Cargamos las librerias

library(DescTools)
## Warning: package 'DescTools' was built under R version 4.1.3
library(tidyr)
library(pastecs)
library(PerformanceAnalytics)
## Warning: package 'zoo' was built under R version 4.1.3
library(nortest)
library(normtest)
library(correlation)
library(boot)
library(corrplot)
library(qgraph)

Removemos objetos previos

rm(list = ls(all = TRUE)) # clear workspace
cat("\f")                 # Borra la consola
#dev.off()                 # Borra las plots
setwd("C:/CURSO REG JMG")  #Ajuste del directorio de trabajo 
data ("airquality")        # Conjunto de datos 
Datos<-airquality
Datos<-Datos %>% drop_na()         #Eliminar celdas con NA
attach(Datos)

Correlacion

¿Qué es la correlación? Es una medida estadística que expresa hasta qué punto dos variables están relacionadas linealmente. Es una herramienta común para describir relaciones simples sin hacer afirmaciones sobre causa y efecto.

¿Cómo se mide la correlación? El coeficiente de correlación de la muestra, r, cuantifica la intensidad de la relación. Las correlaciones también se someten a pruebas para establecer su significancia estadística.

Supuestos que fundamentan al coeficiente de correlación La distribución conjunta de las variables (X, Y) debe ser normal bivariada. Debe existir una relación de tipo lineal entre las variables (X, Y). Para cada valor de X, hay una subpoblación de valores de Y normalmente distribuidas. Las subpoblaciones de X tienen varianza constante.

##Boxplot de los datos

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
boxplot(Datos [1:4], col=terrain.colors(4) )     # Boxplot de todas las variables

Variable<-Ozone     # Cual es su variable de interes?

hist(Variable, prob = FALSE,                      # Histograma de una  variables
     col = "white",
     main = "")
# Nuevo gráfico
par(new = TRUE)
# Box plot
boxplot(Variable, horizontal = TRUE, axes = FALSE,
        col = rgb(0, 0.8, 1, alpha = 0.5))
# Caja
box()

require("lattice")        # Histograma multiple
histogram(~Temp|as.factor(Month),data=Datos, col="#FF7F50", type = "percent") # temperatura como factor

Visualizacion de datos en plots

chart.Correlation(Datos[,1:4],        # elegir las variables
                  method="pearson",   # Puede usar otro tipo de correlacion
                  histogram=TRUE,
                  pch=16)

Analizando la correlación entre ozono y temperatura

# Analizando la correlación entre ozono y temperatura 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pruebas de normalidad   #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
plot(Ozone, Temp)               # Viendo la relación entre ozono y temperatura 

lillie.test(Ozone)              # Prueba de normalidad de ozono 
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  Ozone
## D = 0.15078, p-value = 1.613e-06
lillie.test(Temp)               # Prueba de normalidad de temperatura 
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  Temp
## D = 0.091227, p-value = 0.02385
cor(x=Ozone, y=Temp, method = "pearson")     # No aplica porque las variables no poseen normalidad 
## [1] 0.6985414
cor(x=Ozone, y=Temp, method = "spearman")    # Si aplica, Veamos cuál es la correlación 
## [1] 0.7729319
# los intervalos de confianza De la correlación 
Pearson <- cor_test(Datos, "Ozone", "Temp", method = "pearson"); Pearson
## Parameter1 | Parameter2 |    r |       95% CI | t(109) |         p
## ------------------------------------------------------------------
## Ozone      |       Temp | 0.70 | [0.59, 0.78] |  10.19 | < .001***
## 
## Observations: 111
spearman <- cor_test(Datos, "Ozone", "Temp", method = "spearman"); spearman
## Parameter1 | Parameter2 |  rho |       95% CI |        S |         p
## --------------------------------------------------------------------
## Ozone      |       Temp | 0.77 | [0.68, 0.84] | 51753.35 | < .001***
## 
## Observations: 111
#la correlación de todas las variables 
correlation(Datos, method = "spearman")
## # Correlation Matrix (spearman-method)
## 
## Parameter1 | Parameter2 |   rho |         95% CI |        S |         p
## -----------------------------------------------------------------------
## Ozone      |    Solar.R |  0.35 | [ 0.17,  0.51] | 1.49e+05 | 0.002**  
## Ozone      |       Wind | -0.61 | [-0.71, -0.47] | 3.66e+05 | < .001***
## Ozone      |       Temp |  0.77 | [ 0.68,  0.84] | 51753.35 | < .001***
## Ozone      |      Month |  0.12 | [-0.08,  0.30] | 2.01e+05 | > .999   
## Ozone      |        Day | -0.04 | [-0.23,  0.16] | 2.36e+05 | > .999   
## Solar.R    |       Wind | -0.06 | [-0.25,  0.13] | 2.42e+05 | > .999   
## Solar.R    |       Temp |  0.21 | [ 0.02,  0.39] | 1.80e+05 | 0.273    
## Solar.R    |      Month | -0.15 | [-0.33,  0.04] | 2.62e+05 | > .999   
## Solar.R    |        Day | -0.07 | [-0.25,  0.13] | 2.43e+05 | > .999   
## Wind       |       Temp | -0.50 | [-0.63, -0.34] | 3.42e+05 | < .001***
## Wind       |      Month | -0.14 | [-0.33,  0.05] | 2.61e+05 | > .999   
## Wind       |        Day |  0.05 | [-0.14,  0.24] | 2.16e+05 | > .999   
## Temp       |      Month |  0.29 | [ 0.10,  0.46] | 1.62e+05 | 0.023*   
## Temp       |        Day | -0.13 | [-0.31,  0.07] | 2.57e+05 | > .999   
## Month      |        Day | -0.01 | [-0.20,  0.18] | 2.31e+05 | > .999   
## 
## p-value adjustment method: Holm (1979)
## Observations: 111

