Import surveys, combine into single data frame, delete identifying information, assign IDs, and separate out by scale for item examination.
# https://hansjoerg.me/2018/04/23/rasch-in-r-tutorial/
knitr::knit_hooks$set(
error = function(x, options) {
paste('\n\n<div class="alert alert-danger">',
gsub('##', '\n', gsub('^##\ Error', '**Error**', x)),
'</div>', sep = '\n')
},
warning = function(x, options) {
paste('\n\n<div class="alert alert-warning">',
gsub('##', '\n', gsub('^##\ Warning:', '**Warning**', x)),
'</div>', sep = '\n')
},
message = function(x, options) {
paste('\n\n<div class="alert alert-info">',
gsub('##', '\n', x),
'</div>', sep = '\n')
}
)
# load libraries ----------------------------------------------------------
library(stringi)
library(psych)
library(DT)
library(naniar)
library(UpSetR)
library(nFactors)
library(lavaan)
library(corrplot)
library(tidyr)
library(ggplot2)
library(dplyr)
library("eRm")
library("ltm")
library("difR")
library("psych")
library(readr) # For import the data
library(TAM) # For running the Rating Scale Rasch Model
# library(plyr) # For plot the Item characteristic curves
library(WrightMap)# For plot the variable map
# library(eRm) # For another example
# load data ---------------------------------------------------------------
# alt <- read.csv(file="UBelong Post-Survey Pitt OChem Spring 2022 Alternative Scales_April 28, 2022_12.34.csv", header=T)
# alt <- alt[-c(1,2),]
# alt$scale <- "alt"
#
# orig <- read.csv(file="UBelong Post-Survey Pitt OChem Spring 2022 Original Scales_April 28, 2022_12.35.csv", header=T)
# orig <- orig[-c(1,2),]
# orig$scale <- "orig"
#
# df <- rbind.data.frame(alt, orig)
# df <- subset(df, select = -c(1:19))
# names(df)
# myFun <- function(n) {
# a <- do.call(paste0, replicate(5, sample(LETTERS, n, TRUE), FALSE))
# paste0(a, sprintf("%04d", sample(9999, n, TRUE)), sample(LETTERS, n, TRUE))
# }
# df$id <- myFun(nrow(df))
# write.csv(df, file="imported_anonymized.csv", row.names = F)
df <- read.csv(file="imported_anonymized.csv", header=T)
# extract items -----------------------------------------------------------
# new items
EEochem <- subset(df, select=c(scale,grep("EEochem", colnames(df)))) # entry expectations
CCdisc <- subset(df, select=grep("CCdisc", colnames(df))) # classroom climate
IDochem <- cbind.data.frame(subset(df, select=c(scale,grep("IDochem", colnames(df)))), subset(df, select=grep("FASochem", colnames(df)))) # identity
CSochem <- subset(df, select=grep("CSochem", colnames(df))) # career satisfaction
# established scales
MSchem <- subset(df, select=c(scale,grep("MSchem", colnames(df)))) # discipline growth mindset (chemistry)
IPchem <- subset(df, select=grep("IPchem", colnames(df))) # instructor growth mindset (chemistry)
SEchem <- subset(df, select=grep("SEchem", colnames(df))) # disciplinary self-efficacy (chemistry)
MSochem <- subset(df, select=c(scale, grep("MSochem", colnames(df)))) # disciplinary growth mindset (organic chemistry)
IPochem <- subset(df, select=grep("IPochem", colnames(df))) # instructor growth mindset (organic chemistry)
SEochem <- subset(df, select=grep("SEochem", colnames(df))) # disciplinary self-efficacy (organic chemistry)
CNEBochem_class <- cbind.data.frame(subset(subset(df, select=grep("CNEBochem", colnames(df))), select=c(1:3))) # entity norms and beliefs
CNEBochem_self <- cbind.data.frame(subset(subset(df, select=grep("CNEBochem", colnames(df))), select=c(4:6))) # entity norms and beliefs
CNHSochem_others <- cbind.data.frame(subset(subset(df, select=grep("CNHSochem", colnames(df))), select=c(1:3))) # help seeking
CNHSochem_self <- cbind.data.frame(subset(subset(df, select=grep("CNHSochem", colnames(df))), select=c(4:6))) # help seeking
CNSWochem <- subset(df, select=grep("CNSWochem", colnames(df))) # help seeking
FCochem <- subset(df, select=grep("FCochem", colnames(df))) # faculty caring
IDochem$FASochem03_rc[IDochem$FASochem03 == 1] <- 4
IDochem$FASochem03_rc[IDochem$FASochem03 == 2] <- 3
IDochem$FASochem03_rc[IDochem$FASochem03 == 3] <- 2
IDochem$FASochem03_rc[IDochem$FASochem03 == 4] <- 1
IDochem$FASochem03 <- IDochem$FASochem03_rc
IDochem <- subset(IDochem, select=-c(FASochem03_rc))
summary(rs_model)
