set.seed(1617)
genotipo = gl(n=3,k=20, length = 60, labels = c("pastusa", "capiro", "criolla"))
rto=rnorm(n=60, mean=3,sd=0.2)
rto=round(rto,2)
df=data.frame(rto, genotipo)
library(DT)
datatable(df)
Resumen estadistico
summary(df$rto)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.430 2.837 2.920 2.957 3.078 3.390
summary(df$genotipo)
## pastusa capiro criolla
## 20 20 20
library(psych)
psych::describeBy(x=df$rto,group=df$genotipo)
##
## Descriptive statistics by group
## group: pastusa
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 20 2.96 0.21 2.93 2.95 0.16 2.64 3.39 0.75 0.47 -0.84 0.05
## ------------------------------------------------------------
## group: capiro
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 20 3 0.22 3 3.03 0.19 2.43 3.31 0.88 -0.67 0.09 0.05
## ------------------------------------------------------------
## group: criolla
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 20 2.91 0.18 2.86 2.9 0.16 2.55 3.35 0.8 0.52 -0.11 0.04
# cv_a=(sd/Media)*100
#cv_b=(sd/Media)*100