Transformación Box Cox para normalizar las variables

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Transformación Box Cox    #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
# Para normalizar la variable Ozono 

lillie.test(Ozone)                # Prueba de normalidad de ozono 
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  Ozone
## D = 0.15078, p-value = 1.613e-06
hist(Ozone, col = 4)

Lamba<-car::powerTransform(Ozone, family="bcPower")  #Buscamos Lamba
# str(Lamba)
Lamba$ start
## [1] 0.1939681
Datos$Ozone_Box<-Ozone^Lamba$ start
View(Datos)
attach(Datos)
shapiro.test(Ozone_Box) #  Prueba de normalidad si no es un dataframe
## 
##  Shapiro-Wilk normality test
## 
## data:  Ozone_Box
## W = 0.9861, p-value = 0.3078
hist(Ozone_Box, col = 3)

# Para normalizar la variable Temperatura  
lillie.test(Temp)                # Prueba de normalidad de Temp 
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  Temp
## D = 0.091227, p-value = 0.02385
hist(Temp, col = 4)

Lamba<-car::powerTransform(Temp, family="bcPower")  #Buscamos Lamba
# str(Lamba)
Lamba$ start
## [1] 1.71955
Datos$Temp_Box<-Temp^Lamba$ start
View(Datos)
attach(Datos)
shapiro.test(Temp_Box) #  Prueba de normalidad si no es un dataframe
## 
##  Shapiro-Wilk normality test
## 
## data:  Temp_Box
## W = 0.98373, p-value = 0.1966
hist(Temp_Box, col = 3)

# Como las dos variables ya están normalizadas ahora sí ya podemos aplicar 
# el corriente de correlación de pearson 
Pearson <- cor_test(Datos, "Ozone_Box", "Temp_Box", method = "pearson"); Pearson  # Sin normalidad
## Parameter1 | Parameter2 |    r |       95% CI | t(109) |         p
## ------------------------------------------------------------------
## Ozone_Box  |   Temp_Box | 0.76 | [0.67, 0.83] |  12.19 | < .001***
## 
## Observations: 111
Pearson <- cor_test(Datos, "Ozone", "Temp", method = "pearson"); Pearson  # Sin normalidad
## Parameter1 | Parameter2 |    r |       95% CI | t(109) |         p
## ------------------------------------------------------------------
## Ozone      |       Temp | 0.70 | [0.59, 0.78] |  10.19 | < .001***
## 
## Observations: 111

Bootstrap de correlación

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Bootstrap de correlación     #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Datos$x<-Ozone_Box
Datos$y<-Temp_Box

Mi_corr<-cor.test(Ozone_Box, Temp_Box)  # Ya esta nornalizada, por eso usamos Pearso
Mi_corr$ estimate   #Aqui vemos el valor de r
##       cor 
## 0.7594418
set.seed(1)
Boots_r <- boot(Datos, 
           statistic = function(Datos, i) {
             cor(Datos[i, "x"], Datos[i, "y"], method='spearman')
           },
           R = 1000
)
Boots_r
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = Datos, statistic = function(Datos, i) {
##     cor(Datos[i, "x"], Datos[i, "y"], method = "spearman")
## }, R = 1000)
## 
## 
## Bootstrap Statistics :
##      original      bias    std. error
## t1* 0.7729319 -0.00389629  0.04193582
boot.ci(Boots_r, type = c("norm", "basic", "perc", "bca")) #bootstrapped CI.
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
## 
## CALL : 
## boot.ci(boot.out = Boots_r, type = c("norm", "basic", "perc", 
##     "bca"))
## 
## Intervals : 
## Level      Normal              Basic         
## 95%   ( 0.6946,  0.8590 )   ( 0.7049,  0.8711 )  
## 
## Level     Percentile            BCa          
## 95%   ( 0.6747,  0.8409 )   ( 0.6737,  0.8403 )  
## Calculations and Intervals on Original Scale
plot(density(Boots_r$t))
abline(v = Mi_corr$ estimate, lty = "dashed", col = "red") # Traemos el velor desde la corr

