setwd("~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Colaboraciones/Laura/Forestal/Bases")
datos<-read.table("bofor.csv", header=T, sep=',')
datos$municipio<-as.factor(datos$municipio)
datos$lote<-as.factor(datos$lote)
datos$anof<-as.factor(datos$anof)
datos$bloque<-as.factor(datos$bloque)
datos$forestal<-as.factor(datos$forestal)
datos$planta<-as.factor(datos$planta)
datos$semana<-as.factor(datos$semana)
##Package
library(ggplot2)
library(Rmisc)
## Loading required package: lattice
## Loading required package: plyr
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ tibble  3.1.6     ✓ purrr   0.3.4
## ✓ tidyr   1.1.4     ✓ stringr 1.4.0
## ✓ readr   2.1.1     ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::arrange()   masks plyr::arrange()
## x purrr::compact()   masks plyr::compact()
## x dplyr::count()     masks plyr::count()
## x dplyr::failwith()  masks plyr::failwith()
## x dplyr::filter()    masks stats::filter()
## x dplyr::id()        masks plyr::id()
## x dplyr::lag()       masks stats::lag()
## x dplyr::mutate()    masks plyr::mutate()
## x dplyr::rename()    masks plyr::rename()
## x dplyr::summarise() masks plyr::summarise()
## x dplyr::summarize() masks plyr::summarize()
library(ggpubr)
## 
## Attaching package: 'ggpubr'
## The following object is masked from 'package:plyr':
## 
##     mutate
library(rstatix)
## 
## Attaching package: 'rstatix'
## The following objects are masked from 'package:plyr':
## 
##     desc, mutate
## The following object is masked from 'package:stats':
## 
##     filter
library(emmeans)
library(nlme)
## 
## Attaching package: 'nlme'
## The following object is masked from 'package:dplyr':
## 
##     collapse
## Summarizing data base by year
lista<- datos %>%
  group_by(anof, lote, forestal, planta) %>%
  summarise_all(mean)
## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA

## Warning in mean.default(departamento): argument is not numeric or logical:
## returning NA
## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA

## Warning in mean.default(municipio): argument is not numeric or logical:
## returning NA
## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA

## Warning in mean.default(semana): argument is not numeric or logical: returning
## NA
## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA

## Warning in mean.default(bloque): argument is not numeric or logical: returning
## NA
lista %>% print(n=Inf)
## # A tibble: 144 × 11
## # Groups:   anof, lote, forestal [24]
##     anof  lote  forestal planta departamento municipio   ano semana bloque  diam
##     <fct> <fct> <fct>    <fct>         <dbl>     <dbl> <dbl>  <dbl>  <dbl> <dbl>
##   1 2020  "Cau… Abarco   1                NA        NA     2     NA     NA  5.46
##   2 2020  "Cau… Abarco   2                NA        NA     2     NA     NA  5.96
##   3 2020  "Cau… Abarco   3                NA        NA     2     NA     NA  6.36
##   4 2020  "Cau… Abarco   4                NA        NA     2     NA     NA  7.12
##   5 2020  "Cau… Abarco   5                NA        NA     2     NA     NA  6.71
##   6 2020  "Cau… Abarco   6                NA        NA     2     NA     NA  6.88
##   7 2020  "Cau… Roble    1                NA        NA     2     NA     NA  4.82
##   8 2020  "Cau… Roble    2                NA        NA     2     NA     NA  6.3 
##   9 2020  "Cau… Roble    3                NA        NA     2     NA     NA  4.49
##  10 2020  "Cau… Roble    4                NA        NA     2     NA     NA  7.5 
##  11 2020  "Cau… Roble    5                NA        NA     2     NA     NA  7.35
##  12 2020  "Cau… Roble    6                NA        NA     2     NA     NA  7.79
##  13 2020  "Cau… Termina… 1                NA        NA     2     NA     NA  5.2 
##  14 2020  "Cau… Termina… 2                NA        NA     2     NA     NA  4.93
##  15 2020  "Cau… Termina… 3                NA        NA     2     NA     NA  4.01
##  16 2020  "Cau… Termina… 4                NA        NA     2     NA     NA  5.04
##  17 2020  "Cau… Termina… 5                NA        NA     2     NA     NA  6.19
##  18 2020  "Cau… Termina… 6                NA        NA     2     NA     NA  5.9 
##  19 2020  "Flo… Abarco   1                NA        NA     2     NA     NA  7.68
##  20 2020  "Flo… Abarco   2                NA        NA     2     NA     NA  7.6 
##  21 2020  "Flo… Abarco   3                NA        NA     2     NA     NA  7.48
##  22 2020  "Flo… Abarco   4                NA        NA     2     NA     NA  7.15
##  23 2020  "Flo… Abarco   5                NA        NA     2     NA     NA  6.67
##  24 2020  "Flo… Abarco   6                NA        NA     2     NA     NA  7.67
##  25 2020  "Flo… Roble    1                NA        NA     2     NA     NA  7.08
##  26 2020  "Flo… Roble    2                NA        NA     2     NA     NA  8.2 
##  27 2020  "Flo… Roble    3                NA        NA     2     NA     NA  7.08
##  28 2020  "Flo… Roble    4                NA        NA     2     NA     NA  7.02
##  29 2020  "Flo… Roble    5                NA        NA     2     NA     NA  8.78
##  30 2020  "Flo… Roble    6                NA        NA     2     NA     NA  6.62
##  31 2020  "Flo… Termina… 1                NA        NA     2     NA     NA  4   
##  32 2020  "Flo… Termina… 2                NA        NA     2     NA     NA  2.8 
##  33 2020  "Flo… Termina… 3                NA        NA     2     NA     NA  2.2 
##  34 2020  "Flo… Termina… 4                NA        NA     2     NA     NA  1.4 
##  35 2020  "Flo… Termina… 5                NA        NA     2     NA     NA  2.3 
##  36 2020  "Flo… Termina… 6                NA        NA     2     NA     NA  3.3 
##  37 2020  "Mex… Abarco   1                NA        NA     2     NA     NA  8.62
##  38 2020  "Mex… Abarco   2                NA        NA     2     NA     NA  9.97
##  39 2020  "Mex… Abarco   3                NA        NA     2     NA     NA  7.45
##  40 2020  "Mex… Abarco   4                NA        NA     2     NA     NA  9.18
##  41 2020  "Mex… Abarco   5                NA        NA     2     NA     NA  9.63
##  42 2020  "Mex… Abarco   6                NA        NA     2     NA     NA  9.88
##  43 2020  "Mex… Roble    1                NA        NA     2     NA     NA 17.6 
##  44 2020  "Mex… Roble    2                NA        NA     2     NA     NA 14.3 
##  45 2020  "Mex… Roble    3                NA        NA     2     NA     NA 14.1 
##  46 2020  "Mex… Roble    4                NA        NA     2     NA     NA 14.4 
##  47 2020  "Mex… Roble    5                NA        NA     2     NA     NA 14.4 
##  48 2020  "Mex… Roble    6                NA        NA     2     NA     NA 12.4 
##  49 2020  "Mex… Termina… 1                NA        NA     2     NA     NA  5.04
##  50 2020  "Mex… Termina… 2                NA        NA     2     NA     NA  6.85
##  51 2020  "Mex… Termina… 3                NA        NA     2     NA     NA  4.28
##  52 2020  "Mex… Termina… 4                NA        NA     2     NA     NA  5.37
##  53 2020  "Mex… Termina… 5                NA        NA     2     NA     NA  3.75
##  54 2020  "Mex… Termina… 6                NA        NA     2     NA     NA  5.05
##  55 2020  "Pin… Abarco   1                NA        NA     2     NA     NA  5.59
##  56 2020  "Pin… Abarco   2                NA        NA     2     NA     NA  6.09
##  57 2020  "Pin… Abarco   3                NA        NA     2     NA     NA  6.31
##  58 2020  "Pin… Abarco   4                NA        NA     2     NA     NA  5.4 
##  59 2020  "Pin… Abarco   5                NA        NA     2     NA     NA  5.29
##  60 2020  "Pin… Abarco   6                NA        NA     2     NA     NA  5.76
##  61 2020  "Pin… Roble    1                NA        NA     2     NA     NA 10.6 
##  62 2020  "Pin… Roble    2                NA        NA     2     NA     NA 10.5 
##  63 2020  "Pin… Roble    3                NA        NA     2     NA     NA  7.54
##  64 2020  "Pin… Roble    4                NA        NA     2     NA     NA 11.2 
##  65 2020  "Pin… Roble    5                NA        NA     2     NA     NA 10.8 
##  66 2020  "Pin… Roble    6                NA        NA     2     NA     NA 10.1 
##  67 2020  "Pin… Termina… 1                NA        NA     2     NA     NA  2.51
##  68 2020  "Pin… Termina… 2                NA        NA     2     NA     NA  2.45
##  69 2020  "Pin… Termina… 3                NA        NA     2     NA     NA  3.09
##  70 2020  "Pin… Termina… 4                NA        NA     2     NA     NA  3.23
##  71 2020  "Pin… Termina… 5                NA        NA     2     NA     NA  3.2 
##  72 2020  "Pin… Termina… 6                NA        NA     2     NA     NA  3.47
##  73 2021  "Cau… Abarco   1                NA        NA     3     NA     NA  8   
##  74 2021  "Cau… Abarco   2                NA        NA     3     NA     NA  8.87
##  75 2021  "Cau… Abarco   3                NA        NA     3     NA     NA  8.13
##  76 2021  "Cau… Abarco   4                NA        NA     3     NA     NA  9.13
##  77 2021  "Cau… Abarco   5                NA        NA     3     NA     NA  9   
##  78 2021  "Cau… Abarco   6                NA        NA     3     NA     NA  8.8 
##  79 2021  "Cau… Roble    1                NA        NA     3     NA     NA  7.45
##  80 2021  "Cau… Roble    2                NA        NA     3     NA     NA 11.5 
##  81 2021  "Cau… Roble    3                NA        NA     3     NA     NA  6   
##  82 2021  "Cau… Roble    4                NA        NA     3     NA     NA  9.37
##  83 2021  "Cau… Roble    5                NA        NA     3     NA     NA  9.67
##  84 2021  "Cau… Roble    6                NA        NA     3     NA     NA 13.0 
##  85 2021  "Cau… Termina… 1                NA        NA     3     NA     NA  6.5 
##  86 2021  "Cau… Termina… 2                NA        NA     3     NA     NA  8.3 
##  87 2021  "Cau… Termina… 3                NA        NA     3     NA     NA  7.15
##  88 2021  "Cau… Termina… 4                NA        NA     3     NA     NA  7.33
##  89 2021  "Cau… Termina… 5                NA        NA     3     NA     NA  8.17
##  90 2021  "Cau… Termina… 6                NA        NA     3     NA     NA  7.6 
##  91 2021  "Flo… Abarco   1                NA        NA     3     NA     NA 11.6 
##  92 2021  "Flo… Abarco   2                NA        NA     3     NA     NA 10.7 
##  93 2021  "Flo… Abarco   3                NA        NA     3     NA     NA 10.8 
##  94 2021  "Flo… Abarco   4                NA        NA     3     NA     NA 11   
##  95 2021  "Flo… Abarco   5                NA        NA     3     NA     NA 10.1 
##  96 2021  "Flo… Abarco   6                NA        NA     3     NA     NA 11.0 
##  97 2021  "Flo… Roble    1                NA        NA     3     NA     NA  9.1 
##  98 2021  "Flo… Roble    2                NA        NA     3     NA     NA 10.2 
##  99 2021  "Flo… Roble    3                NA        NA     3     NA     NA  8.72
## 100 2021  "Flo… Roble    4                NA        NA     3     NA     NA  9.08
## 101 2021  "Flo… Roble    5                NA        NA     3     NA     NA 11.9 
## 102 2021  "Flo… Roble    6                NA        NA     3     NA     NA  8.48
## 103 2021  "Flo… Termina… 1                NA        NA     3     NA     NA  5.45
## 104 2021  "Flo… Termina… 2                NA        NA     3     NA     NA  3.4 
## 105 2021  "Flo… Termina… 3                NA        NA     3     NA     NA  3.15
## 106 2021  "Flo… Termina… 4                NA        NA     3     NA     NA  2.4 
## 107 