comorb      biologicas=~estadio_avz 
                3.854590e+04                 1.970033e+04 
               cv_gral~salud             cv_gral~sintomas 
                3.082389e+04                 1.109612e+04 
       cv_gral~funcionalidad          salud~funcionalidad 
                1.382521e+04                 6.331666e+00 
      funcionalidad~sintomas          sintomas~biologicas 
                8.511477e+00                 1.985611e+04 
              f_br23~~f_br23                 f_c30~~f_c30 
                6.901139e+00                 2.911446e+04 
              s_br23~~s_br23                 s_c30~~s_c30 
                9.171438e+04                 1.201701e+02 
          her2_pos~~her2_pos               comorb~~comorb 
                1.174701e+05                 2.994556e+04 
    estadio_avz~~estadio_avz             cv_gral~~cv_gral 
                2.305150e+04                 6.651723e+03 
                salud~~salud funcionalidad~~funcionalidad 
                1.022827e+05                 1.327859e+02 
          sintomas~~sintomas       biologicas~~biologicas 
                3.542005e+04                 4.109040e+04 
                    f_br23~1                      f_c30~1 
                4.425340e+04                 3.701052e+04 
                    s_br23~1                      s_c30~1 
                5.870269e+04                 3.748293e+04 
                  her2_pos~1                     comorb~1 
                1.195710e+05                 1.222230e+05 
               estadio_avz~1                    cv_gral~1 
                1.184604e+05                 2.769064e+04 
                     salud~1 
                4.787104e+04 
blavInspect(fitref_bio_ind_sinedad_sinher2, 'neff')
        funcionalidad=~f_c30              sintomas=~s_c30 
                    52290.62                     30396.16 
     biologicas=~estadio_avz                cv_gral~salud 
                    10142.27                     54200.74 
            cv_gral~sintomas        cv_gral~funcionalidad 
                    16490.58                     15997.96 
         salud~funcionalidad       funcionalidad~sintomas 
                    66958.34                     31794.80 
         sintomas~biologicas               f_br23~~f_br23 
                    11157.69                     89125.96 
                f_c30~~f_c30               s_br23~~s_br23 
                    47448.12                     97837.92 
                s_c30~~s_c30               comorb~~comorb 
                    32103.93                    111163.87 
    estadio_avz~~estadio_avz             cv_gral~~cv_gral 
                    26361.63                     16738.74 
                salud~~salud funcionalidad~~funcionalidad 
                   106237.73                     25899.59 
          sintomas~~sintomas       biologicas~~biologicas 
                    36732.18                     50801.17 
                    f_br23~1                      f_c30~1 
                    41769.21                     35822.62 
                    s_br23~1                      s_c30~1 
                    56867.41                     36401.31 
                    comorb~1                estadio_avz~1 
                   116691.85                    111626.27 
                   cv_gral~1                      salud~1 
                    53676.03                     45461.26 

Graficos sem plot

semPaths(
  fitref_bio_ind_sinedad,
  intercepts = FALSE,
  residuals = TRUE,
  edge.label.cex = 1.5,
  intStyle = "multi",
  optimizeLatRes = TRUE,
  title.color = "black",
  groups = "lat",
  pastel = TRUE,
  exoVar = FALSE,
  sizeInt = 5,
  edge.color = "black",
  esize = 6,
  label.prop = 2,
  sizeLat = 6,
  "std"
)

semPaths(
  fitref_bio_ind_sinedad_sinher2,
  intercepts = FALSE,
  residuals = TRUE,
  edge.label.cex = 1.5,
  intStyle = "multi",
  optimizeLatRes = TRUE,
  title.color = "black",
  groups = "lat",
  pastel = TRUE,
  exoVar = FALSE,
  sizeInt = 5,
  edge.color = "black",
  esize = 6,
  label.prop = 2,
  sizeLat = 6,
  "std"
)

graficos de mcmc

plot(fitref_bio_ind_sinedad, par = 1:12,  facet_args = list(ncol = 4))