Boots_r$t   # veamos todos los resutados del bootstrapped
##              [,1]
##    [1,] 0.7504443
##    [2,] 0.7825407
##    [3,] 0.6936637
##    [4,] 0.7352739
##    [5,] 0.7457317
##    [6,] 0.7840804
##    [7,] 0.7563571
##    [8,] 0.7797615
##    [9,] 0.7981870
##   [10,] 0.7668597
##   [11,] 0.7597518
##   [12,] 0.7536712
##   [13,] 0.7958243
##   [14,] 0.8096847
##   [15,] 0.8117490
##   [16,] 0.7442360
##   [17,] 0.7317992
##   [18,] 0.7962787
##   [19,] 0.7497422
##   [20,] 0.7727595
##   [21,] 0.7161866
##   [22,] 0.7541352
##   [23,] 0.7921842
##   [24,] 0.7293340
##   [25,] 0.7199527
##   [26,] 0.7570115
##   [27,] 0.7827157
##   [28,] 0.7731406
##   [29,] 0.7678811
##   [30,] 0.7033064
##   [31,] 0.7765701
##   [32,] 0.8028958
##   [33,] 0.7641299
##   [34,] 0.8170222
##   [35,] 0.7080595
##   [36,] 0.7607327
##   [37,] 0.8277482
##   [38,] 0.8039743
##   [39,] 0.7971573
##   [40,] 0.7992766
##   [41,] 0.7139693
##   [42,] 0.7414802
##   [43,] 0.7872427
##   [44,] 0.7529914
##   [45,] 0.8146750
##   [46,] 0.7381367
##   [47,] 0.8136124
##   [48,] 0.7116272
##   [49,] 0.7757068
##   [50,] 0.7384781
##   [51,] 0.8202385
##   [52,] 0.7733346
##   [53,] 0.7521256
##   [54,] 0.7625206
##   [55,] 0.7428254
##   [56,] 0.7649883
##   [57,] 0.7934615
##   [58,] 0.7507808
##   [59,] 0.7778823
##   [60,] 0.8047978
##   [61,] 0.7031305
##   [62,] 0.8284056
##   [63,] 0.8172304
##   [64,] 0.8216820
##   [65,] 0.7618516
##   [66,] 0.7521220
##   [67,] 0.7657429
##   [68,] 0.8076007
##   [69,] 0.7358502
##   [70,] 0.8271263
##   [71,] 0.7296241
##   [72,] 0.7800890
##   [73,] 0.7667621
##   [74,] 0.6986336
##   [75,] 0.6514824
##   [76,] 0.7895725
##   [77,] 0.7816423
##   [78,] 0.7290915
##   [79,] 0.7819006
##   [80,] 0.7834234
##   [81,] 0.8069805
##   [82,] 0.8245636
##   [83,] 0.7869774
##   [84,] 0.7737169
##   [85,] 0.7481086
##   [86,] 0.7380294
##   [87,] 0.7123535
##   [88,] 0.7655311
##   [89,] 0.7845331
##   [90,] 0.7361369
##   [91,] 0.6436829
##   [92,] 0.7609757
##   [93,] 0.7377320
##   [94,] 0.8062005
##   [95,] 0.7624233
##   [96,] 0.8144336
##   [97,] 0.7473036
##   [98,] 0.7956363
##   [99,] 0.7725580
##  [100,] 0.8146094
##  [101,] 0.7587925
##  [102,] 0.8124619
##  [103,] 0.7044645
##  [104,] 0.8116471
##  [105,] 0.7858906
##  [106,] 0.7045222
##  [107,] 0.7587327
##  [108,] 0.8177428
##  [109,] 0.8186894
##  [110,] 0.7391313
##  [111,] 0.7272518
##  [112,] 0.8213637
##  [113,] 0.7794572
##  [114,] 0.7651476
##  [115,] 0.8235866
##  [116,] 0.7365236
##  [117,] 0.8307472
##  [118,] 0.7537594
##  [119,] 0.7247890
##  [120,] 0.7764398
##  [121,] 0.7998664
##  [122,] 0.8298155
##  [123,] 0.7480571
##  [124,] 0.7204805
##  [125,] 0.7226845
##  [126,] 0.7985440
##  [127,] 0.8418586
##  [128,] 0.6606137
##  [129,] 0.8160382
##  [130,] 0.7687680
##  [131,] 0.7388208
##  [132,] 0.7560644
##  [133,] 0.7637930
##  [134,] 0.7705623
##  [135,] 0.8291550
##  [136,] 0.7831212
##  [137,] 0.7833273
##  [138,] 0.7706348
##  [139,] 0.8103725
##  [140,] 0.8115284
##  [141,] 0.7531920
##  [142,] 0.7549129
##  [143,] 0.7369482
##  [144,] 0.7914844
##  [145,] 0.7565929
##  [146,] 0.8130914
##  [147,] 0.7590076
##  [148,] 0.8264174
##  [149,] 0.7822365
##  [150,] 0.5976209
##  [151,] 0.7322056
##  [152,] 0.8035840
##  [153,] 0.7845556
##  [154,] 0.7908215
##  [155,] 0.7077621
##  [156,] 0.8240251
##  [157,] 0.8481958
##  [158,] 0.8188019
##  [159,] 0.7109694
##  [160,] 0.8238716
##  [161,] 0.7847185
##  [162,] 0.7452501
##  [163,] 0.7280291
##  [164,] 0.7536881
##  [165,] 0.8108296
##  [166,] 0.7476095
##  [167,] 0.6986699
##  [168,] 0.7833445
##  [169,] 0.7179648
##  [170,] 0.7986699
##  [171,] 0.7640795
##  [172,] 0.8048578
##  [173,] 0.8335492
##  [174,] 0.7942709
##  [175,] 0.8052977
##  [176,] 0.8184222
##  [177,] 0.7984091
##  [178,] 0.7716773
##  [179,] 0.7691026
##  [180,] 0.7351641
##  [181,] 0.7563384
##  [182,] 0.7837902
##  [183,] 0.7379676
##  [184,] 0.7079301
##  [185,] 0.8062511
##  [186,] 0.7823523
##  [187,] 0.6194004
##  [188,] 0.7364788
##  [189,] 0.7896190
##  [190,] 0.7558631
##  [191,] 0.8055986
##  [192,] 0.7852870
##  [193,] 0.8409713
##  [194,] 0.6922658
##  [195,] 0.8462076
##  [196,] 0.7122378
##  [197,] 0.7670763
##  [198,] 0.8365028
##  [199,] 0.7786752
##  [200,] 0.7308653
##  [201,] 0.7648389
##  [202,] 0.7297606
##  [203,] 0.7401403
##  [204,] 0.6802126
##  [205,] 0.8527528
##  [206,] 0.7882087
##  [207,] 0.8219031
##  [208,] 0.6945144
##  [209,] 0.7800232
##  [210,] 0.8078301
##  [211,] 0.7537649
##  [212,] 0.6957656
##  [213,] 0.7555185
##  [214,] 0.7104252
##  [215,] 0.6228359
##  [216,] 0.7220510
##  [217,] 0.7566249
##  [218,] 0.6693541
##  [219,] 0.7569310
##  [220,] 0.8066995
##  [221,] 0.7310744
##  [222,] 0.7583179
##  [223,] 0.7895094
##  [224,] 0.7928944
##  [225,] 0.7373057
##  [226,] 0.7688070
##  [227,] 0.7543336
##  [228,] 0.7086056
##  [229,] 0.7163937
##  [230,] 0.7397186
##  [231,] 0.8037680
##  [232,] 0.7917740
##  [233,] 0.6684132
##  [234,] 0.8128970
##  [235,] 0.6942458
##  [236,] 0.8304946
##  [237,] 0.7211470
##  [238,] 0.7907934
##  [239,] 0.7875471
##  [240,] 0.7969001
##  [241,] 0.6875090
##  [242,] 0.6788944
##  [243,] 0.7339340
##  [244,] 0.7908392
##  [245,] 0.7631679
##  [246,] 0.8027555
##  [247,] 0.7185654
##  [248,] 0.8104158
##  [249,] 0.8057027
##  [250,] 0.7454804
##  [251,] 0.7051756
##  [252,] 0.7920921
##  [253,] 0.7300813
##  [254,] 0.7717555
##  [255,] 0.7899655
##  [256,] 0.6624299
##  [257,] 0.7338266
##  [258,] 0.8248670
##  [259,] 0.7899717
##  [260,] 0.7776740
##  [261,] 0.8037627
##  [262,] 0.7526824
##  [263,] 0.6927231
##  [264,] 0.8047297
##  [265,] 0.8018079
##  [266,] 0.7474998
##  [267,] 0.7421803
##  [268,] 0.7963208
##  [269,] 0.7663157
##  [270,] 0.6951989
##  [271,] 0.8035209
##  [272,] 0.8230196
##  [273,] 0.8050023
##  [274,] 0.8001815
##  [275,] 0.7516770
##  [276,] 0.7808083
##  [277,] 0.8151885
##  [278,] 0.7585385
##  [279,] 0.8330770
##  [280,] 0.7537860
##  [281,] 0.7800218
##  [282,] 0.7487472
##  [283,] 0.7998036
##  [284,] 0.7755717
##  [285,] 0.7198911
##  [286,] 0.6942316
##  [287,] 0.7259453
##  [288,] 0.7688714
##  [289,] 0.7695955
##  [290,] 0.8685161
##  [291,] 0.7833062
##  [292,] 0.7684965
##  [293,] 0.7541138
##  [294,] 0.6758153
##  [295,] 0.8126940
##  [296,] 0.8164365
##  [297,] 0.7832363
##  [298,] 0.7984359
##  [299,] 0.8030385
##  [300,] 0.6874805
##  [301,] 0.8398551
##  [302,] 0.7945134
##  [303,] 0.7803735
##  [304,] 0.7736979
##  [305,] 0.7252739
##  [306,] 0.6476420
##  [307,] 0.7936986
##  [308,] 0.8126097
##  [309,] 0.7895555
##  [310,] 0.8335703
##  [311,] 0.7202178
##  [312,] 0.7984038
##  [313,] 0.7260974
##  [314,] 0.7572504
##  [315,] 0.7456472
##  [316,] 0.7605083
##  [317,] 0.8033837
##  [318,] 0.8462624
##  [319,] 0.8019652
##  [320,] 0.7570473
##  [321,] 0.7736197
##  [322,] 0.7441808
##  [323,] 0.8034983
##  [324,] 0.7845772
##  [325,] 0.7895113
##  [326,] 0.7235672
##  [327,] 0.8093035
##  [328,] 0.7782869
##  [329,] 0.7776528
##  [330,] 0.7528555
##  [331,] 0.7640800
##  [332,] 0.7821191
##  [333,] 0.8191388
##  [334,] 0.7732161
##  [335,] 0.7225317
##  [336,] 0.7586461
##  [337,] 0.7330903
##  [338,] 0.8183675
##  [339,] 0.7425095
##  [340,] 0.8187667
##  [341,] 0.7416164
##  [342,] 0.7634792
##  [343,] 0.8051996
##  [344,] 0.7733665
##  [345,] 0.7459212
##  [346,] 0.7742245
##  [347,] 0.7654092
##  [348,] 0.7247891
##  [349,] 0.8390842
##  [350,] 0.8468425
##  [351,] 0.7580197
##  [352,] 0.7929623
##  [353,] 0.7647560
##  [354,] 0.7989969
##  [355,] 0.7622016
##  [356,] 0.7174496
##  [357,] 0.7976861
##  [358,] 0.8063773
##  [359,] 0.7976497
##  [360,] 0.7593184
##  [361,] 0.8267111
##  [362,] 0.8383339
##  [363,] 0.8092883
##  [364,] 0.7727098
##  [365,] 0.7493431
##  [366,] 0.8514968
##  [367,] 0.7401824
##  [368,] 0.7959581
##  [369,] 0.7805639
##  [370,] 0.6714214
##  [371,] 0.8170186
##  [372,] 0.8156412
##  [373,] 0.7493934
##  [374,] 0.6995779
##  [375,] 0.7757985
##  [376,] 0.7629428
##  [377,] 0.8219827
##  [378,] 0.6886512
##  [379,] 0.7067398
##  [380,] 0.7759824
##  [381,] 0.8008064
##  [382,] 0.7896261
##  [383,] 0.8425553
##  [384,] 0.7259623
##  [385,] 0.7876092
##  [386,] 0.7625330
##  [387,] 0.7758447
##  [388,] 0.8013041
##  [389,] 0.8624654
##  [390,] 0.7214117
##  [391,] 0.8371018
##  [392,] 0.7192025
##  [393,] 0.7188587
##  [394,] 0.8109724
##  [395,] 0.8416099
##  [396,] 0.7992978
##  [397,] 0.7888047
##  [398,] 0.7700773
##  [399,] 0.7372170
##  [400,] 0.7688462
##  [401,] 0.8019131
##  [402,] 0.7988217
##  [403,] 0.7941993
##  [404,] 0.7487063
##  [405,] 0.7464199
##  [406,] 0.7167001
##  [407,] 0.8166334
##  [408,] 0.7432586
##  [409,] 0.8117695
##  [410,] 0.7176925
##  [411,] 0.7909379
##  [412,] 0.7782717
##  [413,] 0.7464791
##  [414,] 0.7137018
##  [415,] 0.7071115
##  [416,] 0.8284794
##  [417,] 0.8587147
##  [418,] 0.7661606
##  [419,] 0.8096756
##  [420,] 0.7153386
##  [421,] 0.7816414
##  [422,] 0.7538805
##  [423,] 0.7807874
##  [424,] 0.8064231
##  [425,] 0.8556893
##  [426,] 0.7830777
##  [427,] 0.7160370
##  [428,] 0.6682117
##  [429,] 0.7792912
##  [430,] 0.8033018
##  [431,] 0.7964298
##  [432,] 0.7398188
##  [433,] 0.7687210
##  [434,] 0.7862191
##  [435,] 0.8143826
##  [436,] 0.7347005
##  [437,] 0.7576069
##  [438,] 0.7945946
##  [439,] 0.8018406
##  [440,] 0.7249048
##  [441,] 0.7847866
##  [442,] 0.7801972
##  [443,] 0.7076938
##  [444,] 0.7703959
##  [445,] 0.7818558
##  [446,] 0.7800213
##  [447,] 0.7841655
##  [448,] 0.7513959
##  [449,] 0.8251719
##  [450,] 0.7613223
##  [451,] 0.7137651
##  [452,] 0.6660559
##  [453,] 0.8018420
##  [454,] 0.7982977
##  [455,] 0.7690792
##  [456,] 0.7354152
##  [457,] 0.7825618
##  [458,] 0.7843583
##  [459,] 0.8357261
##  [460,] 0.7975477
##  [461,] 0.7330343
##  [462,] 0.7819311
##  [463,] 0.6958712
##  [464,] 0.7466915
##  [465,] 0.8113695
##  [466,] 0.7593167
##  [467,] 0.7838888
##  [468,] 0.7570242
##  [469,] 0.7741044
##  [470,] 0.7715559
##  [471,] 0.7595195
##  [472,] 0.7964439
##  [473,] 0.7382857
##  [474,] 0.7853410
##  [475,] 0.6877004
##  [476,] 0.6988162
##  [477,] 0.7502670
##  [478,] 0.7904666
##  [479,] 0.8219774
##  [480,] 0.8141578
##  [481,] 0.7940673
##  [482,] 0.7442244
##  [483,] 0.6728200
##  [484,] 0.8056598
##  [485,] 0.7591714
##  [486,] 0.7554769
##  [487,] 0.7705509
##  [488,] 0.7994068
##  [489,] 0.7606032
##  [490,] 0.7330374
##  [491,] 0.8291334
##  [492,] 0.8024012
##  [493,] 0.7702114
##  [494,] 0.8220161
##  [495,] 0.8439924
##  [496,] 0.8177713
##  [497,] 0.7813975
##  [498,] 0.7703662
##  [499,] 0.7684475
##  [500,] 0.7187256
##  [501,] 0.7730649
##  [502,] 0.7291294
##  [503,] 0.8126540
##  [504,] 0.7173467
##  [505,] 0.7964098
##  [506,] 0.7482305
##  [507,] 0.7362263
##  [508,] 0.7758429
##  [509,] 0.7452700
##  [510,] 0.6977789
##  [511,] 0.7758990
##  [512,] 0.7845665
##  [513,] 0.8046450
##  [514,] 0.7506197
##  [515,] 0.7346970
##  [516,] 0.7653341
##  [517,] 0.7929239
##  [518,] 0.7745340
##  [519,] 0.7669023
##  [520,] 0.6957767
##  [521,] 0.8071881
##  [522,] 0.7335009
##  [523,] 0.7595172
##  [524,] 0.7962666
##  [525,] 0.7828124
##  [526,] 0.7343587
##  [527,] 0.7486721
##  [528,] 0.7350132
##  [529,] 0.7496612
##  [530,] 0.7390327
##  [531,] 0.7075037
##  [532,] 0.7400987
##  [533,] 0.7827728
##  [534,] 0.8380846
##  [535,] 0.7303049
##  [536,] 0.7868922
##  [537,] 0.7997370
##  [538,] 0.7562958
##  [539,] 0.8160453
##  [540,] 0.7488048
##  [541,] 0.6078694
##  [542,] 0.8170169
##  [543,] 0.7322220
##  [544,] 0.7593951
##  [545,] 0.8192066
##  [546,] 0.7604051
##  [547,] 0.7481113
##  [548,] 0.8008771
##  [549,] 0.7404567
##  [550,] 0.7896740
##  [551,] 0.7413702
##  [552,] 0.7662351
##  [553,] 0.8041669
##  [554,] 0.7647975
##  [555,] 0.7338923
##  [556,] 0.7464226
##  [557,] 0.7662267
##  [558,] 0.7504209
##  [559,] 0.8043889
##  [560,] 0.7468746
##  [561,] 0.7979849
##  [562,] 0.8087749
##  [563,] 0.7682303
##  [564,] 0.7386587
##  [565,] 0.7889468
##  [566,] 0.7396760
##  [567,] 0.7747345
##  [568,] 0.8149938
##  [569,] 0.7604249
##  [570,] 0.7810590
##  [571,] 0.7596636
##  [572,] 0.7977519
##  [573,] 0.7707818
##  [574,] 0.7747155
##  [575,] 0.6924483
##  [576,] 0.8137045
##  [577,] 0.7737202
##  [578,] 0.7860648
##  [579,] 0.7962085
##  [580,] 0.6961545
##  [581,] 0.7601565
##  [582,] 0.7357934
##  [583,] 0.7688503
##  [584,] 0.7408010
##  [585,] 0.7302518
##  [586,] 0.7287986
##  [587,] 0.8345674
##  [588,] 0.7774768
##  [589,] 0.7276275
##  [590,] 0.7277654
##  [591,] 0.7999225
##  [592,] 0.8436653
##  [593,] 0.7117152
##  [594,] 0.8040848
##  [595,] 0.7389168
##  [596,] 0.7479724
##  [597,] 0.7237173
##  [598,] 0.8397176
##  [599,] 0.8037225
##  [600,] 0.7983241
##  [601,] 0.7960147
##  [602,] 0.8135492
##  [603,] 0.8083468
##  [604,] 0.7581830
##  [605,] 0.7624443
##  [606,] 0.7620555
##  [607,] 0.7337473
##  [608,] 0.7005311
##  [609,] 0.8023180
##  [610,] 0.8258986
##  [611,] 0.7426456
##  [612,] 0.7929873
##  [613,] 0.7757843
##  [614,] 0.7778721
##  [615,] 0.7670997
##  [616,] 0.7906982
##  [617,] 0.7853793
##  [618,] 0.8510670
##  [619,] 0.7907889
##  [620,] 0.7660179
##  [621,] 0.7024981
##  [622,] 0.6603410
##  [623,] 0.7991147
##  [624,] 0.7891184
##  [625,] 0.8032600
##  [626,] 0.6961621
##  [627,] 0.8168544
##  [628,] 0.7703858
##  [629,] 0.7449243
##  [630,] 0.8274593
##  [631,] 0.7594417
##  [632,] 0.7549419
##  [633,] 0.7508112
##  [634,] 0.7566418
##  [635,] 0.8299263
##  [636,] 0.7249267
##  [637,] 0.7824272
##  [638,] 0.7700263
##  [639,] 0.7830972
##  [640,] 0.6798766
##  [641,] 0.7531753
##  [642,] 0.7555513
##  [643,] 0.8414782
##  [644,] 0.8157913
##  [645,] 0.7158792
##  [646,] 0.7550453
##  [647,] 0.8415832
##  [648,] 0.7456497
##  [649,] 0.7728465
##  [650,] 0.6917783
##  [651,] 0.6762405
##  [652,] 0.7769389
##  [653,] 0.8056482
##  [654,] 0.7508803
##  [655,] 0.7849138
##  [656,] 0.7589054
##  [657,] 0.8225805
##  [658,] 0.7643676
##  [659,] 0.7573946
##  [660,] 0.7872029
##  [661,] 0.6923857
##  [662,] 0.7254570
##  [663,] 0.8027656
##  [664,] 0.7780651
##  [665,] 0.8181070
##  [666,] 0.8041927
##  [667,] 0.7739025
##  [668,] 0.7750670
##  [669,] 0.7912549
##  [670,] 0.7838754
##  [671,] 0.7331865
##  [672,] 0.7887761
##  [673,] 0.7685926
##  [674,] 0.7115136
##  [675,] 0.8388722
##  [676,] 0.7705329
##  [677,] 0.7508535
##  [678,] 0.7501600
##  [679,] 0.7642937
##  [680,] 0.7246702
##  [681,] 0.7849026
##  [682,] 0.7653643
##  [683,] 0.7915928
##  [684,] 0.7979974
##  [685,] 0.8582843
##  [686,] 0.6632881
##  [687,] 0.8388115
##  [688,] 0.7982346
##  [689,] 0.7390075
##  [690,] 0.7310268
##  [691,] 0.8311623
##  [692,] 0.7183842
##  [693,] 0.8188349
##  [694,] 0.8200287
##  [695,] 0.7827278
##  [696,] 0.7511852
##  [697,] 0.7693632
##  [698,] 0.8478486
##  [699,] 0.8102120
##  [700,] 0.7848155
##  [701,] 0.7876079
##  [702,] 0.7002339
##  [703,] 0.8338877
##  [704,] 0.7539843
##  [705,] 0.7472699
##  [706,] 0.7364006
##  [707,] 0.8001027
##  [708,] 0.8059584
##  [709,] 0.7728276
##  [710,] 0.7917346
##  [711,] 0.8192178
##  [712,] 0.7556311
##  [713,] 0.6341440
##  [714,] 0.7046806
##  [715,] 0.8005657
##  [716,] 0.7939409
##  [717,] 0.7043061
##  [718,] 0.7967925
##  [719,] 0.7849558
##  [720,] 0.7368747
##  [721,] 0.6853585
##  [722,] 0.7887038
##  [723,] 0.7277899
##  [724,] 0.6462884
##  [725,] 0.7627380
##  [726,] 0.8070595
##  [727,] 0.7549838
##  [728,] 0.7881740
##  [729,] 0.7352406
##  [730,] 0.7622944
##  [731,] 0.8105390
##  [732,] 0.7318608
##  [733,] 0.7463958
##  [734,] 0.6839870
##  [735,] 0.7656572
##  [736,] 0.8190897
##  [737,] 0.7569682
##  [738,] 0.7636416
##  [739,] 0.7973052
##  [740,] 0.7660217
##  [741,] 0.7959121
##  [742,] 0.7111165
##  [743,] 0.7696002
##  [744,] 0.7837536
##  [745,] 0.8104419
##  [746,] 0.7812831
##  [747,] 0.7946912
##  [748,] 0.7312007
##  [749,] 0.7558822
##  [750,] 0.7900255
##  [751,] 0.7794932
##  [752,] 0.7840707
##  [753,] 0.7024126
##  [754,] 0.7259580
##  [755,] 0.7155564
##  [756,] 0.7036278
##  [757,] 0.7567558
##  [758,] 0.7873145
##  [759,] 0.7319864
##  [760,] 0.7769191
##  [761,] 0.7425193
##  [762,] 0.7975393
##  [763,] 0.7486648
##  [764,] 0.7590594
##  [765,] 0.8114664
##  [766,] 0.8047748
##  [767,] 0.7627614
##  [768,] 0.7966470
##  [769,] 0.7025398
##  [770,] 0.8309705
##  [771,] 0.8127467
##  [772,] 0.7966622
##  [773,] 0.8023483
##  [774,] 0.7514151
##  [775,] 0.7698688
##  [776,] 0.7819430
##  [777,] 0.8043219
##  [778,] 0.7534199
##  [779,] 0.7761343
##  [780,] 0.7839162
##  [781,] 0.8043954
##  [782,] 0.8143395
##  [783,] 0.7836668
##  [784,] 0.7587452
##  [785,] 0.7381931
##  [786,] 0.7974848
##  [787,] 0.7938323
##  [788,] 0.7591288
##  [789,] 0.7716959
##  [790,] 0.7267543
##  [791,] 0.7264394
##  [792,] 0.7625484
##  [793,] 0.7793600
##  [794,] 0.8012350
##  [795,] 0.7474099
##  [796,] 0.7844522
##  [797,] 0.7963042
##  [798,] 0.6787868
##  [799,] 0.8190935
##  [800,] 0.7388241
##  [801,] 0.7128642
##  [802,] 0.8094448
##  [803,] 0.8273935
##  [804,] 0.7604597
##  [805,] 0.8187373
##  [806,] 0.7934486
##  [807,] 0.7897326
##  [808,] 0.7991690
##  [809,] 0.7248894
##  [810,] 0.7877372
##  [811,] 0.7479461
##  [812,] 0.7793133
##  [813,] 0.7380858
##  [814,] 0.8354034
##  [815,] 0.7656413
##  [816,] 0.7340784
##  [817,] 0.7717127
##  [818,] 0.8215236
##  [819,] 0.7658795
##  [820,] 0.8104377
##  [821,] 0.8230628
##  [822,] 0.7583523
##  [823,] 0.7580441
##  [824,] 0.7866344
##  [825,] 0.7904925
##  [826,] 0.7146936
##  [827,] 0.8037913
##  [828,] 0.8122526
##  [829,] 0.8134371
##  [830,] 0.8102231
##  [831,] 0.8103950
##  [832,] 0.7688940
##  [833,] 0.7977675
##  [834,] 0.7438145
##  [835,] 0.7079750
##  [836,] 0.8361084
##  [837,] 0.7714664
##  [838,] 0.7723865
##  [839,] 0.7996582
##  [840,] 0.8004639
##  [841,] 0.7892107
##  [842,] 0.8507331
##  [843,] 0.8108442
##  [844,] 0.7250581
##  [845,] 0.7303858
##  [846,] 0.6479292
##  [847,] 0.7656500
##  [848,] 0.7380369
##  [849,] 0.7776095
##  [850,] 0.7196578
##  [851,] 0.7601226
##  [852,] 0.8074679
##  [853,] 0.7607350
##  [854,] 0.6950244
##  [855,] 0.7709076
##  [856,] 0.8143277
##  [857,] 0.7719020
##  [858,] 0.6956912
##  [859,] 0.7466039
##  [860,] 0.8285914
##  [861,] 0.7476279
##  [862,] 0.7483349
##  [863,] 0.7666397
##  [864,] 0.7898873
##  [865,] 0.7170940
##  [866,] 0.7855637
##  [867,] 0.7405154
##  [868,] 0.7683197
##  [869,] 0.8044616
##  [870,] 0.6748977
##  [871,] 0.8191757
##  [872,] 0.7624882
##  [873,] 0.7341071
##  [874,] 0.7673428
##  [875,] 0.7910063
##  [876,] 0.7925454
##  [877,] 0.6586554
##  [878,] 0.7670690
##  [879,] 0.6965690
##  [880,] 0.7494534
##  [881,] 0.7309593
##  [882,] 0.7932460
##  [883,] 0.7804388
##  [884,] 0.8079145
##  [885,] 0.7815069
##  [886,] 0.7819009
##  [887,] 0.7493172
##  [888,] 0.7160065
##  [889,] 0.6747313
##  [890,] 0.7400255
##  [891,] 0.8211610
##  [892,] 0.7807173
##  [893,] 0.8116285
##  [894,] 0.7870051
##  [895,] 0.8103354
##  [896,] 0.8297033
##  [897,] 0.7908742
##  [898,] 0.7357885
##  [899,] 0.7707551
##  [900,] 0.8374146
##  [901,] 0.7706299
##  [902,] 0.8634520
##  [903,] 0.7536864
##  [904,] 0.8184911
##  [905,] 0.7441827
##  [906,] 0.7292565
##  [907,] 0.6725730
##  [908,] 0.7494242
##  [909,] 0.7861376
##  [910,] 0.8394112
##  [911,] 0.8021834
##  [912,] 0.7804688
##  [913,] 0.7692567
##  [914,] 0.7587963
##  [915,] 0.8112389
##  [916,] 0.7438334
##  [917,] 0.7353263
##  [918,] 0.7805511
##  [919,] 0.7665794
##  [920,] 0.6497585
##  [921,] 0.8175309
##  [922,] 0.8199754
##  [923,] 0.7881377
##  [924,] 0.7585238
##  [925,] 0.8096554
##  [926,] 0.7486866
##  [927,] 0.8318543
##  [928,] 0.7453745
##  [929,] 0.7654602
##  [930,] 0.7864444
##  [931,] 0.7619705
##  [932,] 0.7824512
##  [933,] 0.7950875
##  [934,] 0.7661413
##  [935,] 0.7376850
##  [936,] 0.7917514
##  [937,] 0.7947865
##  [938,] 0.7727472
##  [939,] 0.8284176
##  [940,] 0.8731886
##  [941,] 0.7365821
##  [942,] 0.7870439
##  [943,] 0.7658247
##  [944,] 0.7376975
##  [945,] 0.7440765
##  [946,] 0.6873182
##  [947,] 0.7547387
##  [948,] 0.7687756
##  [949,] 0.8351256
##  [950,] 0.7797445
##  [951,] 0.7545330
##  [952,] 0.7986597
##  [953,] 0.8047628
##  [954,] 0.7489161
##  [955,] 0.7589485
##  [956,] 0.7724806
##  [957,] 0.7823334
##  [958,] 0.8568781
##  [959,] 0.7833293
##  [960,] 0.7264851
##  [961,] 0.7813733
##  [962,] 0.7940398
##  [963,] 0.7975860
##  [964,] 0.7498381
##  [965,] 0.7718703
##  [966,] 0.8051130
##  [967,] 0.7180853
##  [968,] 0.7702042
##  [969,] 0.8069261
##  [970,] 0.7771842
##  [971,] 0.7846445
##  [972,] 0.7969909
##  [973,] 0.7006254
##  [974,] 0.8309466
##  [975,] 0.8028860
##  [976,] 0.8068805
##  [977,] 0.7205433
##  [978,] 0.7726099
##  [979,] 0.7994979
##  [980,] 0.7619772
##  [981,] 0.7282084
##  [982,] 0.8292161
##  [983,] 0.7884996
##  [984,] 0.8142736
##  [985,] 0.7493390
##  [986,] 0.7449802
##  [987,] 0.7065467
##  [988,] 0.7844928
##  [989,] 0.7714304
##  [990,] 0.7701340
##  [991,] 0.6867391
##  [992,] 0.7996358
##  [993,] 0.6351320
##  [994,] 0.7069170
##  [995,] 0.7933563
##  [996,] 0.8192812
##  [997,] 0.7715237
##  [998,] 0.7383316
##  [999,] 0.7518149
## [1000,] 0.7882346
hist(Boots_r$t, col= 7)

