1.Loading libraries
library(tidyverse)
library(tidymodels)
library(rpart.plot)
library(DT)
2.Loading the data
bikes <- read_csv("~/Desktop/R/csv/bikes.csv")
df <- bikes %>% slice_head(n = 700)
new_data <- bikes %>% slice_tail(n = 30)
3.EDA
Taking a look at the dataset
Checking for missing values
## # A tibble: 1 × 10
## date season holiday weekday weather tempera…¹ realf…² humid…³ winds…⁴ rentals
## <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
## 1 0 0 0 0 0 0 0 0 0 0
## # … with abbreviated variable names ¹temperature, ²realfeel, ³humidity,
## # ⁴windspeed
Plotting the numerical (predictor) variables

Plotting the numerical (target) variable

4.MODELLING
4.1 Desicion Trees
Predicting on new data
## # A tibble: 30 × 2
## rentals .pred
## <dbl> <dbl>
## 1 4649 2961.
## 2 6234 4151.
## 3 6606 5323.
## 4 5729 4108.
## 5 5375 4108.
## 6 5008 2961.
## 7 5582 2961.
## 8 3228 2961.
## 9 5170 2961.
## 10 5501 4108.
## # … with 20 more rows
4.2 Random Forest
Predicting on new data
## # A tibble: 30 × 2
## rentals .pred
## <dbl> <dbl>
## 1 4649 3008.
## 2 6234 4532.
## 3 6606 5149.
## 4 5729 4710.
## 5 5375 3302.
## 6 5008 3454.
## 7 5582 3185.
## 8 3228 3028.
## 9 5170 3409.
## 10 5501 3832.
## # … with 20 more rows
4.3 Support Vector Machine
Predicting on new data
## # A tibble: 30 × 2
## rentals .pred
## <dbl> <dbl>
## 1 4649 3457.
## 2 6234 4455.
## 3 6606 4374.
## 4 5729 5085.
## 5 5375 3983.
## 6 5008 2929.
## 7 5582 2184.
## 8 3228 2991.
## 9 5170 2931.
## 10 5501 4406.
## # … with 20 more rows
5.COMPARING RESULTS


6.PLOTTING THE DECISION TREE
