Analysis of the weekly Sales data over 100000 rolls of Absorbent paper Towels (in units of 10000 rolls), the data is in the book of forcasting and time series (Bowerman and O’Conell). Method of the Time Series Analysis: Autoregressive Integrated Moving Averages (ARIMA).
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## -- Attaching packages --------------------------------------- tidyverse 1.3.2 --
## v ggplot2 3.3.6 v purrr 0.3.4
## v tibble 3.1.8 v dplyr 1.0.9
## v tidyr 1.1.4 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## Time Series:
## Start = 1
## End = 120
## Frequency = 1
## towel_data
## [1,] 15.0000
## [2,] 14.4064
## [3,] 14.9383
## [4,] 16.0374
## [5,] 15.6320
## [6,] 14.3975
## [7,] 13.8959
## [8,] 14.0765
## [9,] 16.3750
## [10,] 16.5342
## [11,] 16.3839
## [12,] 17.1006
## [13,] 17.7876
## [14,] 17.7354
## [15,] 17.0010
## [16,] 17.7485
## [17,] 18.1888
## [18,] 18.5997
## [19,] 17.5859
## [20,] 15.7389
## [21,] 13.6971
## [22,] 15.0059
## [23,] 16.2574
## [24,] 14.3506
## [25,] 11.9515
## [26,] 12.0328
## [27,] 11.2142
## [28,] 11.7023
## [29,] 12.5905
## [30,] 12.1991
## [31,] 10.7752
## [32,] 10.1129
## [33,] 9.9330
## [34,] 11.7435
## [35,] 12.2590
## [36,] 12.5009
## [37,] 11.5378
## [38,] 9.6649
## [39,] 10.1043
## [40,] 10.3452
## [41,] 9.2835
## [42,] 7.7219
## [43,] 6.8300
## [44,] 8.2046
## [45,] 8.5289
## [46,] 8.8733
## [47,] 8.7948
## [48,] 8.1577
## [49,] 7.9128
## [50,] 8.7978
## [51,] 9.0775
## [52,] 9.3234
## [53,] 10.4739
## [54,] 10.6943
## [55,] 9.8367
## [56,] 8.1803
## [57,] 7.2509
## [58,] 5.0814
## [59,] 1.8313
## [60,] -0.9127
## [61,] -1.3173
## [62,] -0.6021
## [63,] 0.1400
## [64,] 1.4030
## [65,] 1.9280
## [66,] 3.5626
## [67,] 1.9615
## [68,] 4.8463
## [69,] 6.5454
## [70,] 8.0141
## [71,] 7.9746
## [72,] 8.4959
## [73,] 8.4539
## [74,] 8.7114
## [75,] 7.3780
## [76,] 8.1905
## [77,] 9.9720
## [78,] 9.6930
## [79,] 9.4506
## [80,] 11.2088
## [81,] 11.4986
## [82,] 13.2778
## [83,] 13.5910
## [84,] 13.4297
## [85,] 13.3125
## [86,] 12.7445
## [87,] 11.7979
## [88,] 11.7319
## [89,] 11.6523
## [90,] 11.3718
## [91,] 10.5502
## [92,] 11.4741
## [93,] 11.5568
## [94,] 11.7986
## [95,] 11.8867
## [96,] 11.2951
## [97,] 12.7847
## [98,] 13.9435
## [99,] 13.6859
## [100,] 14.1136
## [101,] 13.8949
## [102,] 14.2853
## [103,] 16.3867
## [104,] 17.0884
## [105,] 15.8861
## [106,] 14.8227
## [107,] 15.9479
## [108,] 15.0982
## [109,] 13.8770
## [110,] 14.2746
## [111,] 15.1682
## [112,] 15.3818
## [113,] 14.1863
## [114,] 13.9996
## [115,] 15.2463
## [116,] 17.0179
## [117,] 17.2929
## [118,] 16.6366
## [119,] 15.3410
## [120,] 15.6453
The ACF, PACF and the time series plots of the original data is presented.
All the above plots show that the time series is not stationary. To make it stationary, a differencing operation is conducted.
Base on the plots of the ACF, PACF and tsdplots, the series stablized and shows stationary after differencing.
##
## Call:
## arima(x = tow, order = c(0, 1, 1))
##
## Coefficients:
## ma1
## 0.3518
## s.e. 0.0800
##
## sigma^2 estimated as 1.071: log likelihood = -172.99, aic = 349.98
## $pred
## Time Series:
## Start = 121
## End = 125
## Frequency = 1
## [1] 15.88729 15.88729 15.88729 15.88729 15.88729
##
## $se
## Time Series:
## Start = 121
## End = 125
## Frequency = 1
## [1] 1.034776 1.739986 2.232564 2.634603 2.982938