## ------------------------------------------------------------
## TAM 4.0-16 (2022-05-13 13:23:23)
## R version 4.1.2 (2021-11-01) x86_64, mingw32 | nodename=DESKTOP-UE2VMI8 | login=hthrp
##
## Date of Analysis: 2022-08-15 19:23:22
## Time difference of 0.8761971 secs
## Computation time: 0.8761971
##
## Multidimensional Item Response Model in TAM
##
## IRT Model: RSM
## Call:
## TAM::tam.mml(resp = d, irtmodel = "RSM")
##
## ------------------------------------------------------------
## Number of iterations = 1000
## Numeric integration with 21 integration points
##
## Deviance = 1960.34
## Log likelihood = -980.17
## Number of persons = 81
## Number of persons used = 80
## Number of items = 12
## Number of estimated parameters = 16
## Item threshold parameters = 15
## Item slope parameters = 0
## Regression parameters = 0
## Variance/covariance parameters = 1
##
## AIC = 1992 | penalty=32 | AIC=-2*LL + 2*p
## AIC3 = 2008 | penalty=48 | AIC3=-2*LL + 3*p
## BIC = 2030 | penalty=70.11 | BIC=-2*LL + log(n)*p
## aBIC = 1979 | penalty=18.86 | aBIC=-2*LL + log((n-2)/24)*p (adjusted BIC)
## CAIC = 2046 | penalty=86.11 | CAIC=-2*LL + [log(n)+1]*p (consistent AIC)
## AICc = 2001 | penalty=40.63 | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1) (bias corrected AIC)
## GHP = 1.03876 | GHP=( -LL + p ) / (#Persons * #Items) (Gilula-Haberman log penalty)
##
## ------------------------------------------------------------
## EAP Reliability
## [1] 0.852
## ------------------------------------------------------------
## Covariances and Variances
## [,1]
## [1,] 1.34
## ------------------------------------------------------------
## Correlations and Standard Deviations (in the diagonal)
## [,1]
## [1,] 1.158
## ------------------------------------------------------------
## Regression Coefficients
## [,1]
## [1,] 0
## ------------------------------------------------------------
## Item Parameters -A*Xsi
## item N M xsi.item AXsi_.Cat1 AXsi_.Cat2 AXsi_.Cat3 AXsi_.Cat4
## 1 IDochem02 80 2.525 -2.392 -9.194 -11.820 -11.760 -9.569
## 2 IDochem03 80 2.312 -1.849 -8.651 -10.734 -10.131 -7.396
## 3 IDochem04 80 2.587 -2.549 -9.351 -12.134 -12.231 -10.197
## 4 IDochem05 79 2.519 -2.364 -9.165 -11.763 -11.674 -9.454
## 5 IDochem06 80 2.612 -2.612 -9.414 -12.260 -12.419 -10.448
## 6 IDochem10 80 3.025 -3.657 -10.459 -14.350 -15.555 -14.629
## 7 IDochem07 80 2.275 -1.751 -8.553 -10.538 -9.837 -7.005
## 8 IDochem08 80 2.550 -2.455 -9.257 -11.946 -11.948 -9.820
## 9 IDochem09 80 2.487 -2.297 -9.099 -11.631 -11.476 -9.190
## 10 FASochem02 80 2.362 -1.978 -8.780 -10.992 -10.519 -7.913
## 11 FASochem03 80 2.900 -3.335 -10.137 -13.706 -14.589 -13.340
## 12 FASochem05 80 2.775 -3.019 -9.821 -13.074 -13.641 -12.077
## B.Cat1.Dim1 B.Cat2.Dim1 B.Cat3.Dim1 B.Cat4.Dim1
## 1 1 2 3 4
## 2 1 2 3 4
## 3 1 2 3 4
## 4 1 2 3 4
## 5 1 2 3 4
## 6 1 2 3 4
## 7 1 2 3 4
## 8 1 2 3 4
## 9 1 2 3 4
## 10 1 2 3 4
## 11 1 2 3 4
## 12 1 2 3 4
##
## Item Parameters Xsi
## xsi se.xsi
## IDochem02 -2.392 0.178
## IDochem03 -1.849 0.180
## IDochem04 -2.549 0.177
## IDochem05 -2.364 0.179
## IDochem06 -2.612 0.177
## IDochem10 -3.657 0.181
## IDochem07 -1.751 0.181
## IDochem08 -2.455 0.177
## IDochem09 -2.297 0.178
## FASochem02 -1.978 0.179
## FASochem03 -3.335 0.178
## FASochem05 -3.019 0.177
## Cat1 -6.802 0.111
## Cat2 -0.234 0.087
## Cat3 2.452 0.070
##
## Item Parameters in IRT parameterization
## item alpha beta tau.Cat1 tau.Cat2 tau.Cat3 tau.Cat4
## 1 IDochem02 1 -2.392 -6.802 -0.234 2.452 4.584
## 2 IDochem03 1 -1.849 -6.802 -0.234 2.452 4.584
## 3 IDochem04 1 -2.549 -6.802 -0.234 2.452 4.584
## 4 IDochem05 1 -2.364 -6.802 -0.234 2.452 4.584
## 5 IDochem06 1 -2.612 -6.802 -0.234 2.452 4.584
## 6 IDochem10 1 -3.657 -6.802 -0.234 2.452 4.584
## 7 IDochem07 1 -1.751 -6.802 -0.234 2.452 4.584
## 8 IDochem08 1 -2.455 -6.802 -0.234 2.452 4.584
## 9 IDochem09 1 -2.297 -6.802 -0.234 2.452 4.584
## 10 FASochem02 1 -1.978 -6.802 -0.234 2.452 4.584
## 11 FASochem03 1 -3.335 -6.802 -0.234 2.452 4.584
## 12 FASochem05 1 -3.019 -6.802 -0.234 2.452 4.584
IRT.WrightMap(rs_model,show.thr.lab=TRUE)
rs_model$xsi # The first column is the item difficulty. In this case, is the rater's rating severity.
## xsi se.xsi
## IDochem02 -2.3922410 0.17759344
## IDochem03 -1.8489879 0.18023736
## IDochem04 -2.5492505 0.17719011
## IDochem05 -2.3635504 0.17873910
## IDochem06 -2.6119877 0.17708155
## IDochem10 -3.6571868 0.18078944
## IDochem07 -1.7511839 0.18088841
## IDochem08 -2.4549610 0.17741037
## IDochem09 -2.2974531 0.17792244
## FASochem02 -1.9783526 0.17945170
## FASochem03 -3.3350727 0.17839522
## FASochem05 -3.0193095 0.17719537
## Cat1 -6.8017286 0.11141753
## Cat2 -0.2340606 0.08736358
## Cat3 2.4522527 0.07005979
tam.fit(rs_model)