2021  "Flo… Termina… 5                NA        NA     3     NA     NA  3.1 
## 108 2021  "Flo… Termina… 6                NA        NA     3     NA     NA  4.85
## 109 2021  "Mex… Abarco   1                NA        NA     3     NA     NA 14.3 
## 110 2021  "Mex… Abarco   2                NA        NA     3     NA     NA 14.6 
## 111 2021  "Mex… Abarco   3                NA        NA     3     NA     NA 14.1 
## 112 2021  "Mex… Abarco   4                NA        NA     3     NA     NA 16.7 
## 113 2021  "Mex… Abarco   5                NA        NA     3     NA     NA 15.5 
## 114 2021  "Mex… Abarco   6                NA        NA     3     NA     NA 14.8 
## 115 2021  "Mex… Roble    1                NA        NA     3     NA     NA 20.3 
## 116 2021  "Mex… Roble    2                NA        NA     3     NA     NA 21.7 
## 117 2021  "Mex… Roble    3                NA        NA     3     NA     NA 19.6 
## 118 2021  "Mex… Roble    4                NA        NA     3     NA     NA 19.1 
## 119 2021  "Mex… Roble    5                NA        NA     3     NA     NA 20.9 
## 120 2021  "Mex… Roble    6                NA        NA     3     NA     NA 18.5 
## 121 2021  "Mex… Termina… 1                NA        NA     3     NA     NA 10.1 
## 122 2021  "Mex… Termina… 2                NA        NA     3     NA     NA 12.7 
## 123 2021  "Mex… Termina… 3                NA        NA     3     NA     NA  9.6 
## 124 2021  "Mex… Termina… 4                NA        NA     3     NA     NA  9.35
## 125 2021  "Mex… Termina… 5                NA        NA     3     NA     NA  9.45
## 126 2021  "Mex… Termina… 6                NA        NA     3     NA     NA  9.8 
## 127 2021  "Pin… Abarco   1                NA        NA     3     NA     NA  7.43
## 128 2021  "Pin… Abarco   2                NA        NA     3     NA     NA  8.27
## 129 2021  "Pin… Abarco   3                NA        NA     3     NA     NA  8.6 
## 130 2021  "Pin… Abarco   4                NA        NA     3     NA     NA  7.53
## 131 2021  "Pin… Abarco   5                NA        NA     3     NA     NA  6.57
## 132 2021  "Pin… Abarco   6                NA        NA     3     NA     NA  7.3 
## 133 2021  "Pin… Roble    1                NA        NA     3     NA     NA 13.2 
## 134 2021  "Pin… Roble    2                NA        NA     3     NA     NA 11.9 
## 135 2021  "Pin… Roble    3                NA        NA     3     NA     NA  8.93
## 136 2021  "Pin… Roble    4                NA        NA     3     NA     NA 14   
## 137 2021  "Pin… Roble    5                NA        NA     3     NA     NA 14.2 
## 138 2021  "Pin… Roble    6                NA        NA     3     NA     NA 11.3 
## 139 2021  "Pin… Termina… 1                NA        NA     3     NA     NA  3.5 
## 140 2021  "Pin… Termina… 2                NA        NA     3     NA     NA  4.03
## 141 2021  "Pin… Termina… 3                NA        NA     3     NA     NA  4.57
## 142 2021  "Pin… Termina… 4                NA        NA     3     NA     NA  6.03
## 143 2021  "Pin… Termina… 5                NA        NA     3     NA     NA  4.87
## 144 2021  "Pin… Termina… 6                NA        NA     3     NA     NA  5   
## # … with 1 more variable: alt <dbl>
lista2 <- lista                                   # Replicate example data
lista2 <- lista2 %>%                              # Create numbering variable
  group_by(anof) %>%
  mutate(id = row_number())
lista2 %>% print(n=Inf)      
## # A tibble: 144 × 12
## # Groups:   anof [2]
##     anof  lote  forestal planta departamento municipio   ano semana bloque  diam
##     <fct> <fct> <fct>    <fct>         <dbl>     <dbl> <dbl>  <dbl>  <dbl> <dbl>
##   1 2020  "Cau… Abarco   1                NA        NA     2     NA     NA  5.46
##   2 2020  "Cau… Abarco   2                NA        NA     2     NA     NA  5.96
##   3 2020  "Cau… Abarco   3                NA        NA     2     NA     NA  6.36
##   4 2020  "Cau… Abarco   4                NA        NA     2     NA     NA  7.12
##   5 2020  "Cau… Abarco   5                NA        NA     2     NA     NA  6.71
##   6 2020  "Cau… Abarco   6                NA        NA     2     NA     NA  6.88
##   7 2020  "Cau… Roble    1                NA        NA     2     NA     NA  4.82
##   8 2020  "Cau… Roble    2                NA        NA     2     NA     NA  6.3 
##   9 2020  "Cau… Roble    3                NA        NA     2     NA     NA  4.49
##  10 2020  "Cau… Roble    4                NA        NA     2     NA     NA  7.5 
##  11 2020  "Cau… Roble    5                NA        NA     2     NA     NA  7.35
##  12 2020  "Cau… Roble    6                NA        NA     2     NA     NA  7.79
##  13 2020  "Cau… Termina… 1                NA        NA     2     NA     NA  5.2 
##  14 2020  "Cau… Termina… 2                NA        NA     2     NA     NA  4.93
##  15 2020  "Cau… Termina… 3                NA        NA     2     NA     NA  4.01
##  16 2020  "Cau… Termina… 4                NA        NA     2     NA     NA  5.04
##  17 2020  "Cau… Termina… 5                NA        NA     2     NA     NA  6.19
##  18 2020  "Cau… Termina… 6                NA        NA     2     NA     NA  5.9 
##  19 2020  "Flo… Abarco   1                NA        NA     2     NA     NA  7.68
##  20 2020  "Flo… Abarco   2                NA        NA     2     NA     NA  7.6 
##  21 2020  "Flo… Abarco   3                NA        NA     2     NA     NA  7.48
##  22 2020  "Flo… Abarco   4                NA        NA     2     NA     NA  7.15
##  23 2020  "Flo… Abarco   5                NA        NA     2     NA     NA  6.67
##  24 2020  "Flo… Abarco   6                NA        NA     2     NA     NA  7.67
##  25 2020  "Flo… Roble    1                NA        NA     2     NA     NA  7.08
##  26 2020  "Flo… Roble    2                NA        NA     2     NA     NA  8.2 
##  27 2020  "Flo… Roble    3                NA        NA     2     NA     NA  7.08
##  28 2020  "Flo… Roble    4                NA        NA     2     NA     NA  7.02
##  29 2020  "Flo… Roble    5                NA        NA     2     NA     NA  8.78
##  30 2020  "Flo… Roble    6                NA        NA     2     NA     NA  6.62
##  31 2020  "Flo… Termina… 1                NA        NA     2     NA     NA  4   
##  32 2020  "Flo… Termina… 2                NA        NA     2     NA     NA  2.8 
##  33 2020  "Flo… Termina… 3                NA        NA     2     NA     NA  2.2 
##  34 2020  "Flo… Termina… 4                NA        NA     2     NA     NA  1.4 
##  35 2020  "Flo… Termina… 5                NA        NA     2     NA     NA  2.3 
##  36 2020  "Flo… Termina… 6                NA        NA     2     NA     NA  3.3 
##  37 2020  "Mex… Abarco   1                NA        NA     2     NA     NA  8.62
##  38 2020  "Mex… Abarco   2                NA        NA     2     NA     NA  9.97
##  39 2020  "Mex… Abarco   3                NA        NA     2     NA     NA  7.45
##  40 2020  "Mex… Abarco   4                NA        NA     2     NA     NA  9.18
##  41 2020  "Mex… Abarco   5                NA        NA     2     NA     NA  9.63
##  42 2020  "Mex… Abarco   6                NA        NA     2     NA     NA  9.88
##  43 2020  "Mex… Roble    1                NA        NA     2     NA     NA 17.6 
##  44 2020  "Mex… Roble    2                NA        NA     2     NA     NA 14.3 
##  45 2020  "Mex… Roble    3                NA        NA     2     NA     NA 14.1 
##  46 2020  "Mex… Roble    4                NA        NA     2     NA     NA 14.4 
##  47 2020  "Mex… Roble    5                NA        NA     2     NA     NA 14.4 
##  48 2020  "Mex… Roble    6                NA        NA     2     NA     NA 12.4 
##  49 2020  "Mex… Termina… 1                NA        NA     2     NA     NA  5.04
##  50 2020  "Mex… Termina… 2                NA        NA     2     NA     NA  6.85
##  51 2020  "Mex… Termina… 3                NA        NA     2     NA     NA  4.28
##  52 2020  "Mex… Termina… 4                NA        NA     2     NA     NA  5.37
##  53 2020  "Mex… Termina… 5                NA        NA     2     NA     NA  3.75
##  54 2020  "Mex… Termina… 6                NA        NA     2     NA     NA  5.05
##  55 2020  "Pin… Abarco   1                NA        NA     2     NA     NA  5.59
##  56 2020  "Pin… Abarco   2                NA        NA     2     NA     NA  6.09
##  57 2020  "Pin… Abarco   3                NA        NA     2     NA     NA  6.31
##  58 2020  "Pin… Abarco   4                NA        NA     2     NA     NA  5.4 
##  59 2020  "Pin… Abarco   5                NA        NA     2     NA     NA  5.29
##  60 2020  "Pin… Abarco   6                NA        NA     2     NA     NA  5.76
##  61 2020  "Pin… Roble    1                NA        NA     2     NA     NA 10.6 
##  62 2020  "Pin… Roble    2                NA        NA     2     NA     NA 10.5 
##  63 2020  "Pin… Roble    3                NA        NA     2     NA     NA  7.54
##  64 2020  "Pin… Roble    4                NA        NA     2     NA     NA 11.2 
##  65 2020  "Pin… Roble    5                NA        NA     2     NA     NA 10.8 
##  66 2020  "Pin… Roble    6                NA        NA     2     NA     NA 10.1 
##  67 2020  "Pin… Termina… 1                NA        NA     2     NA     NA  2.51
##  68 2020  "Pin… Termina… 2                NA        NA     2     NA     NA  2.45
##  69 2020  "Pin… Termina… 3                NA        NA     2     NA     NA  3.09
##  70 2020  "Pin… Termina… 4                NA        NA     2     NA     NA  3.23
##  71 2020  "Pin… Termina… 5                NA        NA     2     NA     NA  3.2 
##  72 2020  "Pin… Termina… 6                NA        NA     2     NA     NA  3.47
##  73 2021  "Cau… Abarco   1                NA        NA     3     NA     NA  8   
##  74 2021  "Cau… Abarco   2                NA        NA     3     NA     NA  8.87
##  75 2021  "Cau… Abarco   3                NA        NA     3     NA     NA  8.13
##  76 2021  "Cau… Abarco   4                NA        NA     3     NA     NA  9.13
##  77 2021  "Cau… Abarco   5                NA        NA     3     NA     NA  9   
##  78 2021  "Cau… Abarco   6                NA        NA     3     NA     NA  8.8 
##  79 2021  "Cau… Roble    1                NA        NA     3     NA     NA  7.45
##  80 2021  "Cau… Roble    2                NA        NA     3     NA     NA 11.5 
##  81 2021  "Cau… Roble    3                NA        NA     3     NA     NA  6   
##  82 2021  "Cau… Roble    4                NA        NA     3     NA     NA  9.37
##  83 2021  "Cau… Roble    5                NA        NA     3     NA     NA  9.67
##  84 2021  "Cau… Roble    6                NA        NA     3     NA     NA 13.0 
##  85 2021  "Cau… Termina… 1                NA        NA     3     NA     NA  6.5 
##  86 2021  "Cau… Termina… 2                NA        NA     3     NA     NA  8.3 
##  87 2021  "Cau… Termina… 3                NA        NA     3     NA     NA  7.15
##  88 2021  "Cau… Termina… 4                NA        NA     3     NA     NA  7.33
##  89 2021  "Cau… Termina… 5                NA        NA     3     NA     NA  8.17
##  90 2021  "Cau… Termina… 6                NA        NA     3     NA     NA  7.6 
##  91 2021  "Flo… Abarco   1                NA        NA     3     NA     NA 11.6 
##  92 2021  "Flo… Abarco   2                NA        NA     3     NA     NA 10.7 
##  93 2021  "Flo… Abarco   3                NA        NA     3     NA     NA 10.8 
##  94 2021  "Flo… Abarco   4                NA        NA     3     NA     NA 11   
##  95 