---
title: " Apparent retention rate,Year 11-12,2021"
output:
flexdashboard::flex_dashboard:
theme:
bg: "#FFFFFF"
fg: "#000000"
primary: "#56B4E9"
base_font:
google: Prompt
code_font:
google: JetBrains Mono
orientation: rows
vertical_layout: fill
source_code: embed
social: menue
---
```{css}
/* Set font color of inactive tab to green */
.nav-tabs-custom .nav-tabs > li > a {
color: blue;
}
/* Set font color of active tab to red */
.nav-tabs-custom .nav-tabs > li.active > a {
color: grey;
}
```
```{r setup, include=FALSE}
library(flexdashboard)
library(tidyverse)
library(readxl)
VCAMS_Indicator <- read_excel("C:/Users/Asus/Documents/apparent-retention-dataset.xlsx")
```
# Dataset {data-icon="fa-table"}
## Column {data-width="300"}
### *source:<https://www.education.vic.gov.au/Documents/about/research/VCAMS_Indicator_16_1.xlsx>*
```{r}
library(dplyr)
library(DT)
tab1<- filter(VCAMS_Indicator,
VCAMS_Indicator$`Year range`== 'Year 11 - Year 12')
tab2<-subset(tab1,select = - c(Fact,`Year range`))
datatable(tab2, filter = 'top',extensions = 'Buttons', options = list(
pageLength = 10, autoWidth = TRUE, dom='Bfrtip',
buttons=c('copy', 'csv', 'excel', 'print', 'pdf')))
```
# Summary {data-icon="fa-table"}
## row {data-width="350"}
### Apparent retention rate for students,Year 11-Year 12 by state/territory and sector 2021
```{r}
library(ggplot2)
library(plotly)
tab3<-tab2[order(tab1$`State/territory`), ] %>%
group_by(`State/territory`, `School sector`) %>%
summarise(Frequency = round(mean(`Retention rate`),digits = 1))
tab4<-
tab3 %>%
pivot_wider(names_from= `School sector`, values_from=Frequency)
datatable(tab4)
```
# Visualizations {data-icon="fa-signal"}
## row {data-width="350"}
### By state/territory and sector 2021
```{r}
library(ggplot2)
library(plotly)
colnames(tab4)[2] <- "Average Retention "
tab4.1=tab4[order(tab4$`Average Retention `,decreasing = TRUE),]
tab4.1$`State/territory`=reorder(tab4.1$`State/territory`,+tab4.1$`Average Retention `)
p <- ggplot(data=tab4.1,aes(x=`State/territory`, y=`Average Retention `, fill=`State/territory`)) +
geom_bar(stat="identity")+
scale_fill_brewer(palette="GnBu")+
theme(legend.position="none",
panel.background = element_blank())+
ylab("Rate of retention by %") +
xlab("State/Territory") +
#ggtitle("Apparent retention rate for students Year 11-Year 12 \n state/territory and sector 2021") +
coord_flip()
p<-ggplotly(p)
p
```
### Across Australia, time series
```{r}
library(ggplot2)
library(dplyr)
library(plotly)
tab5<-
VCAMS_Indicator %>%
na.omit(tab5)%>%
group_by(`Calendar year`) %>%
summarise(RenetntionRate = round(mean(`Retention rate`),digits = 1))
p <- tab5 %>%
ggplot( aes(x= `Calendar year`, y= RenetntionRate)) +
geom_path() +
geom_point(size = 2)+
ylab("Retention Rate")+
xlim(2010,2021)+
scale_x_continuous(breaks=seq(2010, 2021, 1))+
ylim(0,100)+
# ggtitle("Apparent retention rate for students,Year11-Year12,\n Australia, time series")+
theme(axis.title.x = element_blank(),
plot.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())
# Turn it interactive with ggplotly
p <- ggplotly(p)
p
```
```{r}
library(ggplot2)
library(plotly)
tab6<-tab2[order(tab2$`Indigenous status`, tab2$`State/territory`), ] %>%
group_by(`State/territory`,`Indigenous status`) %>%
na.omit(tab6)%>%
summarise(RetentionRate = round(mean(`Retention rate`),digits = 0)) %>%
pivot_wider(names_from=`State/territory` , values_from=RetentionRate)
#datatable(tab6)
```
## row {data-width="350"}
### By Indigenous status and state/territory
```{r}
library(tidyr)
library(plotly)
tab7<- tab6 %>%
filter(tab6$`Indigenous status` %in% c("Indigenous", "Non-Indigenous"))
tab8<-t(tab7)
tab9=tab8[-c(1),]
col1<-c("Australia","ACT","NSW","NT","Qld","SA","TAS","VIC","WA")
tab9=as.data.frame(tab9)
tab9=cbind(tab9,col1)
tab10<-tab9 %>% pivot_longer(cols=c('V1', 'V2'),
names_to='Indigenous Status',
values_to='Retention rate')
tab11 <- tab10 %>%
mutate(`Indigenous Status` = recode(`Indigenous Status`,
V1 = 'Indigenous', V2 = 'Non-Indigenous' ))
colnames(tab11)[1] <- "State/Territory"
tab11$`Retention rate`=as.numeric(tab11$`Retention rate`)
t<-
ggplot(tab11, aes(x =`State/Territory`, y =`Retention rate`, fill= `Indigenous Status`)) +
geom_col(position = position_dodge())+
scale_fill_manual(values=c("lightseagreen","royalblue4"))+
theme(
legend.position = "bottom",
axis.text.x = element_text(angle = 45,hjust=1),
axis.ticks.x=element_blank(),
plot.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
axis.title.x = element_blank(),
axis.text = element_text(size = (8))
)+
ylim(0,100)+
ylab("Retention Rate")
ggplotly(t)
```
### By Gender
```{r}
library(tidyr)
library(plotly)
tab12<- tab2 %>%
filter(tab2$Sex %in% c("Female", "Male"))%>%
na.omit(tab12)%>%
group_by(Sex) %>%
summarise(Frequency = round(mean(`Retention rate`),digits = 1))
plot_ly(tab12,values= tab12$Frequency,labels= tab12$Sex,marker=list(colors=c("lightseagreen",
"royalblue4")),type="pie")
```