plot(fitref_bio_ind_sinedad_sinher2, par = 1:12,  facet_args = list(ncol = 4))

plot(fitref_bio_ind_sinedad,  plot.type = "intervals")

plot(fitref_bio_ind_sinedad, plot.type = "parcoord")

describe_posterior(fitref_bio_ind_sinedad)
Summary of Posterior Distribution

Parameter                    |  Component |   Median |          95% CI |     pd |          ROPE | % in ROPE |  Rhat |      ESS
------------------------------------------------------------------------------------------------------------------------------
funcionalidad=~f_c30         |     latent |     1.42 | [-12.25,  2.10] | 91.67% | [-0.10, 0.10] |        0% | 4.112 |     6.00
sintomas=~s_c30              |     latent |     2.29 | [  1.57,  3.31] |   100% | [-0.10, 0.10] |        0% | 1.005 | 21716.00
biologicas=~comorb           |     latent |     0.11 | [-13.58, 13.71] | 51.42% | [-0.10, 0.10] |     2.57% | 1.000 | 38546.00
biologicas=~estadio_avz      |     latent |    -1.87 | [-19.21, 18.42] | 56.17% | [-0.10, 0.10] |     0.57% | 1.000 | 19700.00
cv_gral~salud                | regression |     0.76 | [  0.63,  0.89] |   100% | [-0.10, 0.10] |        0% | 1.004 | 30824.00
cv_gral~sintomas             | regression |    -0.61 | [-13.10, 11.43] | 61.49% | [-0.10, 0.10] |     3.40% | 1.001 | 11096.00
cv_gral~funcionalidad        | regression |     0.34 | [ -8.69,  9.03] | 58.36% | [-0.10, 0.10] |     4.73% | 1.001 | 13825.00
salud~funcionalidad          | regression |     2.54 | [-20.04,  4.04] | 91.67% | [-0.10, 0.10] |        0% | 4.381 |     6.00
funcionalidad~sintomas       | regression |    -1.46 | [ -2.17,  0.25] | 91.67% | [-0.10, 0.10] |     0.45% | 1.828 |     9.00
sintomas~biologicas          | regression |     1.18 | [-17.55, 17.99] | 55.51% | [-0.10, 0.10] |     0.68% | 1.000 | 19856.00
f_br23~~f_br23               |   residual |     0.15 | [  0.09,  0.45] |   100% | [-0.10, 0.10] |     1.10% | 2.739 |     7.00
f_c30~~f_c30                 |   residual |     0.08 | [  0.02,  0.14] |   100% | [-0.10, 0.10] |    82.54% | 1.004 | 29114.00
s_br23~~s_br23               |   residual |     0.20 | [  0.14,  0.28] |   100% | [-0.10, 0.10] |        0% | 1.001 | 91714.00
s_c30~~s_c30                 |   residual |     0.07 | [  0.00,  0.14] |   100% | [-0.10, 0.10] |    79.41% | 1.033 |   120.00
her2_pos~~her2_pos           |   residual |     0.25 | [  0.18,  0.34] |   100% | [-0.10, 0.10] |        0% | 1.000 | 1.17e+05