2021  "Flo… Abarco   5                NA        NA     3     NA     NA 10.1 
##  96 2021  "Flo… Abarco   6                NA        NA     3     NA     NA 11.0 
##  97 2021  "Flo… Roble    1                NA        NA     3     NA     NA  9.1 
##  98 2021  "Flo… Roble    2                NA        NA     3     NA     NA 10.2 
##  99 2021  "Flo… Roble    3                NA        NA     3     NA     NA  8.72
## 100 2021  "Flo… Roble    4                NA        NA     3     NA     NA  9.08
## 101 2021  "Flo… Roble    5                NA        NA     3     NA     NA 11.9 
## 102 2021  "Flo… Roble    6                NA        NA     3     NA     NA  8.48
## 103 2021  "Flo… Termina… 1                NA        NA     3     NA     NA  5.45
## 104 2021  "Flo… Termina… 2                NA        NA     3     NA     NA  3.4 
## 105 2021  "Flo… Termina… 3                NA        NA     3     NA     NA  3.15
## 106 2021  "Flo… Termina… 4                NA        NA     3     NA     NA  2.4 
## 107 2021  "Flo… Termina… 5                NA        NA     3     NA     NA  3.1 
## 108 2021  "Flo… Termina… 6                NA        NA     3     NA     NA  4.85
## 109 2021  "Mex… Abarco   1                NA        NA     3     NA     NA 14.3 
## 110 2021  "Mex… Abarco   2                NA        NA     3     NA     NA 14.6 
## 111 2021  "Mex… Abarco   3                NA        NA     3     NA     NA 14.1 
## 112 2021  "Mex… Abarco   4                NA        NA     3     NA     NA 16.7 
## 113 2021  "Mex… Abarco   5                NA        NA     3     NA     NA 15.5 
## 114 2021  "Mex… Abarco   6                NA        NA     3     NA     NA 14.8 
## 115 2021  "Mex… Roble    1                NA        NA     3     NA     NA 20.3 
## 116 2021  "Mex… Roble    2                NA        NA     3     NA     NA 21.7 
## 117 2021  "Mex… Roble    3                NA        NA     3     NA     NA 19.6 
## 118 2021  "Mex… Roble    4                NA        NA     3     NA     NA 19.1 
## 119 2021  "Mex… Roble    5                NA        NA     3     NA     NA 20.9 
## 120 2021  "Mex… Roble    6                NA        NA     3     NA     NA 18.5 
## 121 2021  "Mex… Termina… 1                NA        NA     3     NA     NA 10.1 
## 122 2021  "Mex… Termina… 2                NA        NA     3     NA     NA 12.7 
## 123 2021  "Mex… Termina… 3                NA        NA     3     NA     NA  9.6 
## 124 2021  "Mex… Termina… 4                NA        NA     3     NA     NA  9.35
## 125 2021  "Mex… Termina… 5                NA        NA     3     NA     NA  9.45
## 126 2021  "Mex… Termina… 6                NA        NA     3     NA     NA  9.8 
## 127 2021  "Pin… Abarco   1                NA        NA     3     NA     NA  7.43
## 128 2021  "Pin… Abarco   2                NA        NA     3     NA     NA  8.27
## 129 2021  "Pin… Abarco   3                NA        NA     3     NA     NA  8.6 
## 130 2021  "Pin… Abarco   4                NA        NA     3     NA     NA  7.53
## 131 2021  "Pin… Abarco   5                NA        NA     3     NA     NA  6.57
## 132 2021  "Pin… Abarco   6                NA        NA     3     NA     NA  7.3 
## 133 2021  "Pin… Roble    1                NA        NA     3     NA     NA 13.2 
## 134 2021  "Pin… Roble    2                NA        NA     3     NA     NA 11.9 
## 135 2021  "Pin… Roble    3                NA        NA     3     NA     NA  8.93
## 136 2021  "Pin… Roble    4                NA        NA     3     NA     NA 14   
## 137 2021  "Pin… Roble    5                NA        NA     3     NA     NA 14.2 
## 138 2021  "Pin… Roble    6                NA        NA     3     NA     NA 11.3 
## 139 2021  "Pin… Termina… 1                NA        NA     3     NA     NA  3.5 
## 140 2021  "Pin… Termina… 2                NA        NA     3     NA     NA  4.03
## 141 2021  "Pin… Termina… 3                NA        NA     3     NA     NA  4.57
## 142 2021  "Pin… Termina… 4                NA        NA     3     NA     NA  6.03
## 143 2021  "Pin… Termina… 5                NA        NA     3     NA     NA  4.87
## 144 2021  "Pin… Termina… 6                NA        NA     3     NA     NA  5   
## # … with 2 more variables: alt <dbl>, id <int>
write.csv(lista2, "~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Colaboraciones/Laura/Forestal/basan.csv")
##Summary statistics
# Diameter
summ<-lista2 %>%
  group_by(lote, forestal, anof) %>%
  get_summary_stats(diam, type = "mean_sd")
summ %>% as_tibble() %>% print(n=Inf)
## # A tibble: 24 × 7
##    anof  lote      forestal   variable     n  mean    sd
##    <fct> <fct>     <fct>      <chr>    <dbl> <dbl> <dbl>
##  1 2020  "Cauchal" Abarco     diam         6  6.42 0.619
##  2 2021  "Cauchal" Abarco     diam         6  8.66 0.472
##  3 2020  "Cauchal" Roble      diam         6  6.38 1.43 
##  4 2021  "Cauchal" Roble      diam         6  9.51 2.57 
##  5 2020  "Cauchal" Terminalia diam         6  5.21 0.773
##  6 2021  "Cauchal" Terminalia diam         6  7.51 0.67 
##  7 2020  "Florida" Abarco     diam         6  7.38 0.399
##  8 2021  "Florida" Abarco     diam         6 10.9  0.507
##  9 2020  "Florida" Roble      diam         6  7.46 0.835
## 10 2021  "Florida" Roble      diam         6  9.59 1.30 
## 11 2020  "Florida" Terminalia diam         6  2.67 0.911
## 12 2021  "Florida" Terminalia diam         6  3.72 1.17 
## 13 2020  "Mexico"  Abarco     diam         6  9.12 0.96 
## 14 2021  "Mexico"  Abarco     diam         6 15.0  0.962
## 15 2020  "Mexico"  Roble      diam         6 14.5  1.68 
## 16 2021  "Mexico"  Roble      diam         6 20.0  1.19 
## 17 2020  "Mexico"  Terminalia diam         6  5.06 1.06 
## 18 2021  "Mexico"  Terminalia diam         6 10.2  1.26 
## 19 2020  "Pino "   Abarco     diam         6  5.74 0.398
## 20 2021  "Pino "   Abarco     diam         6  7.62 0.726
## 21 2020  "Pino "   Roble      diam         6 10.1  1.32 
## 22 2021  "Pino "   Roble      diam         6 12.3  1.99 
## 23 2020  "Pino "   Terminalia diam         6  2.99 0.415
## 24 2021  "Pino "   Terminalia diam         6  4.67 0.871
# Altura
summ<-lista2 %>%