## Item fit calculation based on 100 simulations
## |**********|
## |----------|
## $itemfit
## parameter Outfit Outfit_t Outfit_p Outfit_pholm Infit
## 1 IDochem02 1.0580198 0.4183889 6.756628e-01 1.000000e+00 1.0732614
## 2 IDochem03 0.8715770 -0.8290407 4.070814e-01 1.000000e+00 0.8838798
## 3 IDochem04 0.7981729 -1.4079651 1.591414e-01 1.000000e+00 0.7964991
## 4 IDochem05 0.7644241 -1.6535519 9.821859e-02 1.000000e+00 0.7641900
## 5 IDochem06 1.1602233 1.0626448 2.879430e-01 1.000000e+00 1.1570150
## 6 IDochem10 1.0467058 0.3539523 7.233747e-01 1.000000e+00 1.0661925
## 7 IDochem07 1.1176168 0.7718125 4.402255e-01 1.000000e+00 1.1073863
## 8 IDochem08 1.3090739 1.9104215 5.607897e-02 6.729476e-01 1.2669818
## 9 IDochem09 0.8534778 -0.9786046 3.277754e-01 1.000000e+00 0.8461434
## 10 FASochem02 1.1142439 0.7628075 4.455782e-01 1.000000e+00 1.1043892
## 11 FASochem03 1.1514330 1.0217230 3.069120e-01 1.000000e+00 1.1773050
## 12 FASochem05 0.7653562 -1.6900651 9.101550e-02 1.000000e+00 0.7614478
## 13 Cat1 2.0882943 12.0766598 1.403043e-33 1.823956e-32 1.6809389
## 14 Cat2 2.3261933 18.6176985 2.309276e-77 3.232987e-76 2.2625000
## 15 Cat3 1.6763346 27.0117501 1.075583e-160 1.613375e-159 1.7262046
## Infit_t Infit_p Infit_pholm
## 1 0.5161962 6.057174e-01 1.000000e+00
## 2 -0.7418750 4.581631e-01 1.000000e+00
## 3 -1.4206938 1.554058e-01 1.000000e+00
## 4 -1.6550332 9.791777e-02 1.000000e+00
## 5 1.0434298 2.967493e-01 1.000000e+00
## 6 0.4822991 6.295935e-01 1.000000e+00
## 7 0.7151123 4.745396e-01 1.000000e+00
## 8 1.6784753 9.325435e-02 1.000000e+00
## 9 -1.0311953 3.024492e-01 1.000000e+00
## 10 0.7026252 4.822893e-01 1.000000e+00
## 11 1.1803916 2.378445e-01 1.000000e+00
## 12 -1.7228018 8.492437e-02 1.000000e+00
## 13 8.2918364 1.115133e-16 1.449673e-15
## 14 17.9093779 9.964303e-72 1.395002e-70
## 15 28.7088928 2.954800e-181 4.432200e-180
##
## $time
## [1] "2022-08-15 19:23:22 EDT" "2022-08-15 19:23:22 EDT"
##
## $CALL
## tam.fit(tamobj = rs_model)
##
## attr(,"class")
## [1] "tam.fit"
imod1 <- TAM::IRT.informationCurves( rs_model, theta=seq(-5,5,len=100) )
plot(imod1)
summary(rs_model)
## ------------------------------------------------------------
## TAM 4.0-16 (2022-05-13 13:23:23)
## R version 4.1.2 (2021-11-01) x86_64, mingw32 | nodename=DESKTOP-UE2VMI8 | login=hthrp
##
## Date of Analysis: 2022-08-15 19:23:23
## Time difference of 0.8801961 secs
## Computation time: 0.8801961
##
## Multidimensional Item Response Model in TAM
##
## IRT Model: RSM
## Call:
## TAM::tam.mml(resp = d1, irtmodel = "RSM")
##
## ------------------------------------------------------------
## Number of iterations = 1000
## Numeric integration with 21 integration points
##
## Deviance = 607.23
## Log likelihood = -303.62
## Number of persons = 81
## Number of persons used = 80
## Number of items = 4
## Number of estimated parameters = 8
## Item threshold parameters = 7
## Item slope parameters = 0
## Regression parameters = 0
## Variance/covariance parameters = 1
##
## AIC = 623 | penalty=16 | AIC=-2*LL + 2*p
## AIC3 = 631 | penalty=24 | AIC3=-2*LL + 3*p
## BIC = 642 | penalty=35.06 | BIC=-2*LL + log(n)*p
## aBIC = 617 | penalty=9.43 | aBIC=-2*LL + log((n-2)/24)*p (adjusted BIC)
## CAIC = 650 | penalty=43.06 | CAIC=-2*LL + [log(n)+1]*p (consistent AIC)
## AICc = 625 | penalty=18.03 | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1) (bias corrected AIC)
## GHP = 0.97686 | GHP=( -LL + p ) / (#Persons * #Items) (Gilula-Haberman log penalty)
##
## ------------------------------------------------------------
## EAP Reliability
## [1] 0.845
## ------------------------------------------------------------
## Covariances and Variances
## [,1]
## [1,] 5.409
## ------------------------------------------------------------
## Correlations and Standard Deviations (in the diagonal)
## [,1]
## [1,] 2.326
## ------------------------------------------------------------
## Regression Coefficients
## [,1]
## [1,] 0
## ------------------------------------------------------------
## Item Parameters -A*Xsi
## item N M xsi.item AXsi_.Cat1 AXsi_.Cat2 AXsi_.Cat3 AXsi_.Cat4
## 1 IDochem02 80 2.525 -3.096 -12.105 -15.819 -15.865 -12.384
## 2 IDochem04 80 2.587 -3.334 -12.343 -16.294 -16.578 -13.336
## 3 IDochem05 79 2.519 -3.063 -12.072 -15.753 -15.767 -12.254
## 4 IDochem06 80 2.612 -3.429 -12.438 -16.485 -16.864 -13.717
## B.Cat1.Dim1 B.Cat2.Dim1 B.Cat3.Dim1 B.Cat4.Dim1
## 1 1 2 3 4
## 2 1 2 3 4
## 3 1 2 3 4
## 4 1 2 3 4
##
## Item Parameters Xsi
## xsi se.xsi
## IDochem02 -3.096 0.218
## IDochem04 -3.334 0.218
## IDochem05 -3.063 0.220
## IDochem06 -3.429 0.218
## Cat1 -9.009 0.232
## Cat2 -0.618 0.175
## Cat3 3.050 0.132
##
## Item Parameters in IRT parameterization
## item alpha beta tau.Cat1 tau.Cat2 tau.Cat3 tau.Cat4
## 1 IDochem02 1 -3.096 -9.009 -0.618 3.05 6.576
## 2 IDochem04 1 -3.334 -9.009 -0.618 3.05 6.576
## 3 IDochem05 1 -3.063 -9.009 -0.618 3.05 6.576
## 4 IDochem06 1 -3.429 -9.009 -0.618 3.05 6.576
IRT.WrightMap(rs_model,show.thr.lab=TRUE)
rs_model$xsi # The first column is the item difficulty. In this case, is the rater's rating severity.
