EXECUTIVE SUMMARY: JRC Geothermal Power Plant Dataset

Yes! There is out an energy that is Crystal Clear CLEAN ENERGY, it is ABSOLUTELY INFINITE and available for all countries even the most poor ones, no supply problems. Yes you Guess it right, it is The: Geo-thermal Energy!!!!

Geothermal Energy: It is infinite, depends only in our most wonderful-beautiful-awesome-absolutely-unique-one-of-a-kind Earth Planet.

There is not another planet like The Earth Planet in all the Universe. Yes its the one at your feet! every where you go, there is it; The Earth Planet. Yes little Prince: Planet Earth is our B612 asteroid.

Geothermal Energy It is an ABSOLUTLY CLEAN ENERGY. Not nuclear waste produced, not even greenhouse gas effect. Geothermal Energy It is just down your feet every time. Geothermal Energy It is every where you go. Geothermal Energy It is everlasting at day or at night, with sun or not, with winds or not. Geothermal Energy comes from the Earth Planet nucleus. Alike Nuclear Energy, Solar Energy, Hydrocarbons Energy or Eolic Energy: Geothermal Energy is the answer Mankind is searching for!!!! Geothermal is 24x7x365 from everlasting to everlasting!

Why is not most widely used? Only 28 counties of the world use Geothermal Energy.

Why Germany uses nuclear power or distant gas supply????? Why German rulers does not consider to build up more Geo Thermal Energy Plants in Germany?

Why countries like: Canada, UK, Norway, Finland, Poland, or Spain are in 0.00 Geothermal Energy?????? WHY???

This is E.C. JRC Geothermal Power Plant dataSet [366 x 29].

library(tidyverse);library(forcats);library(ggplot2)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6     ✔ purrr   0.3.4
## ✔ tibble  3.1.8     ✔ dplyr   1.0.9
## ✔ tidyr   1.2.0     ✔ stringr 1.4.0
## ✔ readr   2.1.2     ✔ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
geothermo <-read.csv("C:/Users/eiban/OneDrive/Documents/DataScience in R/JRC-GEOPP-DB.csv")
names(geothermo)
##  [1] "id_powerplant"        "name_powerplant"      "gross_cap_ele"       
##  [4] "ini_cap_ele"          "gross_cap_th"         "name_status"         
##  [7] "name_technology"      "name_subtechnology"   "start_year"          
## [10] "latitude"             "longitude"            "exact_coordinates"   
## [13] "name_region_L2"       "NUTS2_code"           "name_region_L1"      
## [16] "NUTS1_code"           "name_country"         "name_continent"      
## [19] "max_well_depth"       "min_temp"             "max_temp"            
## [22] "min_flow_rate"        "max_flow_rate"        "no_units"            
## [25] "name_geothermal_area" "name_turbine_type"    "turbine_man"         
## [28] "name_owner"           "name_operator"
summary(geothermo)
##  id_powerplant    name_powerplant    gross_cap_ele      ini_cap_ele     
##  Min.   :  1.00   Length:366         Min.   :  0.003   Min.   :  0.003  
##  1st Qu.: 95.25   Class :character   1st Qu.: 10.000   1st Qu.: 10.250  
##  Median :186.50   Mode  :character   Median : 20.000   Median : 23.250  
##  Mean   :188.08                      Mean   : 34.741   Mean   : 37.900  
##  3rd Qu.:280.75                      3rd Qu.: 49.875   3rd Qu.: 52.000  
##  Max.   :379.00                      Max.   :270.000   Max.   :270.000  
##  gross_cap_th       name_status        name_technology    name_subtechnology
##  Length:366         Length:366         Length:366         Length:366        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##    start_year      latitude        longitude        exact_coordinates
##  Min.   :   0   Min.   :-38.67   Min.   :-154.889   Min.   :0.0000   
##  1st Qu.:1991   1st Qu.: 11.48   1st Qu.:-113.109   1st Qu.:1.0000   
##  Median :2002   Median : 37.79   Median :  12.153   Median :1.0000   
##  Mean   :1995   Mean   : 26.29   Mean   :   6.304   Mean   :0.8033   
##  3rd Qu.:2012   3rd Qu.: 39.72   3rd Qu.: 106.673   3rd Qu.:1.0000   
##  Max.   :2017   Max.   : 66.05   Max.   : 176.726   Max.   :1.0000   
##  name_region_L2      NUTS2_code        name_region_L1      NUTS1_code       
##  Length:366         Length:366         Length:366         Length:366        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##  name_country       name_continent     max_well_depth       min_temp        
##  Length:366         Length:366         Length:366         Length:366        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##    max_temp         min_flow_rate      max_flow_rate        no_units        
##  Length:366         Length:366         Length:366         Length:366        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##  name_geothermal_area name_turbine_type  turbine_man         name_owner       
##  Length:366           Length:366         Length:366         Length:366        
##  Class :character     Class :character   Class :character   Class :character  
##  Mode  :character     Mode  :character   Mode  :character   Mode  :character  
##                                                                               
##                                                                               
##                                                                               
##  name_operator     
##  Length:366        
##  Class :character  
##  Mode  :character  
##                    
##                    
## 
str(geothermo)
## 'data.frame':    366 obs. of  29 variables:
##  $ id_powerplant       : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ name_powerplant     : chr  "Gunung Salak I" "Gunung Salak II" "Gunung Salak III" "Gunung Salak IV" ...
##  $ gross_cap_ele       : num  60 60 60 65 65 65 110 117 30 55 ...
##  $ ini_cap_ele         : num  60 60 60 65 65 65 110 117 30 55 ...
##  $ gross_cap_th        : chr  "0" "0" "0" "NULL" ...
##  $ name_status         : chr  "in operation" "in operation" "in operation" "in operation" ...
##  $ name_technology     : chr  "Geothermal energy" "Geothermal energy" "Geothermal energy" "Geothermal energy" ...
##  $ name_subtechnology  : chr  "Geothermal power" "Geothermal power" "Geothermal power" "Geothermal power" ...
##  $ start_year          : int  1994 1994 1997 1997 2002 2002 1999 1999 1983 1987 ...
##  $ latitude            : num  -6.74 -6.74 -6.74 -6.74 -6.74 ...
##  $ longitude           : num  107 107 107 107 107 ...
##  $ exact_coordinates   : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ name_region_L2      : chr  "NULL" "NULL" "NULL" "NULL" ...
##  $ NUTS2_code          : chr  "NULL" "NULL" "NULL" "NULL" ...
##  $ name_region_L1      : chr  "West Java" "West Java" "West Java" "West Java" ...
##  $ NUTS1_code          : chr  "NULL" "NULL" "NULL" "NULL" ...
##  $ name_country        : chr  "Indonesia" "Indonesia" "Indonesia" "Indonesia" ...
##  $ name_continent      : chr  "Asia" "Asia" "Asia" "Asia" ...
##  $ max_well_depth      : chr  "NULL" "NULL" "NULL" "NULL" ...
##  $ min_temp            : chr  "240" "240" "240" "240" ...
##  $ max_temp            : chr  "310" "310" "310" "310" ...
##  $ min_flow_rate       : chr  "NULL" "NULL" "NULL" "NULL" ...
##  $ max_flow_rate       : chr  "NULL" "NULL" "NULL" "NULL" ...
##  $ no_units            : chr  "10" "1" "3" "1" ...
##  $ name_geothermal_area: chr  "Gunun-Salak" "Gunun-Salak" "Gunun-Salak" "Gunun-Salak" ...
##  $ name_turbine_type   : chr  "Single flash" "Single flash" "Single flash" "Single flash" ...
##  $ turbine_man         : chr  "Ansaldo Energia S.p.A." "Ansaldo Energia S.p.A." "Ansaldo Energia S.p.A." "Fuji Electric Co. Ltd." ...
##  $ name_owner          : chr  "PLN" "PLN" "PLN" "Chevron Geothermal Salak" ...
##  $ name_operator       : chr  "PLN" "PLN" "PLN" "Chevron Geothermal Salak" ...
# geo_2000 <- filter(geothermo,start_year == 2000)
# geo_2000 %>% group_by(name_continent) %>% summarize(avg=mean(as.numeric(no_units)))
# ggplot(geothermo, aes(y=name_country)) +geom_bar()