  group_by(lote, forestal, anof) %>%
  get_summary_stats(alt, type = "mean_sd")
summ %>% as_tibble() %>% print(n=Inf)
## # A tibble: 24 × 7
##    anof  lote      forestal   variable     n  mean    sd
##    <fct> <fct>     <fct>      <chr>    <dbl> <dbl> <dbl>
##  1 2020  "Cauchal" Abarco     alt          6  3.74 0.277
##  2 2021  "Cauchal" Abarco     alt          6  5.33 0.498
##  3 2020  "Cauchal" Roble      alt          6  2.65 0.503
##  4 2021  "Cauchal" Roble      alt          6  3.16 0.728
##  5 2020  "Cauchal" Terminalia alt          6  2.07 0.246
##  6 2021  "Cauchal" Terminalia alt          6  2.44 0.252
##  7 2020  "Florida" Abarco     alt          6  5.01 0.241
##  8 2021  "Florida" Abarco     alt          6  6.91 0.348
##  9 2020  "Florida" Roble      alt          6  3.92 0.456
## 10 2021  "Florida" Roble      alt          6  4.69 0.569
## 11 2020  "Florida" Terminalia alt          6  1.81 0.254
## 12 2021  "Florida" Terminalia alt          6  2.62 0.437
## 13 2020  "Mexico"  Abarco     alt          6  5.66 0.361
## 14 2021  "Mexico"  Abarco     alt          6  7.95 0.349
## 15 2020  "Mexico"  Roble      alt          6  6.82 0.464
## 16 2021  "Mexico"  Roble      alt          6  8.35 0.442
## 17 2020  "Mexico"  Terminalia alt          6  2.00 0.455
## 18 2021  "Mexico"  Terminalia alt          6  3.66 0.326
## 19 2020  "Pino "   Abarco     alt          6  3.83 0.25 
## 20 2021  "Pino "   Abarco     alt          6  4.93 0.27 
## 21 2020  "Pino "   Roble      alt          6  4.33 0.666
## 22 2021  "Pino "   Roble      alt          6  5.03 0.651
## 23 2020  "Pino "   Terminalia alt          6  1.49 0.26 
## 24 2021  "Pino "   Terminalia alt          6  2.00 0.386
##Visualization
# Diámetro
bxp <- ggboxplot(
  lista2, x = "lote", y = "diam",
  color = "anof", palette = "jco",
  facet.by =  "forestal"
)
bxp

#Altura
bxp <- ggboxplot(
  lista2, x = "lote", y = "alt",
  color = "anof", palette = "jco",
  facet.by =  "forestal"
)
bxp

##Check assumptions
##Outliers
# Diámetro
lista2 %>%
  group_by(lote, forestal, anof) %>%
  identify_outliers(diam) %>% print(n=Inf)
## # A tibble: 8 × 14
##   anof  lote    forestal planta departamento municipio   ano semana bloque  diam
##   <fct> <fct>   <fct>    <fct>         <dbl>     <dbl> <dbl>  <dbl>  <dbl> <dbl>
## 1 2021  "Flori… Abarco   1                NA        NA     3     NA     NA 11.6 
## 2 2021  "Flori… Abarco   5                NA        NA     3     NA     NA 10.1 
## 3 2021  "Flori… Roble    5                NA        NA     3     NA     NA 11.9 
## 4 2020  "Mexic… Roble    1                NA        NA     2     NA     NA 17.6 
## 5 2020  "Mexic… Roble    6                NA        NA     2     NA     NA 12.4 
## 6 2020  "Mexic… Termina… 2                NA        NA     2     NA     NA  6.85
## 7 2021  "Mexic… Termina… 2                NA        NA     3     NA     NA 12.7 
## 8 2020  "Pino " Roble    3                NA        NA     2     NA     NA  7.54
## # … with 4 more variables: alt <dbl>, id <int>, is.outlier <lgl>,
## #   is.extreme <lgl>
# Altura
lista2 %>%
  group_by(lote, forestal, anof) %>%
  identify_outliers(alt) %>% print(n=Inf)
## # A tibble: 8 × 14
##   anof  lote    forestal planta departamento municipio   ano semana bloque  diam
##   <fct> <fct>   <fct>    <fct>         <dbl>     <dbl> <dbl>  <dbl>  <dbl> <dbl>
## 1 2020  "Cauch… Abarco   1                NA        NA     2     NA     NA  5.46
## 2 2021  "Cauch… Abarco   6                NA        NA     3     NA     NA  8.8 
## 3 2021  "Flori… Roble    5                NA        NA     3     NA     NA 11.9 
## 4 2020  "Flori… Termina… 5                NA        NA     2     NA     NA  2.3 
## 5 2020  "Pino " Roble    3                NA        NA     2     NA     NA  7.54
## 6 2021  "Pino " Roble    3                NA        NA     3     NA     NA  8.93
## 7 2021  "Pino " Termina… 1                NA        NA     3     NA     NA  3.5 
## 8 2021  "Pino " Termina… 4                NA        NA     3     NA     NA  6.03
## # … with 4 more variables: alt <dbl>, id <int>, is.outlier <lgl>,
## #   is.extreme <lgl>
##Normality assumption
##Compute Shapiro-Wilk test for each combinations of factor levels:
#Diámetro
norm<-lista2 %>%
  group_by(lote, forestal, anof) %>%
  shapiro_test(diam)
norm %>% as_tibble() %>% print(n=Inf)
## # A tibble: 24 × 6
##    anof  lote      forestal   variable statistic       p
##    <fct> <fct>     <fct>      <chr>        <dbl>   <dbl>
##  1 2020  "Cauchal" Abarco     diam         0.959 0.814  
##  2 2021  "Cauchal" Abarco     diam         0.858 0.182  
##  3 2020  "Cauchal" Roble      diam         0.864 0.202  
##  4 2021  "Cauchal" Roble      diam         0.980 0.953  
##  5 2020  "Cauchal" Terminalia diam         0.955 0.783  
##  6 2021  "Cauchal" Terminalia diam         0.958 0.804  
##  7 2020  "Florida" Abarco     diam         0.823 0.0945 
##  8 2021  "Florida" Abarco     diam         0.969 0.885  
##  9 2020  "Florida" Roble      diam         0.853 0.166  
## 10 2021  "Florida" Roble      diam         0.833 0.115  
## 11 2020  "Florida" Terminalia diam         0.987 0.980  
## 12 2021  "Florida" Terminalia diam         0.897 0.358  
## 13 2020  "Mexico"  Abarco     diam         0.880 0.267  
## 14 2021  "Mexico"  Abarco     diam         0.890 0.317  
## 15 2020  "Mexico"  Roble      diam         0.827 0.101  
## 16 2021  "Mexico"  Roble      diam         0.982 0.961  
## 17 2020  "Mexico"  Terminalia diam         0.940 0.658  
## 18 2021  "Mexico"  Terminalia diam         0.689 0.00474
## 19 2020  "Pino "   Abarco     diam         0.948 0.723  
## 20 2021  "Pino "   Abarco     diam         0.957 0.799  
## 21 2020  "Pino "   Roble      diam         0.753 0.0211 
## 22 2021  "Pino "   Roble      diam         0.921 0.512  
## 23 2020  "Pino "   Terminalia diam         0.871 0.231  
## 24 2021  "Pino "   Terminalia diam         0.979 0.947
#Altura