## xsi se.xsi
## IDochem02 -3.0960995 0.2182412
## IDochem04 -3.3339357 0.2182367
## IDochem05 -3.0634176 0.2197044
## IDochem06 -3.4291983 0.2182685
## Cat1 -9.0087024 0.2316786
## Cat2 -0.6178376 0.1745352
## Cat3 3.0500609 0.1324678
tam.fit(rs_model)
## Item fit calculation based on 100 simulations
## |**********|
## |-------|
## $itemfit
## parameter Outfit Outfit_t Outfit_p Outfit_pholm Infit Infit_t
## 1 IDochem02 1.0700466 0.4628230 6.434912e-01 1.000000e+00 1.0905347 0.5904719
## 2 IDochem04 0.7107482 -2.0209778 4.328207e-02 1.731283e-01 0.7328194 -1.8438213
## 3 IDochem05 0.6436219 -2.5579822 1.052815e-02 6.316889e-02 0.6576947 -2.4347384
## 4 IDochem06 1.2411574 1.4382363 1.503670e-01 4.511011e-01 1.2474512 1.4841420
## 5 Cat1 1.2417760 0.0705901 9.437240e-01 1.000000e+00 1.4001622 2.4816115
## 6 Cat2 1.2929866 2.2195772 2.644748e-02 1.322374e-01 1.5143741 4.0282545
## 7 Cat3 1.4268956 6.5839947 4.579733e-11 3.205813e-10 1.3953639 6.4289642
## Infit_p Infit_pholm
## 1 5.548744e-01 5.548744e-01
## 2 6.520919e-02 1.956276e-01
## 3 1.490256e-02 6.539489e-02
## 4 1.377713e-01 2.755425e-01
## 5 1.307898e-02 6.539489e-02
## 6 5.619249e-05 3.371549e-04
## 7 1.284764e-10 8.993345e-10
##
## $time
## [1] "2022-08-15 19:23:24 EDT" "2022-08-15 19:23:24 EDT"
##
## $CALL
## tam.fit(tamobj = rs_model)
##
## attr(,"class")
## [1] "tam.fit"
imod1 <- TAM::IRT.informationCurves( rs_model, theta=seq(-5,5,len=100) )
plot(imod1)
summary(rs_model)
## ------------------------------------------------------------
## TAM 4.0-16 (2022-05-13 13:23:23)
## R version 4.1.2 (2021-11-01) x86_64, mingw32 | nodename=DESKTOP-UE2VMI8 | login=hthrp
##
## Date of Analysis: 2022-08-15 19:23:25
## Time difference of 0.8661969 secs
## Computation time: 0.8661969
##
## Multidimensional Item Response Model in TAM
##
## IRT Model: RSM
## Call:
## TAM::tam.mml(resp = d2, irtmodel = "RSM")
##
## ------------------------------------------------------------
## Number of iterations = 1000
## Numeric integration with 21 integration points
##
## Deviance = 843.69
## Log likelihood = -421.84
## Number of persons = 81
## Number of persons used = 80
## Number of items = 5
## Number of estimated parameters = 9
## Item threshold parameters = 8
## Item slope parameters = 0
## Regression parameters = 0
## Variance/covariance parameters = 1
##
## AIC = 862 | penalty=18 | AIC=-2*LL + 2*p
## AIC3 = 871 | penalty=27 | AIC3=-2*LL + 3*p
## BIC = 883 | penalty=39.44 | BIC=-2*LL + log(n)*p
## aBIC = 854 | penalty=10.61 | aBIC=-2*LL + log((n-2)/24)*p (adjusted BIC)
## CAIC = 892 | penalty=48.44 | CAIC=-2*LL + [log(n)+1]*p (consistent AIC)
## AICc = 864 | penalty=20.57 | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1) (bias corrected AIC)
## GHP = 1.07711 | GHP=( -LL + p ) / (#Persons * #Items) (Gilula-Haberman log penalty)
##
## ------------------------------------------------------------
## EAP Reliability
## [1] 0.777
## ------------------------------------------------------------
## Covariances and Variances
## [,1]
## [1,] 2.049
## ------------------------------------------------------------
## Correlations and Standard Deviations (in the diagonal)
## [,1]
## [1,] 1.431
## ------------------------------------------------------------
## Regression Coefficients
## [,1]
## [1,] 0
## ------------------------------------------------------------
## Item Parameters -A*Xsi
## item N M xsi.item AXsi_.Cat1 AXsi_.Cat2 AXsi_.Cat3 AXsi_.Cat4
## 1 IDochem08 80 2.550 -2.474 -9.528 -12.191 -12.364 -9.897
## 2 IDochem09 80 2.487 -2.305 -9.359 -11.852 -11.855 -9.218
## 3 FASochem02 80 2.362 -1.965 -9.019 -11.173 -10.836 -7.860
## 4 FASochem03 80 2.900 -3.445 -10.500 -14.133 -15.277 -13.781
## 5 FASochem05 80 2.775 -3.092 -10.147 -13.428 -14.219 -12.370
## B.Cat1.Dim1 B.Cat2.Dim1 B.Cat3.Dim1 B.Cat4.Dim1
## 1 1 2 3 4
## 2 1 2 3 4
## 3 1 2 3 4
## 4 1 2 3 4
## 5 1 2 3 4
##
## Item Parameters Xsi
## xsi se.xsi
## IDochem08 -2.474 0.184
## IDochem09 -2.305 0.184
## FASochem02 -1.965 0.184
## FASochem03 -3.445 0.189
## FASochem05 -3.092 0.187
## Cat1 -7.054 0.174
## Cat2 -0.188 0.134
## Cat3 2.301 0.110
##
## Item Parameters in IRT parameterization
## item alpha beta tau.Cat1 tau.Cat2 tau.Cat3 tau.Cat4
## 1 IDochem08 1 -2.474 -7.054 -0.188 2.301 4.941
## 2 IDochem09 1 -2.305 -7.054 -0.188 2.301 4.941
## 3 FASochem02 1 -1.965 -7.054 -0.188 2.301 4.941
## 4 FASochem03 1 -3.445 -7.054 -0.188 2.301 4.941
## 5 FASochem05 1 -3.092 -7.054 -0.188 2.301 4.941
IRT.WrightMap(rs_model,show.thr.lab=TRUE)
rs_model$xsi # The first column is the item difficulty. In this case, is the rater's rating severity.
## xsi se.xsi
## IDochem08 -2.4741528 0.1844231
## IDochem09 -2.3045698 0.1842312
## FASochem02 -1.9650549 0.1844146
## FASochem03 -3.4452518 0.1891040
## FASochem05 -3.0924898 0.1866949
## Cat1 -7.0542517 0.1735807
## Cat2 -0.1884432 0.1340774
## Cat3 2.3014427 0.1097370
tam.fit(rs_model)
