Women are borrowing at a higher rate than men.
ggplot(data = credit_card)+
geom_line(mapping = aes(LIMIT_BAL, fill=SEX, color=SEX), stat ="count",
position = "identity")+
labs(title = "Balance Limit by Gender", x="Limit Balance", y= "Total")
## Warning: Ignoring unknown aesthetics: fill

six_month_bill_amt <- credit_card %>%
group_by(SEX) %>%
summarise(avg_bill_1 = mean(BILL_AMT1),avg_bill_2 = mean(BILL_AMT2),
avg_bill_3 = mean(BILL_AMT3), avg_bill_4 = mean(BILL_AMT4),
avg_bill_5 = mean(BILL_AMT5), avg_bill_6 = mean(BILL_AMT6))
print(six_month_bill_amt)
## # A tibble: 2 × 7
## SEX avg_bill_1 avg_bill_2 avg_bill_3 avg_bill_4 avg_bill_5 avg_bill_6
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Female 49216. 47381. 45633. 42123. 39474. 38064.
## 2 Male 54281. 51919. 49116. 45000. 41588. 40102.
six_month_pay_amt<- credit_card %>%
group_by(SEX) %>%
summarise(avg_pay_1 = mean(PAY_AMT1),avg_pay_2 = mean(PAY_AMT2),
avg_pay_3 = mean(PAY_AMT3), avg_pay_4 = mean(PAY_AMT4),
avg_pay_5 = mean(PAY_AMT5), avg_pay_6 = mean(PAY_AMT6))
print(six_month_pay_amt)
## # A tibble: 2 × 7
## SEX avg_pay_1 avg_pay_2 avg_pay_3 avg_pay_4 avg_pay_5 avg_pay_6
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Female 5660. 5895. 5103. 4798. 4779. 5176.
## 2 Male 5669. 5961. 5413. 4869. 4831. 5276.