df<- read.csv("C:/Users/Public/ToyotaCorolla.csv")
categorical_variable <- sapply(df, class)
categorical_variable
##                Id             Model             Price         Age_08_04 
##         "integer"       "character"         "integer"         "integer" 
##         Mfg_Month          Mfg_Year                KM         Fuel_Type 
##         "integer"         "integer"         "integer"       "character" 
##                HP         Met_Color             Color         Automatic 
##         "integer"         "integer"       "character"         "integer" 
##                CC             Doors         Cylinders             Gears 
##         "integer"         "integer"         "integer"         "integer" 
##     Quarterly_Tax            Weight     Mfr_Guarantee   BOVAG_Guarantee 
##         "integer"         "integer"         "integer"         "integer" 
##  Guarantee_Period               ABS          Airbag_1          Airbag_2 
##         "integer"         "integer"         "integer"         "integer" 
##             Airco   Automatic_airco     Boardcomputer         CD_Player 
##         "integer"         "integer"         "integer"         "integer" 
##      Central_Lock   Powered_Windows    Power_Steering             Radio 
##         "integer"         "integer"         "integer"         "integer" 
##         Mistlamps       Sport_Model  Backseat_Divider      Metallic_Rim 
##         "integer"         "integer"         "integer"         "integer" 
##    Radio_cassette Parking_Assistant           Tow_Bar 
##         "integer"         "integer"         "integer"
dummy_var <- model.matrix(~factor(categorical_variable))

dum <-  lapply(dummy_var,as.numeric)

dum
## [[1]]
## [1] 1
## 
## [[2]]
## [1] 1
## 
## [[3]]
## [1] 1
## 
## [[4]]
## [1] 1
## 
## [[5]]
## [1] 1
## 
## [[6]]
## [1] 1
## 
## [[7]]
## [1] 1
## 
## [[8]]
## [1] 1
## 
## [[9]]
## [1] 1
## 
## [[10]]
## [1] 1
## 
## [[11]]
## [1] 1
## 
## [[12]]
## [1] 1
## 
## [[13]]
## [1] 1
## 
## [[14]]
## [1] 1
## 
## [[15]]
## [1] 1
## 
## [[16]]
## [1] 1
## 
## [[17]]
## [1] 1
## 
## [[18]]
## [1] 1
## 
## [[19]]
## [1] 1
## 
## [[20]]
## [1] 1
## 
## [[21]]
## [1] 1
## 
## [[22]]
## [1] 1
## 
## [[23]]
## [1] 1
## 
## [[24]]
## [1] 1
## 
## [[25]]
## [1] 1
## 
## [[26]]
## [1] 1
## 
## [[27]]
## [1] 1
## 
## [[28]]
## [1] 1
## 
## [[29]]
## [1] 1
## 
## [[30]]
## [1] 1
## 
## [[31]]
## [1] 1
## 
## [[32]]
## [1] 1
## 
## [[33]]
## [1] 1
## 
## [[34]]
## [1] 1
## 
## [[35]]
## [1] 1
## 
## [[36]]
## [1] 1
## 
## [[37]]
## [1] 1
## 
## [[38]]
## [1] 1
## 
## [[39]]
## [1] 1
## 
## [[40]]
## [1] 1
## 
## [[41]]
## [1] 0
## 
## [[42]]
## [1] 1
## 
## [[43]]
## [1] 1
## 
## [[44]]
## [1] 1
## 
## [[45]]
## [1] 1
## 
## [[46]]
## [1] 1
## 
## [[47]]
## [1] 0
## 
## [[48]]
## [1] 1
## 
## [[49]]
## [1] 1
## 
## [[50]]
## [1] 0
## 
## [[51]]
## [1] 1
## 
## [[52]]
## [1] 1
## 
## [[53]]
## [1] 1
## 
## [[54]]
## [1] 1
## 
## [[55]]
## [1] 1
## 
## [[56]]
## [1] 1
## 
## [[57]]
## [1] 1
## 
## [[58]]
## [1] 1
## 
## [[59]]
## [1] 1
## 
## [[60]]
## [1] 1
## 
## [[61]]
## [1] 1
## 
## [[62]]
## [1] 1
## 
## [[63]]
## [1] 1
## 
## [[64]]
## [1] 1
## 
## [[65]]
## [1] 1
## 
## [[66]]
## [1] 1
## 
## [[67]]
## [1] 1
## 
## [[68]]
## [1] 1
## 
## [[69]]
## [1] 1
## 
## [[70]]
## [1] 1
## 
## [[71]]
## [1] 1
## 
## [[72]]
## [1] 1
## 
## [[73]]
## [1] 1
## 
## [[74]]
## [1] 1
## 
## [[75]]
## [1] 1
## 
## [[76]]
## [1] 1
## 
## [[77]]
## [1] 1
## 
## [[78]]
## [1] 1
correlation <-  cor(na.omit(df[, -c(1,2,5,6,8,10:12,14,16,19:39)]))
## Warning in cor(na.omit(df[, -c(1, 2, 5, 6, 8, 10:12, 14, 16, 19:39)])): the
## standard deviation is zero
plot(na.omit(df[, -c(1,2,5,6,8,10:12,14,16,19:39)]))

correlation
##                    Price   Age_08_04          KM          HP          CC
## Price          1.0000000 -0.87659050 -0.56996016  0.31498983  0.12638920
## Age_08_04     -0.8765905  1.00000000  0.50567218 -0.15662202 -0.09808374
## KM            -0.5699602  0.50567218  1.00000000 -0.33353795  0.10268289
## HP             0.3149898 -0.15662202 -0.33353795  1.00000000  0.03585580
## CC             0.1263892 -0.09808374  0.10268289  0.03585580  1.00000000
## Cylinders             NA          NA          NA          NA          NA
## Quarterly_Tax  0.2191969 -0.19843051  0.27816470 -0.29843172  0.30699580
## Weight         0.5811976 -0.47025318 -0.02859846  0.08961406  0.33563740
##               Cylinders Quarterly_Tax      Weight
## Price                NA     0.2191969  0.58119759
## Age_08_04            NA    -0.1984305 -0.47025318
## KM                   NA     0.2781647 -0.02859846
## HP                   NA    -0.2984317  0.08961406
## CC                   NA     0.3069958  0.33563740
## Cylinders             1            NA          NA
## Quarterly_Tax        NA     1.0000000  0.62613373
## Weight               NA     0.6261337  1.00000000