comorb~~comorb               |   residual |     0.23 | [  0.15,  0.32] |   100% | [-0.10, 0.10] |        0% | 1.000 | 29946.00
estadio_avz~~estadio_avz     |   residual |     0.20 | [  0.03,  0.31] |   100% | [-0.10, 0.10] |     6.06% | 1.000 | 23052.00
cv_gral~~cv_gral             |   residual |     0.45 | [  0.26,  0.66] |   100% | [-0.10, 0.10] |        0% | 1.005 |  6652.00
salud~~salud                 |   residual |     1.58 | [  1.09,  2.19] |   100% | [-0.10, 0.10] |        0% | 1.001 | 1.02e+05
funcionalidad~~funcionalidad |   residual | 6.48e-03 | [  0.00,  0.05] |   100% | [-0.10, 0.10] |      100% | 1.033 |   133.00
sintomas~~sintomas           |   residual |     0.08 | [  0.00,  0.17] |   100% | [-0.10, 0.10] |    66.79% | 1.001 | 35420.00
biologicas~~biologicas       |   residual | 3.85e-04 | [  0.00,  0.00] |   100% | [-0.10, 0.10] |      100% | 1.000 | 41090.00
f_br23~1                     |  intercept |     2.34 | [  2.20,  2.48] |   100% | [-0.10, 0.10] |        0% | 1.000 | 44253.00
f_c30~1                      |  intercept |     2.44 | [  2.26,  2.61] |   100% | [-0.10, 0.10] |        0% | 1.000 | 37011.00
s_br23~1                     |  intercept |     1.76 | [  1.64,  1.89] |   100% | [-0.10, 0.10] |        0% | 1.000 | 58703.00
s_c30~1                      |  intercept |     2.16 | [  1.98,  2.34] |   100% | [-0.10, 0.10] |        0% | 1.000 | 37483.00
her2_pos~1                   |  intercept |     0.44 | [  0.33,  0.55] |   100% | [-0.10, 0.10] |        0% | 1.000 | 1.20e+05
comorb~1                     |  intercept |     0.34 | [  0.23,  0.44] |   100% | [-0.10, 0.10] |        0% | 1.000 | 1.22e+05
estadio_avz~1                |  intercept |     0.34 | [  0.23,  0.44] |   100% | [-0.10, 0.10] |        0% | 1.000 | 1.18e+05
cv_gral~1                    |  intercept |     0.81 | [  0.21,  1.41] | 99.59% | [-0.10, 0.10] |        0% | 1.004 | 27691.00
salud~1                      |  intercept |     4.34 | [  3.93,  4.74] |   100% | [-0.10, 0.10] |        0% | 1.000 | 47871.00
sexit(fitref_bio_ind_sinedad)
# Following the Sequential Effect eXistence and sIgnificance Testing (SEXIT) framework, we report the median of the posterior distribution and its 95% CI (Highest Density Interval), along the probability of direction (pd), the probability of significance and the probability of being large. The thresholds beyond which the effect is considered as significant (i.e., non-negligible) and large are |0.05| and |0.30|.