norm<-lista2 %>%
  group_by(lote, forestal, anof) %>%
  shapiro_test(alt)
norm %>% as_tibble() %>% print(n=Inf)
## # A tibble: 24 × 6
##    anof  lote      forestal   variable statistic      p
##    <fct> <fct>     <fct>      <chr>        <dbl>  <dbl>
##  1 2020  "Cauchal" Abarco     alt          0.785 0.0432
##  2 2021  "Cauchal" Abarco     alt          0.834 0.115 
##  3 2020  "Cauchal" Roble      alt          0.924 0.532 
##  4 2021  "Cauchal" Roble      alt          0.994 0.997 
##  5 2020  "Cauchal" Terminalia alt          0.895 0.347 
##  6 2021  "Cauchal" Terminalia alt          0.989 0.986 
##  7 2020  "Florida" Abarco     alt          0.822 0.0915
##  8 2021  "Florida" Abarco     alt          0.849 0.154 
##  9 2020  "Florida" Roble      alt          0.879 0.266 
## 10 2021  "Florida" Roble      alt          0.978 0.939 
## 11 2020  "Florida" Terminalia alt          0.950 0.738 
## 12 2021  "Florida" Terminalia alt          0.980 0.950 
## 13 2020  "Mexico"  Abarco     alt          0.966 0.864 
## 14 2021  "Mexico"  Abarco     alt          0.989 0.986 
## 15 2020  "Mexico"  Roble      alt          0.916 0.478 
## 16 2021  "Mexico"  Roble      alt          0.887 0.302 
## 17 2020  "Mexico"  Terminalia alt          0.873 0.240 
## 18 2021  "Mexico"  Terminalia alt          0.937 0.636 
## 19 2020  "Pino "   Abarco     alt          0.834 0.115 
## 20 2021  "Pino "   Abarco     alt          0.882 0.278 
## 21 2020  "Pino "   Roble      alt          0.873 0.238 
## 22 2021  "Pino "   Roble      alt          0.877 0.255 
## 23 2020  "Pino "   Terminalia alt          0.919 0.496 
## 24 2021  "Pino "   Terminalia alt          0.927 0.560
##Create QQ plot for each cell of design:
#Diámetro
ggqqplot(lista2, "diam", ggtheme = theme_bw()) +
  facet_grid(anof~ lote*forestal, labeller = "label_both")

#Altura
ggqqplot(lista2, "alt", ggtheme = theme_bw()) +
  facet_grid(anof~ lote*forestal, labeller = "label_both")

##Homogneity of variance assumption
##Compute the Levene’s test at each level of the within-subjects factor, here time variable:
#Diámetro
lev<-lista2 %>%
  group_by(anof) %>%
  levene_test(diam ~ lote*forestal)
lev %>% as_tibble() %>% print(n=Inf)
## # A tibble: 2 × 5
##   anof    df1   df2 statistic      p
##   <fct> <int> <int>     <dbl>  <dbl>
## 1 2020     11    60     0.818 0.622 
## 2 2021     11    60     1.88  0.0601
#Altura
lev<-lista2 %>%
  group_by(anof) %>%
  levene_test(alt ~ lote*forestal)
lev %>% as_tibble() %>% print(n=Inf)
## # A tibble: 2 × 5
##   anof    df1   df2 statistic     p
##   <fct> <int> <int>     <dbl> <dbl>
## 1 2020     11    60     1.06  0.412
## 2 2021     11    60     0.721 0.714
##Computation
lista3<-as.data.frame(lista2)
#Diámetro
res.aov.diam <- anova_test(
  data = lista3, dv = diam, wid = id,
  within = anof, between = c(lote, forestal)
)
get_anova_table(res.aov.diam)
## ANOVA Table (type II tests)
## 
##               Effect DFn DFd       F        p p<.05   ges
## 1               lote   3  60 108.523 3.33e-24     * 0.821
## 2           forestal   2  60 196.972 4.31e-27     * 0.847
## 3               anof   1  60 817.607 1.18e-36     * 0.679
## 4      lote:forestal   6  60  22.053 1.61e-13     * 0.651
## 5          lote:anof   3  60  60.627 3.74e-18     * 0.320
## 6      forestal:anof   2  60   5.797 5.00e-03     * 0.029
## 7 lote:forestal:anof   6  60   2.773 1.90e-02     * 0.041
#Altura
res.aov.alt <- anova_test(
  data = lista3, dv = alt, wid = id,
  within = anof, between = c(lote, forestal)
)
get_anova_table(res.aov.alt)
## ANOVA Table (type II tests)
## 
##               Effect DFn DFd       F        p p<.05   ges
## 1               lote   3  60 141.063 3.89e-27     * 0.857
## 2           forestal   2  60 439.309 1.48e-36     * 0.926
## 3               anof   1  60 856.158 3.24e-37     * 0.682
## 4      lote:forestal   6  60  33.750 1.77e-17     * 0.741
## 5          lote:anof   3  60  38.346 5.75e-14     * 0.224
## 6      forestal:anof   2  60  54.521 3.20e-14     * 0.214
## 7 lote:forestal:anof   6  60   2.153 6.00e-02       0.031
## Contrastes para lote * forestal
attach(lista3)
lista3$id<-as.factor(lista3$id)
#Diámetro
het.diam <- gls(diam ~ anof*forestal*lote, 
            data=lista3, corr=corAR1(, form= ~ 1 | id), 
            weights=varIdent(form = ~ 1 | anof), 
            na.action=na.exclude)
anova(het.diam)
## Denom. DF: 120 
##                    numDF  F-value p-value
## (Intercept)            1 3845.575  <.0001
## anof                   1  817.607  <.0001
## forestal               2  203.271  <.0001
## lote                   3   67.776  <.0001
## anof:forestal          2    5.797  0.0040
## anof:lote              3   60.627  <.0001
## forestal:lote          6   24.011  <.0001
## anof:forestal:lote     6    2.773  0.0147
# Comparando diámetros de forestales para cada lote
contrast.diam <- emmeans(het.diam, ~forestal|lote)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast.diam, comparisons = TRUE, xlab ="Diámetro")

cld_lote_forestal.diam <-multcomp::cld(contrast.diam, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_lote_forestal.diam