TOP countries in terms of nameplate capacity

Show GeoThermal Global Facilities

## Warning: Ignoring unknown aesthetics: x, y

sessionInfo()
## R version 4.2.1 (2022-06-23 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 22000)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=English_United States.utf8 
## [2] LC_CTYPE=English_United States.utf8   
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C                          
## [5] LC_TIME=English_United States.utf8    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] forcats_0.5.1   stringr_1.4.0   dplyr_1.0.9     purrr_0.3.4    
## [5] readr_2.1.2     tidyr_1.2.0     tibble_3.1.8    ggplot2_3.3.6  
## [9] tidyverse_1.3.2
## 
## loaded via a namespace (and not attached):
##  [1] lubridate_1.8.0     assertthat_0.2.1    digest_0.6.29      
##  [4] utf8_1.2.2          R6_2.5.1            cellranger_1.1.0   
##  [7] backports_1.4.1     reprex_2.0.1        evaluate_0.15      
## [10] httr_1.4.3          highr_0.9           pillar_1.8.0       
## [13] rlang_1.0.4         googlesheets4_1.0.0 readxl_1.4.0       
## [16] rstudioapi_0.13     jquerylib_0.1.4     rmarkdown_2.14     
## [19] labeling_0.4.2      googledrive_2.0.0   munsell_0.5.0      
## [22] broom_1.0.0         compiler_4.2.1      modelr_0.1.8       
## [25] xfun_0.31           pkgconfig_2.0.3     htmltools_0.5.3    
## [28] tidyselect_1.1.2    fansi_1.0.3         crayon_1.5.1       
## [31] tzdb_0.3.0          dbplyr_2.2.1        withr_2.5.0        
## [34] grid_4.2.1          jsonlite_1.8.0      gtable_0.3.0       
## [37] lifecycle_1.0.1     DBI_1.1.3           magrittr_2.0.3     
## [40] scales_1.2.0        cli_3.3.0           stringi_1.7.8      
## [43] cachem_1.0.6        farver_2.1.1        fs_1.5.2           
## [46] xml2_1.3.3          bslib_0.4.0         ellipsis_0.3.2     
## [49] generics_0.1.3      vctrs_0.4.1         tools_4.2.1        
## [52] glue_1.6.2          maps_3.4.0          hms_1.1.1          
## [55] fastmap_1.1.0       yaml_2.3.5          colorspace_2.0-3   
## [58] gargle_1.2.0        rvest_1.0.2         knitr_1.39         
## [61] haven_2.5.0         sass_0.4.2

https://ec.europa.eu/

Uihlein, Andreas (2018): JRC Geothermal Power Plant Dataset. European Commission, Joint Research Centre (JRC)

[Dataset] PID: http://data.europa.eu/89h/jrc-10128-10001