Bonitas figuras de correlacion

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Bonitas figurass de correlacion     #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
head(Datos)                   # Los encabezados de los datos 
##   Ozone Solar.R Wind Temp Month Day Ozone_Box Temp_Box        x        y
## 1    41     190  7.4   67     5   1  2.055080 1380.471 2.055080 1380.471
## 2    36     118  8.0   72     5   2  2.003886 1562.344 2.003886 1562.344
## 3    12     149 12.6   74     5   3  1.619298 1637.713 1.619298 1637.713
## 4    18     313 11.5   62     5   4  1.751793 1208.113 1.751793 1208.113
## 5    23     299  8.6   65     5   7  1.837096 1310.375 1.837096 1310.375
## 6    19      99 13.8   59     5   8  1.770261 1109.351 1.770261 1109.351
M<-cor(Datos)                 # Correlación entre todas las variables 
head(round(M,2))              # Correlacion de lass variables
##         Ozone Solar.R  Wind  Temp Month   Day Ozone_Box Temp_Box     x     y
## Ozone    1.00    0.35 -0.61  0.70  0.14 -0.01      0.94     0.71  0.94  0.71
## Solar.R  0.35    1.00 -0.13  0.29 -0.07 -0.06      0.44     0.29  0.44  0.29
## Wind    -0.61   -0.13  1.00 -0.50 -0.19  0.05     -0.59    -0.50 -0.59 -0.50
## Temp     0.70    0.29 -0.50  1.00  0.40 -0.10      0.75     1.00  0.75  1.00
## Month    0.14   -0.07 -0.19  0.40  1.00 -0.01      0.18     0.39  0.18  0.39
## Day     -0.01   -0.06  0.05 -0.10 -0.01  1.00     -0.03    -0.10 -0.03 -0.10
corrplot(M, method="circle")  # Plot de correlacion

corrplot(M, method="color")   # Plot de correlacion

corrplot(M, method="number")  # Plot de correlacion

Otra_Corr=cor(Datos) 
qgraph(Otra_Corr, shape="circle", posCol="darkgreen", negCol="darkred", 
       layout="spring", vsize=10)

Detección y remocion de outlayers

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Detección y remocion de outlayers      #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
boxplot(Variable)              # Box plot de la variable 

nueva.var <- Variable[!Variable %in% boxplot.stats(Variable)$out]    # Remove outliers
boxplot(nueva.var)             # Box plot de la variable sin outliers