## lote = Cauchal:
##  forestal   emmean    SE   df lower.CL upper.CL .group
##  Roble        7.94 0.429 59.7     7.08     8.80  A    
##  Abarco       7.54 0.429 59.7     6.68     8.39  AB   
##  Terminalia   6.36 0.429 59.7     5.50     7.22   B   
## 
## lote = Florida:
##  forestal   emmean    SE   df lower.CL upper.CL .group
##  Abarco       9.12 0.429 59.7     8.26     9.97  A    
##  Roble        8.52 0.429 59.7     7.67     9.38  A    
##  Terminalia   3.20 0.429 59.7     2.34     4.05   B   
## 
## lote = Mexico:
##  forestal   emmean    SE   df lower.CL upper.CL .group
##  Roble       17.27 0.429 59.7    16.41    18.12  A    
##  Abarco      12.05 0.429 59.7    11.19    12.91   B   
##  Terminalia   7.61 0.429 59.7     6.75     8.47    C  
## 
## lote = Pino :
##  forestal   emmean    SE   df lower.CL upper.CL .group
##  Roble       11.20 0.429 59.7    10.34    12.05  A    
##  Abarco       6.68 0.429 59.7     5.82     7.54   B   
##  Terminalia   3.83 0.429 59.7     2.97     4.69    C  
## 
## Results are averaged over the levels of: anof 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
# Comparando diámetros de cada forestal a lo largo de los lotes
contrast.diam <- emmeans(het.diam, ~lote|forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast.diam, comparisons = TRUE, xlab ="Diámetro")

cld_lote_forestal2.diam <-multcomp::cld(contrast.diam, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_lote_forestal2.diam
## forestal = Abarco:
##  lote    emmean    SE   df lower.CL upper.CL .group
##  Mexico   12.05 0.429 59.7    11.19    12.91  A    
##  Florida   9.12 0.429 59.7     8.26     9.97   B   
##  Cauchal   7.54 0.429 59.7     6.68     8.39   BC  
##  Pino      6.68 0.429 59.7     5.82     7.54    C  
## 
## forestal = Roble:
##  lote    emmean    SE   df lower.CL upper.CL .group
##  Mexico   17.27 0.429 59.7    16.41    18.12  A    
##  Pino     11.20 0.429 59.7    10.34    12.05   B   
##  Florida   8.52 0.429 59.7     7.67     9.38    C  
##  Cauchal   7.94 0.429 59.7     7.08     8.80    C  
## 
## forestal = Terminalia:
##  lote    emmean    SE   df lower.CL upper.CL .group
##  Mexico    7.61 0.429 59.7     6.75     8.47  A    
##  Cauchal   6.36 0.429 59.7     5.50     7.22  A    
##  Pino      3.83 0.429 59.7     2.97     4.69   B   
##  Florida   3.20 0.429 59.7     2.34     4.05   B   
## 
## Results are averaged over the levels of: anof 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 4 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Altura
het.alt <- gls(alt ~ anof*forestal*lote, 
                data=lista3, corr=corAR1(, form= ~ 1 | id), 
                weights=varIdent(form = ~ 1 | anof), 
                na.action=na.exclude)
anova(het.alt)
## Denom. DF: 120 
##                    numDF  F-value p-value
## (Intercept)            1 7331.423  <.0001
## anof                   1  856.159  <.0001
## forestal               2  416.934  <.0001
## lote                   3  116.529  <.0001
## anof:forestal          2   54.521  <.0001
## anof:lote              3   38.346  <.0001
## forestal:lote          6   35.211  <.0001
## anof:forestal:lote     6    2.153  0.0523
# Comparando alturas de forestales para cada lote
contrast.alt <- emmeans(het.alt, ~forestal|lote)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast.alt, comparisons = TRUE, xlab ="Altura")

cld_lote_forestal.alt <-multcomp::cld(contrast.alt, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_lote_forestal.alt
## lote = Cauchal:
##  forestal   emmean    SE   df lower.CL upper.CL .group
##  Abarco       4.53 0.161 60.2     4.21     4.86  A    
##  Roble        2.91 0.161 60.2     2.59     3.23   B   
##  Terminalia   2.26 0.161 60.2     1.94     2.58    C  
## 
## lote = Florida:
##  forestal   emmean    SE   df lower.CL upper.CL .group
##  Abarco       5.96 0.161 60.2     5.64     6.28  A    
##  Roble        4.30 0.161 60.2     3.98     4.63   B   
##  Terminalia   2.21 0.161 60.2     1.89     2.53    C  
## 
## lote = Mexico:
##  forestal   emmean    SE   df lower.CL upper.CL .group
##  Roble        7.58 0.161 60.2     7.26     7.91  A    
##  Abarco       6.80 0.161 60.2     6.48     7.12   B   
##  Terminalia   2.83 0.161 60.2     2.51     3.15    C  
## 
## lote = Pino :
##  forestal   emmean    SE   df lower.CL upper.CL .group
##  Roble        4.68 0.161 60.2     4.36     5.00  A    
##  Abarco       4.38 0.161 60.2     4.06     4.70  A    
##  Terminalia   1.74 0.161 60.2     1.42     2.07   B   
## 
## Results are averaged over the levels of: anof 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
# Comparando alturas de cada forestal a lo largo de los lotes
contrast.alt <- emmeans(het.alt, ~lote|forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast.alt, comparisons = TRUE, xlab ="Altura")

cld_lote_forestal.alt2 <-multcomp::cld(contrast.alt, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_lote_forestal.alt2
## forestal = Abarco:
##  lote    emmean    SE   df lower.CL upper.CL .group
##  Mexico    6.80 0.161 60.2     6.48     7.12  A    
##  Florida   5.96 0.161 60.2     5.64     6.28   B   
##  Cauchal   4.53 0.161 60.2     4.21     4.86    C  
##  Pino      4.38 0.161 60.2     4.06     4.70    C  
## 
## forestal = Roble:
##  lote    emmean    SE   df lower.CL upper.CL .group
##  Mexico    7.58 0.161 60.2     7.26     7.91  A    
##  Pino      4.68 0.161 60.2     4.36     5.00   B   
##  Florida   4.30 0.161 60.2     3.98     4.63   B   
##  Cauchal   2.91 0.161 60.2     2.59     3.23    C  
## 
## forestal = Terminalia:
##  lote    emmean    SE   df lower.CL upper.CL .group
##  Mexico    2.83 0.161 60.2     2.51     3.15  A    
##  Cauchal   2.26 0.161 60.2     1.94     2.58  AB   
##  Florida   2.21 0.161 60.2     1.89     2.53   B   
##  Pino      1.74 0.161 60.2     1.42     2.07   B   
## 
## Results are averaged over the levels of: anof 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 4 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.