Upload dataset

dsj <- read.csv("D:/DSJobs_2.csv")

Get summary of the dataset

summary(dsj)
##  experience_level    job_title         salary_in_usd    emp_continent     
##  Length:245         Length:245         Min.   :  2876   Length:245        
##  Class :character   Class :character   1st Qu.: 45896   Class :character  
##  Mode  :character   Mode  :character   Median : 81000   Mode  :character  
##                                        Mean   : 99868                     
##                                        3rd Qu.:130000                     
##                                        Max.   :600000                     
##   remote_ratio    company_size        Salary.bin       
##  Min.   :  0.00   Length:245         Length:245        
##  1st Qu.: 50.00   Class :character   Class :character  
##  Median :100.00   Mode  :character   Mode  :character  
##  Mean   : 69.18                                        
##  3rd Qu.:100.00                                        
##  Max.   :100.00
#### Upload the libraries Used

library(arules)
## Warning: package 'arules' was built under R version 4.2.1
## Loading required package: Matrix
## 
## Attaching package: 'arules'
## The following objects are masked from 'package:base':
## 
##     abbreviate, write
library("tidygraph")
## Warning: package 'tidygraph' was built under R version 4.2.1
## 
## Attaching package: 'tidygraph'
## The following object is masked from 'package:stats':
## 
##     filter
library(stats)
library(data.table)
## Warning: package 'data.table' was built under R version 4.2.1
library(arulesViz)
## Warning: package 'arulesViz' was built under R version 4.2.1

Read Transaction and Summary of dataset

dsj<- read.transactions("D:/DSJobs_2.csv", sep=",")
summary(dsj)
## transactions as itemMatrix in sparse format with
##  246 rows (elements/itemsets/transactions) and
##  263 columns (items) and a density of 0.02661597 
## 
## most frequent items:
##     100       L      MI  N_Amer  Europe (Other) 
##     134     132     103     103      90    1160 
## 
## element (itemset/transaction) length distribution:
## sizes
##   7 
## 246 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       7       7       7       7       7       7 
## 
## includes extended item information - examples:
##    labels
## 1 "<100K"
## 2  "<10K"
## 3  "<15K"

Inspect the dataset

inspect(dsj[1:10])
##      items                           
## [1]  {company_size,                  
##       emp_continent,                 
##       experience_level,              
##       job_title,                     
##       remote_ratio,                  
##       Salary bin,                    
##       salary_in_usd}                 
## [2]  {"<10K",                        
##       0,                             
##       2876,                          
##       Data Scientist,                
##       MI,                            
##       N_Amer,                        
##       S}                             
## [3]  {"<10K",                        
##       100,                           
##       4000,                          
##       Asia,                          
##       Data Engineer,                 
##       M,                             
##       MI}                            
## [4]  {"<10K",                        
##       0,                             
##       4000,                          
##       Asia,                          
##       Data Scientist,                
##       EN,                            
##       M}                             
## [5]  {"<10K",                        
##       3D Computer Vision Researcher, 
##       50,                            
##       5423,                          
##       Asia,                          
##       M,                             
##       MI}                            
## [6]  {"<10K",                        
##       100,                           
##       5695,                          
##       Asia,                          
##       Data Scientist,                
##       MI,                            
##       S}                             
## [7]  {"<10K",                        
##       50,                            
##       5707,                          
##       Asia,                          
##       Data Science Consultant,       
##       EN,                            
##       M}                             
## [8]  {"<10K",                        
##       0,                             
##       5898,                          
##       Asia,                          
##       Big Data Engineer,             
##       EN,                            
##       L}                             
## [9]  {"<10K",                        
##       0,                             
##       6072,                          
##       Asia,                          
##       Data Analyst,                  
##       EN,                            
##       S}                             
## [10] {"<10K",                        
##       100,                           
##       6072,                          
##       Asia,                          
##       L,                             
##       MI,                            
##       Product Data Analyst}

Run Item Frequency

itemFrequency(dsj[,1:5])
##    "<100K"     "<10K"     "<15K"    "<200K"     "<20K" 
## 0.21138211 0.04471545 0.02845528 0.30081301 0.02845528

Visualize the item frequency support

itemFrequencyPlot(dsj, support=0.1, main="Items with 0.1 support")

itemFrequencyPlot(dsj, topN=20, type = "absolute", main = "Top 20 most frequent Items")