## Item fit calculation based on 100 simulations
## |**********|
## |--------|
## $itemfit
## parameter Outfit Outfit_t Outfit_p Outfit_pholm Infit
## 1 IDochem08 1.1783092 1.1455584 2.519779e-01 1.000000e+00 1.1456682
## 2 IDochem09 0.9368175 -0.3968901 6.914485e-01 1.000000e+00 0.9089668
## 3 FASochem02 1.0456928 0.3358555 7.369799e-01 1.000000e+00 1.0575651
## 4 FASochem03 1.1219956 0.8054538 4.205578e-01 1.000000e+00 1.1542231
## 5 FASochem05 0.7105204 -2.0864080 3.694168e-02 2.216501e-01 0.7158746
## 6 Cat1 2.1135397 7.7547176 8.854026e-15 7.083221e-14 1.1685170
## 7 Cat2 1.3420976 3.9041748 9.454742e-05 6.618319e-04 1.3165882
## 8 Cat3 1.0678236 1.8375579 6.612758e-02 3.306379e-01 1.0738598
## Infit_t Infit_p Infit_pholm
## 1 0.9549524 0.3396017805 1.000000000
## 2 -0.5863275 0.5576554772 1.000000000
## 3 0.4118674 0.6804366212 1.000000000
## 4 0.9984850 0.3180442342 1.000000000
## 5 -2.0418228 0.0411691144 0.288183801
## 6 1.5011047 0.1333284949 0.666642475
## 7 3.6670527 0.0002453622 0.001962898
## 8 2.0184525 0.0435441532 0.288183801
##
## $time
## [1] "2022-08-15 19:23:25 EDT" "2022-08-15 19:23:25 EDT"
##
## $CALL
## tam.fit(tamobj = rs_model)
##
## attr(,"class")
## [1] "tam.fit"
imod1 <- TAM::IRT.informationCurves( rs_model, theta=seq(-5,5,len=100) )
plot(imod1)
summary(rs_model)
## ------------------------------------------------------------
## TAM 4.0-16 (2022-05-13 13:23:23)
## R version 4.1.2 (2021-11-01) x86_64, mingw32 | nodename=DESKTOP-UE2VMI8 | login=hthrp
##
## Date of Analysis: 2022-08-15 19:23:26
## Time difference of 0.8281851 secs
## Computation time: 0.8281851
##
## Multidimensional Item Response Model in TAM
##
## IRT Model: RSM
## Call:
## TAM::tam.mml(resp = d, irtmodel = "RSM")
##
## ------------------------------------------------------------
## Number of iterations = 1000
## Numeric integration with 21 integration points
##
## Deviance = 2280.63
## Log likelihood = -1140.31
## Number of persons = 102
## Number of persons used = 100
## Number of items = 12
## Number of estimated parameters = 16
## Item threshold parameters = 15
## Item slope parameters = 0
## Regression parameters = 0
## Variance/covariance parameters = 1
##
## AIC = 2313 | penalty=32 | AIC=-2*LL + 2*p
## AIC3 = 2329 | penalty=48 | AIC3=-2*LL + 3*p
## BIC = 2354 | penalty=73.68 | BIC=-2*LL + log(n)*p
## aBIC = 2303 | penalty=22.51 | aBIC=-2*LL + log((n-2)/24)*p (adjusted BIC)
## CAIC = 2370 | penalty=89.68 | CAIC=-2*LL + [log(n)+1]*p (consistent AIC)
## AICc = 2319 | penalty=38.55 | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1) (bias corrected AIC)
## GHP = 0.97169 | GHP=( -LL + p ) / (#Persons * #Items) (Gilula-Haberman log penalty)
##
## ------------------------------------------------------------
## EAP Reliability
## [1] 0.89
## ------------------------------------------------------------
## Covariances and Variances
## [,1]
## [1,] 2.546
## ------------------------------------------------------------
## Correlations and Standard Deviations (in the diagonal)
## [,1]
## [1,] 1.596
## ------------------------------------------------------------
## Regression Coefficients
## [,1]
## [1,] 0
## ------------------------------------------------------------
## Item Parameters -A*Xsi
## item N M xsi.item AXsi_.Cat1 AXsi_.Cat2 AXsi_.Cat3 AXsi_.Cat4
## 1 IDochem02 99 2.414 -2.411 -10.345 -12.981 -12.680 -9.645
## 2 IDochem03 99 2.313 -2.108 -10.042 -12.375 -11.770 -8.433
## 3 IDochem04 99 2.465 -2.562 -10.496 -13.282 -13.131 -10.248
## 4 IDochem05 99 2.424 -2.442 -10.376 -13.041 -12.770 -9.766
## 5 IDochem06 99 2.545 -2.803 -10.737 -13.763 -13.854 -11.211
## 6 IDochem10 99 2.848 -3.712 -11.646 -15.581 -16.580 -14.846
## 7 IDochem07 100 2.220 -1.825 -9.759 -11.807 -10.919 -7.299
## 8 IDochem08 100 2.310 -2.097 -10.031 -12.352 -11.737 -8.389
## 9 IDochem09 99 2.303 -2.077 -10.011 -12.311 -11.676 -8.307
## 10 FASochem02 99 2.354 -2.230 -10.164 -12.618 -12.135 -8.919
## 11 FASochem03 99 2.869 -3.773 -11.707 -15.704 -16.765 -15.092
## 12 FASochem05 99 2.848 -3.707 -11.641 -15.572 -16.566 -14.828
## B.Cat1.Dim1 B.Cat2.Dim1 B.Cat3.Dim1 B.Cat4.Dim1
## 1 1 2 3 4
## 2 1 2 3 4
## 3 1 2 3 4
## 4 1 2 3 4
## 5 1 2 3 4
## 6 1 2 3 4
## 7 1 2 3 4
## 8 1 2 3 4
## 9 1 2 3 4
## 10 1 2 3 4
## 11 1 2 3 4
## 12 1 2 3 4
##
## Item Parameters Xsi
## xsi se.xsi
## IDochem02 -2.411 0.174
## IDochem03 -2.108 0.174
## IDochem04 -2.562 0.174
## IDochem05 -2.442 0.174
## IDochem06 -2.803 0.173
## IDochem10 -3.712 0.175
## IDochem07 -1.825 0.175
## IDochem08 -2.097 0.174
## IDochem09 -2.077 0.175
## FASochem02 -2.230 0.174
## FASochem03 -3.773 0.176
## FASochem05 -3.707 0.175
## Cat1 -7.934 0.113
## Cat2 -0.224 0.080
## Cat3 2.712 0.067
##
## Item Parameters in IRT parameterization
## item alpha beta tau.Cat1 tau.Cat2 tau.Cat3 tau.Cat4
## 1 IDochem02 1 -2.411 -7.934 -0.224 2.712 5.446
## 2 IDochem03 1 -2.108 -7.934 -0.224 2.712 5.446
## 3 IDochem04 1 -2.562 -7.934 -0.224 2.712 5.446
## 4 IDochem05 1 -2.442 -7.934 -0.224 2.712 5.446
## 5 IDochem06 1 -2.803 -7.934 -0.224 2.712 5.446
## 6 IDochem10 1 -3.712 -7.934 -0.224 2.712 5.446
## 7 IDochem07 1 -1.825 -7.934 -0.224 2.712 5.446
## 8 IDochem08 1 -2.097 -7.934 -0.224 2.712 5.446
## 9 IDochem09 1 -2.077 -7.934 -0.224 2.712 5.446
## 10 FASochem02 1 -2.230 -7.934 -0.224 2.712 5.446
## 11 FASochem03 1 -3.773 -7.934 -0.224 2.712 5.446
## 12 FASochem05 1 -3.707 -7.934 -0.224 2.712 5.446
IRT.WrightMap(rs_model,show.thr.lab=TRUE)
rs_model$xsi # The first column is the item difficulty. In this case, is the rater's rating severity.
