#abro el df

df <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vSisVhxo5wPyMYfOPwVgrfDi1BKfjG8Q0OmDiGkrLunYSZ0uTtih2ydNZlEF_bh55Vzwo9rZcy45heD/pub?gid=381433022&single=true&output=csv")
There were 12 warnings (use warnings() to see them)

#packges

library("tidyverse")
library("ggpubr")
library("ggsignif")

#ver

glimpse(df)
Rows: 60
Columns: 6
$ N        <chr> "#16", "#14", "#12", "#22", "#24", "#26", "#16", "#14", "#12", "#22", "#24"…
$ Corte    <chr> "Sagital", "Sagital", "Sagital", "Sagital", "Sagital", "Sagital", "Sagital"…
$ apical   <dbl> 0.00, 0.00, 0.86, 2.19, 2.29, 1.12, 0.00, 0.60, 1.24, 3.50, 0.33, 0.00, 1.8…
$ cervical <dbl> 1.42, 0.00, 0.68, 0.63, 0.44, 0.00, 0.00, 0.40, 0.50, 0.42, 0.41, 0.00, 0.6…
$ angular  <dbl> 5.55, 0.00, 5.70, 10.67, 9.00, 0.00, 0.00, 1.55, 4.24, 3.22, 1.53, 0.00, 9.…
$ depth    <dbl> 0.00, 2.30, 0.00, 0.00, 0.00, 0.99, 1.50, 0.90, 0.70, 0.60, 0.50, 1.41, 1.1…

#agrupo

df%>% 
  group_by(Corte) %>% 
  summarise(n=n(),  promedio_apical= mean(apical), sd_apical = sd(apical), promedio_cervical=mean(cervical), sd_cervical=sd(cervical), promedio_angulo= mean(angular), sd_angulo = sd(angular), promedio_profundidad = mean(depth), sd_profundidad = sd(depth))

#grafica sin outlier para apical

#grafica para cervical (sin outlier)

#grafica para angulación(sin outlier)

#grafica para profundidad

#agrupo corte y diente

#Calulo de intervalos de confianza

#intervalos segun dientes para corte sagital (df1) en apical

ci.mean(df$apical~df$N, data=df) 
 df$N mean CI-95%     
 #12  0.93 [0.59;1.27]
 #14  0.63 [0.14;1.13]
 #16  0.86 [0.35;1.38]
 #22  2.02 [1.23;2.81]
 #24  0.69 [0.06;1.31]
 #26  1.03 [0.44;1.63]

#intervalos segun dientes para corte sagital (df1) en cervical

ci.mean(df$cervical~df$N, data=df) 
 df$N mean CI-95%     
 #12  0.93 [0.41;1.46]
 #14  0.47 [0.09;0.85]
 #16  0.58 [0.27;0.90]
 #22  1.11 [0.48;1.73]
 #24  0.67 [0.20;1.14]
 #26  0.83 [0.07;1.60]

#intervalos segun dientes para corte sagital (df1) en angulo

ci.mean(df$angular~df$N, data=df) 
 df$N mean CI-95%      
 #12  3.37 [1.78;4.95] 
 #14  1.75 [0.29;3.21] 
 #16  4.34 [1.72;6.95] 
 #22  5.76 [1.52;10.00]
 #24  1.97 [-0.12;4.05]
 #26  0.39 [-0.15;0.94]

#los outliers

boxplot.stats(df$apical)
$stats
[1] 0.000 0.365 0.830 1.360 2.700

$n
[1] 60

$conf
[1] 0.6270428 1.0329572

$out
[1] 3.5 3.5
boxplot.stats(df$cervical)
$stats
[1] 0.000 0.210 0.515 1.290 2.100

$n
[1] 60

$conf
[1] 0.2947047 0.7352953

$out
[1] 3.00 3.02
boxplot.stats(df$angular)
$stats
[1]  0.000  0.000  1.745  4.640 10.670