- funcionalidad=~f_c30 (Median = 1.42, 95% CI [-12.25, 2.10]) has a 91.67% probability of being positive (> 0), 91.67% of being significant (> 0.05), and 91.67% of being large (> 0.30)
- sintomas=~s_c30 (Median = 2.29, 95% CI [1.57, 3.31]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 100.00% of being large (> 0.30)
- biologicas=~comorb (Median = 0.11, 95% CI [-13.58, 13.71]) has a 51.42% probability of being positive (> 0), 50.83% of being significant (> 0.05), and 47.79% of being large (> 0.30)
- biologicas=~estadio_avz (Median = -1.87, 95% CI [-19.21, 18.42]) has a 56.17% probability of being negative (< 0), 56.03% of being significant (< -0.05), and 55.33% of being large (< -0.30)
- cv_gral~salud (Median = 0.76, 95% CI [0.63, 0.89]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 100.00% of being large (> 0.30)
- cv_gral~sintomas (Median = -0.61, 95% CI [-13.10, 11.43]) has a 61.49% probability of being negative (< 0), 60.64% of being significant (< -0.05), and 56.13% of being large (< -0.30)
- cv_gral~funcionalidad (Median = 0.34, 95% CI [-8.69, 9.03]) has a 58.36% probability of being positive (> 0), 57.22% of being significant (> 0.05), and 51.06% of being large (> 0.30)
- salud~funcionalidad (Median = 2.54, 95% CI [-20.04, 4.04]) has a 91.67% probability of being positive (> 0), 91.67% of being significant (> 0.05), and 91.67% of being large (> 0.30)
- funcionalidad~sintomas (Median = -1.46, 95% CI [-2.17, 0.25]) has a 91.67% probability of being negative (< 0), 91.67% of being significant (< -0.05), and 91.67% of being large (< -0.30)
- sintomas~biologicas (Median = 1.18, 95% CI [-17.55, 17.99]) has a 55.51% probability of being positive (> 0), 55.33% of being significant (> 0.05), and 54.43% of being large (> 0.30)
- f_br23~~f_br23 (Median = 0.15, 95% CI [0.09, 0.45]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 8.34% of being large (> 0.30)
- f_c30~~f_c30 (Median = 0.08, 95% CI [0.02, 0.14]) has a 100.00% probability of being positive (> 0), 82.28% of being significant (> 0.05), and 0.00% of being large (> 0.30)
- s_br23~~s_br23 (Median = 0.20, 95% CI [0.14, 0.28]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 1.39% of being large (> 0.30)
- s_c30~~s_c30 (Median = 0.07, 95% CI [5.74e-10, 0.14]) has a 100.00% probability of being positive (> 0), 69.14% of being significant (> 0.05), and 0.00% of being large (> 0.30)
- her2_pos~~her2_pos (Median = 0.25, 95% CI [0.18, 0.34]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 15.26% of being large (> 0.30)
- comorb~~comorb (Median = 0.23, 95% CI [0.15, 0.32]) has a 100.00% probability of being positive (> 0), 99.69% of being significant (> 0.05), and 5.34% of being large (> 0.30)
- estadio_avz~~estadio_avz (Median = 0.20, 95% CI [0.03, 0.31]) has a 100.00% probability of being positive (> 0), 95.29% of being significant (> 0.05), and 2.63% of being large (> 0.30)
- cv_gral~~cv_gral (Median = 0.45, 95% CI [0.26, 0.66]) has a 100.00% probability of being positive (> 0), 99.57% of being significant (> 0.05), and 94.67% of being large (> 0.30)
- salud~~salud (Median = 1.58, 95% CI [1.09, 2.19]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 100.00% of being large (> 0.30)
- funcionalidad~~funcionalidad (Median = 6.48e-03, 95% CI [2.17e-13, 0.05]) has a 100.00% probability of being positive (> 0), 4.72% of being significant (> 0.05), and 0.00% of being large (> 0.30)
- sintomas~~sintomas (Median = 0.08, 95% CI [1.50e-09, 0.17]) has a 100.00% probability of being positive (> 0), 77.29% of being significant (> 0.05), and 0.04% of being large (> 0.30)
- biologicas~~biologicas (Median = 3.85e-04, 95% CI [2.10e-12, 4.18e-03]) has a 100.00% probability of being positive (> 0), 0.02% of being significant (> 0.05), and 0.00% of being large (> 0.30)
- f_br23~1 (Median = 2.34, 95% CI [2.20, 2.48]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 100.00% of being large (> 0.30)
- f_c30~1 (Median = 2.44, 95% CI [2.26, 2.61]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 100.00% of being large (> 0.30)
- s_br23~1 (Median = 1.76, 95% CI [1.64, 1.89]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 100.00% of being large (> 0.30)
- s_c30~1 (Median = 2.16, 95% CI [1.98, 2.34]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 100.00% of being large (> 0.30)
- her2_pos~1 (Median = 0.44, 95% CI [0.33, 0.55]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 99.21% of being large (> 0.30)
- comorb~1 (Median = 0.34, 95% CI [0.23, 0.44]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 75.38% of being large (> 0.30)
- estadio_avz~1 (Median = 0.34, 95% CI [0.23, 0.44]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 75.74% of being large (> 0.30)
- cv_gral~1 (Median = 0.81, 95% CI [0.21, 1.41]) has a 99.59% probability of being positive (> 0), 99.30% of being significant (> 0.05), and 95.18% of being large (> 0.30)
- salud~1 (Median = 4.34, 95% CI [3.93, 4.74]) has a 100.00% probability of being positive (> 0), 100.00% of being significant (> 0.05), and 100.00% of being large (> 0.30)