## xsi se.xsi
## IDochem02 -2.4113662 0.17378811
## IDochem03 -2.1082904 0.17445828
## IDochem04 -2.5619048 0.17359482
## IDochem05 -2.4415604 0.17374209
## IDochem06 -2.8027421 0.17347279
## IDochem10 -3.7115318 0.17529082
## IDochem07 -1.8246361 0.17453216
## IDochem08 -2.0971948 0.17357415
## IDochem09 -2.0767582 0.17455192
## FASochem02 -2.2298058 0.17414328
## FASochem03 -3.7730779 0.17556890
## FASochem05 -3.7069585 0.17529120
## Cat1 -7.9341245 0.11323448
## Cat2 -0.2237961 0.08018879
## Cat3 2.7123563 0.06667138
tam.fit(rs_model)
## Item fit calculation based on 100 simulations
## |**********|
## |----------|
## $itemfit
## parameter Outfit Outfit_t Outfit_p Outfit_pholm Infit
## 1 IDochem02 1.0148470 0.1460049 8.839175e-01 1.000000e+00 1.0124938
## 2 IDochem03 0.9196587 -0.5625570 5.737366e-01 1.000000e+00 0.9257334
## 3 IDochem04 0.8521753 -1.0891658 2.760808e-01 1.000000e+00 0.8502541
## 4 IDochem05 0.6824897 -2.5587837 1.050391e-02 1.155430e-01 0.6823774
## 5 IDochem06 1.4217589 2.7431529 6.085235e-03 7.302282e-02 1.4145649
## 6 IDochem10 1.1812794 1.2880199 1.977390e-01 1.000000e+00 1.1641244
## 7 IDochem07 1.1495336 1.0737078 2.829537e-01 1.000000e+00 1.0762028
## 8 IDochem08 1.2687094 1.8419473 6.548287e-02 5.893458e-01 1.2408517
## 9 IDochem09 0.7989116 -1.5340552 1.250161e-01 1.000000e+00 0.7934031
## 10 FASochem02 1.0196426 0.1811979 8.562122e-01 1.000000e+00 1.0325590
## 11 FASochem03 1.0626343 0.4881614 6.254356e-01 1.000000e+00 1.0893539
## 12 FASochem05 0.6891032 -2.5243348 1.159175e-02 1.159175e-01 0.6869598
## 13 Cat1 1.9688550 10.9320964 8.095617e-28 1.052430e-26 1.8183229
## 14 Cat2 1.7797058 13.4771927 2.130604e-41 2.982846e-40 1.9428255
## 15 Cat3 1.7512143 25.1320858 2.218755e-139 3.328132e-138 1.8191965
## Infit_t Infit_p Infit_pholm
## 1 0.1291355 8.972504e-01 1.000000e+00
## 2 -0.5154241 6.062567e-01 1.000000e+00
## 3 -1.1047536 2.692664e-01 1.000000e+00
## 4 -2.5599753 1.046796e-02 1.151475e-01
## 5 2.7031249 6.869094e-03 8.242912e-02
## 6 1.1780107 2.387924e-01 1.000000e+00
## 7 0.5824891 5.602373e-01 1.000000e+00
## 8 1.6714840 9.462611e-02 8.516350e-01
## 9 -1.5790698 1.143200e-01 9.145603e-01
## 10 0.2730030 7.848509e-01 1.000000e+00
## 11 0.6748643 4.997620e-01 1.000000e+00
## 12 -2.5432931 1.098131e-02 1.151475e-01
## 13 9.5652014 1.119832e-21 1.455782e-20
## 14 15.7740025 4.697612e-56 6.576657e-55
## 15 27.0758257 1.896937e-161 2.845405e-160
##
## $time
## [1] "2022-08-15 19:23:27 EDT" "2022-08-15 19:23:27 EDT"
##
## $CALL
## tam.fit(tamobj = rs_model)
##
## attr(,"class")
## [1] "tam.fit"
imod1 <- TAM::IRT.informationCurves( rs_model, theta=seq(-5,5,len=100) )
plot(imod1)
summary(rs_model)
## ------------------------------------------------------------
## TAM 4.0-16 (2022-05-13 13:23:23)
## R version 4.1.2 (2021-11-01) x86_64, mingw32 | nodename=DESKTOP-UE2VMI8 | login=hthrp
##
## Date of Analysis: 2022-08-15 19:23:28
## Time difference of 0.857192 secs
## Computation time: 0.857192
##
## Multidimensional Item Response Model in TAM
##
## IRT Model: RSM
## Call:
## TAM::tam.mml(resp = d1, irtmodel = "RSM")
##
## ------------------------------------------------------------
## Number of iterations = 1000
## Numeric integration with 21 integration points
##
## Deviance = 872.1
## Log likelihood = -436.05
## Number of persons = 102
## Number of persons used = 99
## Number of items = 5
## Number of estimated parameters = 9
## Item threshold parameters = 8
## Item slope parameters = 0
## Regression parameters = 0
## Variance/covariance parameters = 1
##
## AIC = 890 | penalty=18 | AIC=-2*LL + 2*p
## AIC3 = 899 | penalty=27 | AIC3=-2*LL + 3*p
## BIC = 913 | penalty=41.36 | BIC=-2*LL + log(n)*p
## aBIC = 885 | penalty=12.57 | aBIC=-2*LL + log((n-2)/24)*p (adjusted BIC)
## CAIC = 922 | penalty=50.36 | CAIC=-2*LL + [log(n)+1]*p (consistent AIC)
## AICc = 892 | penalty=20.02 | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1) (bias corrected AIC)
## GHP = 0.89909 | GHP=( -LL + p ) / (#Persons * #Items) (Gilula-Haberman log penalty)
##
## ------------------------------------------------------------
## EAP Reliability
## [1] 0.886
## ------------------------------------------------------------
## Covariances and Variances
## [,1]
## [1,] 7.431
## ------------------------------------------------------------
## Correlations and Standard Deviations (in the diagonal)
## [,1]
## [1,] 2.726
## ------------------------------------------------------------
## Regression Coefficients
## [,1]
## [1,] 0
## ------------------------------------------------------------
## Item Parameters -A*Xsi
## item N M xsi.item AXsi_.Cat1 AXsi_.Cat2 AXsi_.Cat3 AXsi_.Cat4
## 1 IDochem02 99 2.414 -2.998 -13.099 -16.370 -16.121 -11.992
## 2 IDochem03 99 2.313 -2.588 -12.689 -15.550 -14.891 -10.352
## 3 IDochem04 99 2.465 -3.203 -13.304 -16.780 -16.735 -12.811
## 4 IDochem05 99 2.424 -3.039 -13.140 -16.452 -16.243 -12.156
## 5 IDochem06 99 2.545 -3.530 -13.631 -17.434 -17.716 -14.120
## B.Cat1.Dim1 B.Cat2.Dim1 B.Cat3.Dim1 B.Cat4.Dim1
## 1 1 2 3 4
## 2 1 2 3 4
## 3 1 2 3 4
## 4 1 2 3 4
## 5 1 2 3 4
##
## Item Parameters Xsi
## xsi se.xsi
## IDochem02 -2.998 0.202
## IDochem03 -2.588 0.203
## IDochem04 -3.203 0.202
## IDochem05 -3.039 0.202
## IDochem06 -3.530 0.202
## Cat1 -10.101 0.202
## Cat2 -0.273 0.136
## Cat3 3.248 0.114
##
## Item Parameters in IRT parameterization
## item alpha beta tau.Cat1 tau.Cat2 tau.Cat3 tau.Cat4
## 1 IDochem02 1 -2.998 -10.101 -0.273 3.248 7.127
## 2 IDochem03 1 -2.588 -10.101 -0.273 3.248 7.127
## 3 IDochem04 1 -3.203 -10.101 -0.273 3.248 7.127
## 4 IDochem05 1 -3.039 -10.101 -0.273 3.248 7.127
## 5 IDochem06 1 -3.530 -10.101 -0.273 3.248 7.127
IRT.WrightMap(rs_model,show.thr.lab=TRUE)
rs_model$xsi # The first column is the item difficulty. In this case, is the rater's rating severity.