$n
[1] 60

$conf
[1] 0.7985461 2.6914539

$out
[1] 20.1

#grafica correlacion apical cervical

#grafica correlacion apical angular

#grafica apical profundidad

LS0tCnRpdGxlOiAiMjAyMl9QcmVjaXNpw7NuIGRlIGltcGxhbnRlcyBkaWdpdGFsbWVudGUgZ3VpYWRvcyIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQojYWJybyBlbCBkZgpgYGB7cn0KZGYgPC0gcmVhZC5jc3YoImh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kL2UvMlBBQ1gtMXZTaXNWaHhvNXdQeU1ZZk9Qd1ZncmZEaTFCS2ZqRzhRME9tRGlHa3JMdW5ZU1owdVR0aWgyeWROWmxFRl9iaDU1Vnp3bzlyWmN5NDVoZUQvcHViP2dpZD0zODE0MzMwMjImc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAojcGFja2dlcwpgYGB7cn0KbGlicmFyeSgidGlkeXZlcnNlIikKbGlicmFyeSgiZ2dwdWJyIikKbGlicmFyeSgiZ2dzaWduaWYiKQoKYGBgCiN2ZXIKYGBge3J9CmdsaW1wc2UoZGYpCmBgYAojYWdydXBvCmBgYHtyfQpkZiU+JSAKICBncm91cF9ieShDb3J0ZSkgJT4lIAogIHN1bW1hcmlzZShuPW4oKSwgIHByb21lZGlvX2FwaWNhbD0gbWVhbihhcGljYWwpLCBzZF9hcGljYWwgPSBzZChhcGljYWwpLCBwcm9tZWRpb19jZXJ2aWNhbD1tZWFuKGNlcnZpY2FsKSwgc2RfY2VydmljYWw9c2QoY2VydmljYWwpLCBwcm9tZWRpb19hbmd1bG89IG1lYW4oYW5ndWxhciksIHNkX2FuZ3VsbyA9IHNkKGFuZ3VsYXIpLCBwcm9tZWRpb19wcm9mdW5kaWRhZCA9IG1lYW4oZGVwdGgpLCBzZF9wcm9mdW5kaWRhZCA9IHNkKGRlcHRoKSkKYGBgCiNncmFmaWNhIHNpbiBvdXRsaWVyIHBhcmEgYXBpY2FsCmBgYHtyfQpkZiAlPiUgCiAgIG11dGF0ZShOID0gZmFjdG9yKE4sIGxldmVscz1jKCIjMTYiLCAiIzE0IiwgIiMxMiIsICIjMjIiLCAiIzI0IiwgIiMyNiIpKSkgJT4lCiAgZ2dwbG90KGFlcyh4PSBOLCB5PWFwaWNhbCkpKwogICBnZW9tX2JveHBsb3Qob3V0bGllci5jb2xvdXIgPSBOQSkrCiAgdGhlbWVfY2xhc3NpYygpICsKICBzY2FsZV95X2NvbnRpbnVvdXMoYnJlYWtzPXNlcSgwLCA0LCAwLjUpKSsKICB5bGFiKCJBcGljYWwgZGV2aWF0aW9uIChtbSkiKSsKICB4bGFiKCJJbXBsYW50IikgKwogIGdlb21fc2lnbmlmKGNvbXBhcmlzb25zID0gbGlzdChjKCIjMjIiLCAiIzEyIikpLAogICAgICAgICAgICAgICBtYXBfc2lnbmlmX2xldmVsID0gVFJVRSwgdGV4dHNpemUgPSA0LCB5X3Bvc2l0aW9uID0gMi45KSArCiAgIAogICBnZW9tX3NpZ25pZihjb21wYXJpc29ucyA9