Parameter                    |   Median |               95% CI | Direction | Significance (> |0.05|) | Large (> |0.30|)
-----------------------------------------------------------------------------------------------------------------------
funcionalidad=~f_c30         |     1.42 |       [-12.25, 2.10] |      0.92 |                    0.92 |             0.92
sintomas=~s_c30              |     2.29 |         [1.57, 3.31] |      1.00 |                    1.00 |             1.00
biologicas=~comorb           |     0.11 |      [-13.58, 13.71] |      0.51 |                    0.51 |             0.48
biologicas=~estadio_avz      |    -1.87 |      [-19.21, 18.42] |      0.56 |                    0.56 |             0.55
cv_gral~salud                |     0.76 |         [0.63, 0.89] |      1.00 |                    1.00 |             1.00
cv_gral~sintomas             |    -0.61 |      [-13.10, 11.43] |      0.61 |                    0.61 |             0.56
cv_gral~funcionalidad        |     0.34 |        [-8.69, 9.03] |      0.58 |                    0.57 |             0.51
salud~funcionalidad          |     2.54 |       [-20.04, 4.04] |      0.92 |                    0.92 |             0.92
funcionalidad~sintomas       |    -1.46 |        [-2.17, 0.25] |      0.92 |                    0.92 |             0.92
sintomas~biologicas          |     1.18 |      [-17.55, 17.99] |      0.56 |                    0.55 |             0.54
f_br23~~f_br23               |     0.15 |         [0.09, 0.45] |      1.00 |                    1.00 |             0.08
f_c30~~f_c30                 |     0.08 |         [0.02, 0.14] |      1.00 |                    0.82 |             0.00
s_br23~~s_br23               |     0.20 |         [0.14, 0.28] |      1.00 |                    1.00 |             0.01
s_c30~~s_c30                 |     0.07 |     [5.74e-10, 0.14] |      1.00 |                    0.69 |             0.00
her2_pos~~her2_pos           |     0.25 |         [0.18, 0.34] |      1.00 |                    1.00 |             0.15
comorb~~comorb               |     0.23 |         [0.15, 0.32] |      1.00 |                    1.00 |             0.05
estadio_avz~~estadio_avz     |     0.20 |         [0.03, 0.31] |      1.00 |                    0.95 |             0.03
cv_gral~~cv_gral             |     0.45 |         [0.26, 0.66] |      1.00 |                    1.00 |             0.95
salud~~salud                 |     1.58 |         [1.09, 2.19] |      1.00 |                    1.00 |             1.00
funcionalidad~~funcionalidad | 6.48e-03 |     [2.17e-13, 0.05] |      1.00 |                    0.05 |             0.00
sintomas~~sintomas           |     0.08 |     [1.50e-09, 0.17] |      1.00 |                    0.77 |         3.75e-04
biologicas~~biologicas       | 3.85e-04 | [2.10e-12, 4.18e-03] |      1.00 |                2.40e-04 |             0.00
f_br23~1                     |     2.34 |         [2.20, 2.48] |      1.00 |                    1.00 |             1.00
f_c30~1                      |     2.44 |         [2.26, 2.61] |      1.00 |                    1.00 |             1.00
s_br23~1                     |     1.76 |         [1.64, 1.89] |      1.00 |                    1.00 |             1.00
s_c30~1                      |     2.16 |         [1.98, 2.34] |      1.00 |                    1.00 |             1.00
her2_pos~1                   |     0.44 |         [0.33, 0.55] |      1.00 |                    1.00 |             0.99
comorb~1                     |     0.34 |         [0.23, 0.44] |      1.00 |                    1.00 |             0.75
estadio_avz~1                |     0.34 |         [0.23, 0.44] |      1.00 |                    1.00 |             0.76
cv_gral~1                    |     0.81 |         [0.21, 1.41] |      1.00 |                    0.99 |             0.95
salud~1                      |     4.34 |         [3.93, 4.74] |      1.00 |                    1.00 |             1.00