## xsi se.xsi
## IDochem02 -2.9979613 0.2024478
## IDochem03 -2.5879838 0.2026120
## IDochem04 -3.2027677 0.2023320
## IDochem05 -3.0389410 0.2024269
## IDochem06 -3.5299110 0.2021136
## Cat1 -10.1014249 0.2020765
## Cat2 -0.2729292 0.1361224
## Cat3 3.2476835 0.1140024
tam.fit(rs_model)
## Item fit calculation based on 100 simulations
## |**********|
## |--------|
## $itemfit
## parameter Outfit Outfit_t Outfit_p Outfit_pholm Infit
## 1 IDochem02 0.7112591 -2.1748680 2.964001e-02 1.185600e-01 0.7519496
## 2 IDochem03 0.9779041 -0.1297933 8.967300e-01 8.967300e-01 0.9924659
## 3 IDochem04 0.6114910 -3.0899850 2.001666e-03 1.000833e-02 0.6494035
## 4 IDochem05 0.5045984 -4.1802121 2.912373e-05 1.747424e-04 0.5129991
## 5 IDochem06 1.3232156 2.0748979 3.799599e-02 1.185600e-01 1.3572953
## 6 Cat1 0.8277787 -1.9593744 5.006896e-02 1.185600e-01 1.5312932
## 7 Cat2 1.6972193 6.7720035 1.270111e-11 8.890774e-11 1.7026460
## 8 Cat3 1.9886507 14.0227517 1.131411e-44 9.051292e-44 1.5388750
## Infit_t Infit_p Infit_pholm
## 1 -1.83111287 6.708370e-02 1.341674e-01
## 2 -0.01649472 9.868397e-01 9.868397e-01
## 3 -2.73507238 6.236656e-03 2.494662e-02
## 4 -4.07893172 4.524312e-05 2.714587e-04
## 5 2.27184130 2.309610e-02 6.928829e-02
## 6 3.69449522 2.203240e-04 1.101620e-03
## 7 7.03282719 2.023900e-12 1.416730e-11
## 8 9.00154560 2.225620e-19 1.780496e-18
##
## $time
## [1] "2022-08-15 19:23:29 EDT" "2022-08-15 19:23:29 EDT"
##
## $CALL
## tam.fit(tamobj = rs_model)
##
## attr(,"class")
## [1] "tam.fit"
imod1 <- TAM::IRT.informationCurves( rs_model, theta=seq(-5,5,len=100) )
plot(imod1)
summary(rs_model)
## ------------------------------------------------------------
## TAM 4.0-16 (2022-05-13 13:23:23)
## R version 4.1.2 (2021-11-01) x86_64, mingw32 | nodename=DESKTOP-UE2VMI8 | login=hthrp
##
## Date of Analysis: 2022-08-15 19:23:30
## Time difference of 0.693157 secs
## Computation time: 0.693157
##
## Multidimensional Item Response Model in TAM
##
## IRT Model: RSM
## Call:
## TAM::tam.mml(resp = d2, irtmodel = "RSM")
##
## ------------------------------------------------------------
## Number of iterations = 1000
## Numeric integration with 21 integration points
##
## Deviance = 737.7
## Log likelihood = -368.85
## Number of persons = 102
## Number of persons used = 100
## Number of items = 4
## Number of estimated parameters = 8
## Item threshold parameters = 7
## Item slope parameters = 0
## Regression parameters = 0
## Variance/covariance parameters = 1
##
## AIC = 754 | penalty=16 | AIC=-2*LL + 2*p
## AIC3 = 762 | penalty=24 | AIC3=-2*LL + 3*p
## BIC = 775 | penalty=36.84 | BIC=-2*LL + log(n)*p
## aBIC = 749 | penalty=11.26 | aBIC=-2*LL + log((n-2)/24)*p (adjusted BIC)
## CAIC = 783 | penalty=44.84 | CAIC=-2*LL + [log(n)+1]*p (consistent AIC)
## AICc = 755 | penalty=17.58 | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1) (bias corrected AIC)
## GHP = 0.95164 | GHP=( -LL + p ) / (#Persons * #Items) (Gilula-Haberman log penalty)
##
## ------------------------------------------------------------
## EAP Reliability
## [1] 0.835
## ------------------------------------------------------------
## Covariances and Variances
## [,1]
## [1,] 5.64
## ------------------------------------------------------------
## Correlations and Standard Deviations (in the diagonal)
## [,1]
## [1,] 2.375
## ------------------------------------------------------------
## Regression Coefficients
## [,1]
## [1,] 0
## ------------------------------------------------------------
## Item Parameters -A*Xsi
## item N M xsi.item AXsi_.Cat1 AXsi_.Cat2 AXsi_.Cat3 AXsi_.Cat4
## 1 IDochem10 99 2.848 -4.133 -12.768 -17.322 -19.035 -16.531
## 2 FASochem02 99 2.354 -2.249 -10.884 -13.554 -13.383 -8.995
## 3 FASochem03 99 2.869 -4.215 -12.850 -17.486 -19.282 -16.860
## 4 FASochem05 99 2.848 -4.095 -12.729 -17.246 -18.921 -16.378
## B.Cat1.Dim1 B.Cat2.Dim1 B.Cat3.Dim1 B.Cat4.Dim1
## 1 1 2 3 4
## 2 1 2 3 4
## 3 1 2 3 4
## 4 1 2 3 4
##
## Item Parameters Xsi
## xsi se.xsi
## IDochem10 -4.133 0.202
## FASochem02 -2.249 0.192
## FASochem03 -4.215 0.203
## FASochem05 -4.095 0.202
## Cat1 -8.635 0.189
## Cat2 -0.422 0.149
## Cat3 2.420 0.120
##
## Item Parameters in IRT parameterization
## item alpha beta tau.Cat1 tau.Cat2 tau.Cat3 tau.Cat4
## 1 IDochem10 1 -4.133 -8.635 -0.422 2.42 6.637
## 2 FASochem02 1 -2.249 -8.635 -0.422 2.42 6.637
## 3 FASochem03 1 -4.215 -8.635 -0.422 2.42 6.637
## 4 FASochem05 1 -4.095 -8.635 -0.422 2.42 6.637
IRT.WrightMap(rs_model,show.thr.lab=TRUE)
rs_model$xsi # The first column is the item difficulty. In this case, is the rater's rating severity.