IGxpc3QoYygiIzIyIiwgIiMxNCIpKSwKICAgICAgICAgICAgICAgbWFwX3NpZ25pZl9sZXZlbCA9IFRSVUUsIHRleHRzaXplID0gNCwgeV9wb3NpdGlvbiA9IDMuMikgKwogIAogICAgIGdlb21fc2lnbmlmKGNvbXBhcmlzb25zID0gbGlzdChjKCIjMjIiLCAiIzE2IikpLAogICAgICAgICAgICAgICBtYXBfc2lnbmlmX2xldmVsID0gVFJVRSwgdGV4dHNpemUgPSA0LCB5X3Bvc2l0aW9uID0gMy41KSArCiAgCiAgIGdlb21fc2lnbmlmKGNvbXBhcmlzb25zID0gbGlzdChjKCIjMjIiLCAiIzI2IikpLAogICAgICAgICAgICAgICBtYXBfc2lnbmlmX2xldmVsID0gVFJVRSwgdGV4dHNpemUgPSA0LCB5X3Bvc2l0aW9uID0gMy41KSArCiAgCiAgIGdlb21fc2lnbmlmKGNvbXBhcmlzb25zID0gbGlzdChjKCIjMjIiLCAiIzI0IikpLAogICAgICAgICAgICAgICBtYXBfc2lnbmlmX2xldmVsID0gVFJVRSwgdGV4dHNpemUgPSA0LCB5X3Bvc2l0aW9uID0gMy4yKSArCiAgdGhlbWUoYXhpcy50aXRsZS54ID0gZWxlbWVudF90ZXh0KHNpemU9cmVsKDEuMikpKSArCiAgICB0aGVtZShheGlzLnRpdGxlLnkgPSBlbGVtZW50X3RleHQoIHNpemU9cmVsKDEuMikpKSAKICAKI29kZW5hciB2YXJpYWJsZSBkZWwgZWplIFggcG9yIG51bWVybyBkZSBpbXBsYW50ZXMsIGFncmVnYXIgYmFycmEgc2lnbmlmaWNhbmNpYSAxMi8yMiosIDE0LzIyKiosIDE2LzIyKiwgMjQvMjIqLCAyNi8yMioKCmBgYAojZ3JhZmljYSBwYXJhIGNlcnZpY2FsIChzaW4gb3V0bGllcikKYGBge3J9CmRmICU+JSAKICAgbXV0YXRlKE4gPSBmYWN0b3IoTiwgbGV2ZWxzPWMoIiMxNiIsICIjMTQiLCAiIzEyIiwgIiMyMiIsICIjMjQiLCAiIzI2IikpKSAlPiUKICBnZ3Bsb3QoYWVzKHg9IE4sIHk9Y2VydmljYWwpKSsKICBnZW9tX2JveHBsb3Qob3V0bGllci5jb2xvdXIgPSBOQSkrCiAgdGhlbWVfY2xhc3NpYygpKwogIHNjYWxlX3lfY29udGludW91cyhicmVha3M9c2VxKDAsIDQsIDAuNSkpKwogIHlsYWIoIkNvcm9uYWwgZGV2aWF0aW9uIChtbSkiKSsKICB4bGFiKCJJbXBsYW50IikKCiNOTyBleGlzdGVuIGRpZmVyZW5jaWFzIHNpZ25pZmljYXRpdmFzIApgYGAKI2dyYWZpY2EgcGFyYSBhbmd1bGFjacOzbihzaW4gb3V0bGllcikKYGBge3J9CmRmICU+JSAKICAgbXV0YXRlKE4gPSBmYWN0b3IoTiwgbGV2ZWxzPWMoIiMxNiIsICIjMTQiLCAiIzEyIiwgIiMyMiIsICIjMjQiLCAiIzI2IikpKSAlPiUKICBnZ3Bsb3QoYWVzKHg9TiAsIHk9YW5ndWxhcikpKwogIGdlb21fYm94cGxvdChvdXRsaWVyLmNvbG91ciA9IE5BKSsKICB0aGVtZV9jbGFzc2ljKCkrCiAgc2NhbGVfeV9jb250aW51b3VzKGJyZWFrcz1zZXEoMCwgMTUsIDUpKSArCiAgeWxhYigiQW5ndWxhciBkZXZpYXRpb24gKGRlZ3JlZSkiKSsKICB4bGFiKCJJbXBsYW50IikrCiAgZ2VvbV9zaWduaWYoY29tcGFyaXNvbnMgPSBsaXN0KGMoIiMxNiIsICIjMjYiKSksCiAgICAgICAgICAgICAgIG1hcF9zaWduaWZfbGV2ZWwgPSBUUlVFLCB0ZXh0c2l6ZSA9IDQsIHlfcG9zaXRpb24gPSAyMCkgKwogIHRoZW1lX2NsYXNzaWMoKSsKICAgZ2VvbV9zaWduaWYoY29tcGFyaXNvbnMgPSBsaXN0KGMoIiMyMiIsICIjMjYiKSksCiAgICAgICAgICAgICAgIG1hcF9zaWduaWZfbGV2ZWwgPSBUUlVFLCB0ZXh0c2l6ZSA9IDQsIHlfcG9zaXRpb24gPSAxNikgKwogIHRoZW1lX2NsYXNzaWMoKSsKICAgZ2VvbV9zaWduaWYoY29tcGFyaXNvbnMgPSBsaXN0KGMoIiMxMiIsICIjMjYiKSksCiAgICAgICAgICAgICAgIG1hcF9zaWduaWZfbGV2ZWwgPSBUUlVFLCB0ZXh0c2l6ZSA9IDQsIHlfcG9zaXRpb24gPSAxOCkgKwogIHRoZW1lX2NsYXNzaWMoKSsKICAgZ2VvbV9zaWduaWYoY29tcGFyaXNvbnMgPSBsaXN0KGMoIiMyMiIsICIjMTQiKSksCiAgICAgICAgICAgICAgIG1hcF9zaWduaWZfbGV2ZWwgPSBUUlVFLCB0ZXh0c2l6ZSA9IDQsIHlfcG9zaXRpb24gPSAxNCkgKwogIHRoZW1lX2NsYXNzaWMoKSsKICB0aGVtZV9jbGFzc2ljKCkrCiAgIGdlb21fc2lnbmlmKGNvbXBhcmlzb25zID0gbGlzdChjKCIjMjIiLCAiIzI0IikpLAogICAgICAgICAgICAgICBtYXBfc2lnbmlmX2xldmVsID0gVFJVRSwgdGV4dHNpemUgPSA0LCB5X3Bvc2l0aW9uID0gMTIuMykgKwogIHRoZW1lX2NsYXNzaWMoKQogIAoKI2FncmVnYXIsIGRpZmVyZW5jaWFzICBsaXN0byAxMi8yNioqLCBsaXN0byAxNC8yMiosIGxpc3RvIDE2LzI2KiwgbGlzdG8gMjIvMjQqLCBsaXN0byAyMi8yNioqIApgYGAKI2dyYWZpY2EgcGFyYSBwcm9mdW5kaWRhZCAKYGBge3J9CmRmICU+JSAKICBnZ3Bsb3QoYWVzKHg9TiAsIHk9ZGVwdGgpKSsKICBnZW9tX2JveHBsb3Qob3V0bGllci5jb2xvdXIgPSBOQSkrCiAgdGhlbWVfY2xhc3NpYygpKwogIHlsYWIoIkRlcHRoIGRldmlhdGlvbiAobW0pIikrCiAgeGxhYigiSW1wbGFudCIpCgojTm8gZXhpc3RlbiBkaWZlcmVuY2lhcyBzaWduaWZpY2F0aXZhcyAgCmBgYAojYWdydXBvIGNvcnRlIHkgZGllbnRlCmBgYHtyfQpkZiU+JSAKICBncm91cF9ieShOKSAlPiUgCiAgc3VtbWFyaXNlKG49bigpLCAgcHJvbWVkaW9fYXBpY2FsPSBtZWFuKGFwaWNhbCksIHNkX2FwaWNhbCA9IHNkKGFwaWNhbCksIHByb21lZGlvX2NlcnZpY2FsPW1lYW4oY2VydmljYWwpLCBzZF9jZXJ2aWNhbD1zZChjZXJ2aWNhbCksIHByb21