## xsi se.xsi
## IDochem10 -4.1327884 0.2023837
## FASochem02 -2.2487719 0.1916396
## FASochem03 -4.2149540 0.2030029
## FASochem05 -4.0945485 0.2024161
## Cat1 -8.6348873 0.1886333
## Cat2 -0.4215771 0.1489548
## Cat3 2.4195937 0.1198912
tam.fit(rs_model)
## Item fit calculation based on 100 simulations
## |**********|
## |-------|
## $itemfit
## parameter Outfit Outfit_t Outfit_p Outfit_pholm Infit
## 1 IDochem10 1.1112994 0.7505225 4.529401e-01 1.000000e+00 1.1631204
## 2 FASochem02 0.9102145 -0.6532151 5.136176e-01 1.000000e+00 0.8927270
## 3 FASochem03 0.9410709 -0.3812735 7.030003e-01 1.000000e+00 0.9877355
## 4 FASochem05 0.7120409 -2.1752301 2.961287e-02 1.480644e-01 0.7380063
## 5 Cat1 3.3222647 11.3982177 4.267663e-30 2.987364e-29 1.1663350
## 6 Cat2 1.1339004 1.3884729 1.649931e-01 6.599723e-01 1.2206534
## 7 Cat3 1.1676169 2.8431646 4.466800e-03 2.680080e-02 1.1371277
## Infit_t Infit_p Infit_pholm
## 1 1.08265405 0.27896201 0.8368860
## 2 -0.78192341 0.43425959 0.8685192
## 3 -0.05625828 0.95513605 0.9551361
## 4 -1.93308131 0.05322618 0.2661309
## 5 1.37426387 0.16935978 0.6774391
## 6 2.29674968 0.02163305 0.1297983
## 7 2.44373005 0.01453630 0.1017541
##
## $time
## [1] "2022-08-15 19:23:30 EDT" "2022-08-15 19:23:30 EDT"
##
## $CALL
## tam.fit(tamobj = rs_model)
##
## attr(,"class")
## [1] "tam.fit"
imod1 <- TAM::IRT.informationCurves( rs_model, theta=seq(-5,5,len=100) )
plot(imod1)
summary(rs_model)
## ------------------------------------------------------------
## TAM 4.0-16 (2022-05-13 13:23:23)
## R version 4.1.2 (2021-11-01) x86_64, mingw32 | nodename=DESKTOP-UE2VMI8 | login=hthrp
##
## Date of Analysis: 2022-08-15 19:23:31
## Time difference of 0.8391879 secs
## Computation time: 0.8391879
##
## Multidimensional Item Response Model in TAM
##
## IRT Model: RSM
## Call:
## TAM::tam.mml(resp = d3, irtmodel = "RSM")
##
## ------------------------------------------------------------
## Number of iterations = 1000
## Numeric integration with 21 integration points
##
## Deviance = 486.9
## Log likelihood = -243.45
## Number of persons = 102
## Number of persons used = 100
## Number of items = 3
## Number of estimated parameters = 7
## Item threshold parameters = 6
## Item slope parameters = 0
## Regression parameters = 0
## Variance/covariance parameters = 1
##
## AIC = 501 | penalty=14 | AIC=-2*LL + 2*p
## AIC3 = 508 | penalty=21 | AIC3=-2*LL + 3*p
## BIC = 519 | penalty=32.24 | BIC=-2*LL + log(n)*p
## aBIC = 497 | penalty=9.85 | aBIC=-2*LL + log((n-2)/24)*p (adjusted BIC)
## CAIC = 526 | penalty=39.24 | CAIC=-2*LL + [log(n)+1]*p (consistent AIC)
## AICc = 502 | penalty=15.22 | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1) (bias corrected AIC)
## GHP = 0.83763 | GHP=( -LL + p ) / (#Persons * #Items) (Gilula-Haberman log penalty)
##
## ------------------------------------------------------------
## EAP Reliability
## [1] 0.694
## ------------------------------------------------------------
## Covariances and Variances
## [,1]
## [1,] 4.184
## ------------------------------------------------------------
## Correlations and Standard Deviations (in the diagonal)
## [,1]
## [1,] 2.045
## ------------------------------------------------------------
## Regression Coefficients
## [,1]
## [1,] 0
## ------------------------------------------------------------
## Item Parameters -A*Xsi
## item N M xsi.item AXsi_.Cat1 AXsi_.Cat2 AXsi_.Cat3 AXsi_.Cat4
## 1 IDochem07 100 2.220 -2.282 -11.434 -15.429 -13.599 -9.127
## 2 IDochem08 100 2.310 -2.716 -11.868 -16.298 -14.903 -10.865
## 3 IDochem09 99 2.303 -2.707 -11.859 -16.280 -14.876 -10.829
## B.Cat1.Dim1 B.Cat2.Dim1 B.Cat3.Dim1 B.Cat4.Dim1
## 1 1 2 3 4
## 2 1 2 3 4
## 3 1 2 3 4
##
## Item Parameters Xsi
## xsi se.xsi
## IDochem07 -2.282 0.223
## IDochem08 -2.716 0.216
## IDochem09 -2.707 0.218
## Cat1 -9.152 0.332
## Cat2 -1.714 0.219
## Cat3 4.112 0.157
##
## Item Parameters in IRT parameterization
## item alpha beta tau.Cat1 tau.Cat2 tau.Cat3 tau.Cat4
## 1 IDochem07 1 -2.282 -9.152 -1.714 4.112 6.754
## 2 IDochem08 1 -2.716 -9.152 -1.714 4.112 6.754
## 3 IDochem09 1 -2.707 -9.152 -1.714 4.112 6.754
IRT.WrightMap(rs_model,show.thr.lab=TRUE)
rs_model$xsi # The first column is the item difficulty. In this case, is the rater's rating severity.
## xsi se.xsi
## IDochem07 -2.281813 0.2232262
## IDochem08 -2.716182 0.2162951
## IDochem09 -2.707272 0.2180768
## Cat1 -9.151757 0.3318448
## Cat2 -1.713982 0.2186850
## Cat3 4.111730 0.1566069
tam.fit(rs_model)
## Item fit calculation based on 100 simulations
## |**********|
## |------|
## $itemfit
## parameter Outfit Outfit_t Outfit_p Outfit_pholm Infit Infit_t
## 1 IDochem07 0.7146352 -1.9248897 0.0542431582 0.271215791 0.750262 -1.64321061
## 2 IDochem08 1.1502120 0.9084775 0.3636260076 1.000000000 1.123535 0.77120580
## 3 IDochem09 1.0647806 0.4109376 0.6811182622 1.000000000 1.010063 0.09406038
## 4 Cat1 0.4531484 -3.6808690 0.0002324404 0.001394642 1.027586 0.07647897
## 5 Cat2 0.9293489 -0.6017011 0.5473730937 1.000000000 1.038002 0.21587128
## 6 Cat3 0.9983428 -0.3424275 0.7320291655 1.000000000 1.019869 0.17442287
## Infit_p Infit_pholm
## 1 0.1003394 0.6020362
## 2 0.4405850 1.0000000
## 3 0.9250612 1.0000000
## 4 0.9390380 1.0000000
## 5 0.8290881 1.0000000
## 6 0.8615331 1.0000000
##
## $time
## [1] "2022-08-15 19:23:32 EDT" "2022-08-15 19:23:32 EDT"
##
## $CALL
## tam.fit(tamobj = rs_model)
##
## attr(,"class")
## [1] "tam.fit"
imod1 <- TAM::IRT.informationCurves( rs_model, theta=seq(-5,5,len=100) )
plot(imod1)