lZGlvX2FuZ3Vsbz0gbWVhbihhbmd1bGFyKSwgc2RfYW5ndWxvID0gc2QoYW5ndWxhcikpCmBgYAojQ2FsdWxvIGRlIGludGVydmFsb3MgZGUgY29uZmlhbnphCmBgYHtyfQojbG9zIHBhY2thZ2VzIAppbnN0YWxsLnBhY2thZ2VzKCJQdWJsaXNoIikKaW5zdGFsbC5wYWNrYWdlcygicHJvZGxpbSIpCmxpYnJhcnkoIlB1Ymxpc2giKQpsaWJyYXJ5KCJwcm9kbGltIikKYGBgCiNpbnRlcnZhbG9zIHNlZ3VuIGRpZW50ZXMgcGFyYSBjb3J0ZSBzYWdpdGFsIChkZjEpIGVuIGFwaWNhbApgYGB7cn0KY2kubWVhbihkZiRhcGljYWx+ZGYkTiwgZGF0YT1kZikgCmBgYAojaW50ZXJ2YWxvcyBzZWd1biBkaWVudGVzIHBhcmEgY29ydGUgc2FnaXRhbCAoZGYxKSBlbiBjZXJ2aWNhbApgYGB7cn0KY2kubWVhbihkZiRjZXJ2aWNhbH5kZiROLCBkYXRhPWRmKSAKYGBgCiNpbnRlcnZhbG9zIHNlZ3VuIGRpZW50ZXMgcGFyYSBjb3J0ZSBzYWdpdGFsIChkZjEpIGVuIGFuZ3VsbwpgYGB7cn0KY2kubWVhbihkZiRhbmd1bGFyfmRmJE4sIGRhdGE9ZGYpIApgYGAKI2xvcyBvdXRsaWVycwpgYGB7cn0KYm94cGxvdC5zdGF0cyhkZiRhcGljYWwpCmBgYApgYGB7cn0KYm94cGxvdC5zdGF0cyhkZiRjZXJ2aWNhbCkKYGBgCmBgYHtyfQpib3hwbG90LnN0YXRzKGRmJGFuZ3VsYXIpCmBgYAojZ3JhZmljYSBjb3JyZWxhY2lvbiBhcGljYWwgY2VydmljYWwKYGBge3J9CiBkZiAlPiUgCiAgZ2dwbG90KGFlcyh4PWNlcnZpY2FsLCB5PWFwaWNhbCkpICsKICBnZW9tX3BvaW50KCkrCiAgIHRoZW1lX21pbmltYWwoKSsgCiAgZ2VvbV9zbW9vdGgobWV0aG9kPWxtKSArCiAgeWxhYiAoIkFwaWNhbCBkZXZpYXRpb24gKG1tKSIpICsKICB4bGFiICgiQ29yb25hbCBkZXZpYXRpb24gKG1tKSIpCmBgYAojZ3JhZmljYSBjb3JyZWxhY2lvbiBhcGljYWwgYW5ndWxhcgpgYGB7cn0KIGRmICU+JSAKICBnZ3Bsb3QoYWVzKHg9YW5ndWxhciwgeT1hcGljYWwpKSArCiAgZ2VvbV9wb2ludCgpKwogICB0aGVtZV9taW5pbWFsKCkrIAogIGdlb21fc21vb3RoKG1ldGhvZD1sbSkgKwogIHlsYWIgKCJBcGljYWwgZGV2aWF0aW9uIChtbSkiKSArCiAgeGxhYiAoIkFuZ3VsYXIgZGV2aWF0aW9uIChtbSkiKQpgYGAKI2dyYWZpY2EgYXBpY2FsIHByb2Z1bmRpZGFkCmBgYHtyfQogZGYgJT4lIAogIGdncGxvdChhZXMoeD1kZXB0aCwgeT1hcGljYWwpKSArCiAgZ2VvbV9wb2ludCgpKwogICB0aGVtZV9taW5pbWFsKCkrIAogIGdlb21fc21vb3RoKG1ldGhvZD1sbSkgKwogIHlsYWIgKCJBcGljYWwgZGV2aWF0aW9uIChtbSkiKSArCiAgeGxhYiAoIkRlcHRoIGRldmlhdGlvbiAobW0pIikKYGBgCgoKCgoKCgoK