#### Use Association Rules to check support and confidence and run summary

DcRules <- apriori(data = dsj, parameter = list(support=0.1, confidence=0.8, minlen=1))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.8    0.1    1 none FALSE            TRUE       5     0.1      1
##  maxlen target  ext
##      10  rules TRUE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 24 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[263 item(s), 246 transaction(s)] done [0.00s].
## sorting and recoding items ... [18 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [3 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(DcRules)
## set of 3 rules
## 
## rule length distribution (lhs + rhs):sizes
## 3 4 
## 2 1 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   3.000   3.000   3.333   3.500   4.000 
## 
## summary of quality measures:
##     support         confidence        coverage           lift      
##  Min.   :0.1098   Min.   :0.8113   Min.   :0.1179   Min.   :1.938  
##  1st Qu.:0.1280   1st Qu.:0.8243   1st Qu.:0.1463   1st Qu.:1.969  
##  Median :0.1463   Median :0.8372   Median :0.1748   Median :2.000  
##  Mean   :0.1436   Mean   :0.8599   Mean   :0.1694   Mean   :2.054  
##  3rd Qu.:0.1606   3rd Qu.:0.8841   3rd Qu.:0.1951   3rd Qu.:2.112  
##  Max.   :0.1748   Max.   :0.9310   Max.   :0.2154   Max.   :2.224  
##      count      
##  Min.   :27.00  
##  1st Qu.:31.50  
##  Median :36.00  
##  Mean   :35.33  
##  3rd Qu.:39.50  
##  Max.   :43.00  
## 
## mining info:
##  data ntransactions support confidence
##   dsj           246     0.1        0.8
##                                                                                call
##  apriori(data = dsj, parameter = list(support = 0.1, confidence = 0.8, minlen = 1))

Sort rules by confidence

DcRules<- sort(DcRules, by = "confidence", decreasing = TRUE)
inspect(DcRules[1:3])
##     lhs                  rhs      support   confidence coverage  lift     count
## [1] {"<200K", 100, L} => {N_Amer} 0.1097561 0.9310345  0.1178862 2.223636 27   
## [2] {"<200K", L}      => {N_Amer} 0.1463415 0.8372093  0.1747967 1.999548 36   
## [3] {"<200K", 100}    => {N_Amer} 0.1747967 0.8113208  0.2154472 1.937718 43

Sort by Lift

DcRules <- sort(DcRules, by = "lift", decreasing = TRUE)

Check for Redundancy and Remove redundancy rule

is.redundant(DcRules, measure = "confidence", confint = TRUE, level = 0.8)
## [1]  TRUE FALSE FALSE
Rlindex <- is.redundant(DcRules, measure = "confidence",confint=TRUE, level=0.8)
QRules <- DcRules [-Rlindex]
inspect(QRules[1:2])
##     lhs               rhs      support   confidence coverage  lift     count
## [1] {"<200K", L}   => {N_Amer} 0.1463415 0.8372093  0.1747967 1.999548 36   
## [2] {"<200K", 100} => {N_Amer} 0.1747967 0.8113208  0.2154472 1.937718 43

Not enough rules generated using the 0.8 confidence level. We need to lower the confidence level to possibly generate more rules

DcRules <- apriori(data = dsj, parameter = list(support=0.05, confidence=0.6, minlen=1))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.6    0.1    1 none FALSE            TRUE       5    0.05      1
##  maxlen target  ext
##      10  rules TRUE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 12 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[263 item(s), 246 transaction(s)] done [0.00s].
## sorting and recoding items ... [22 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 5 done [0.00s].
## writing ... [111 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
inspect(DcRules)
##       lhs                           rhs       support    confidence coverage  
## [1]   {">200K"}                  => {N_Amer}  0.07723577 0.9047619  0.08536585
## [2]   {">200K"}                  => {L}       0.06910569 0.8095238  0.08536585
## [3]   {">200K"}                  => {100}     0.06097561 0.7142857  0.08536585
## [4]   {"<50K"}                   => {Europe}  0.06910569 0.6538462  0.10569106
## [5]   {"<50K"}                   => {MI}      0.06910569 0.6538462  0.10569106
## [6]   {"<70K"}                   => {Europe}  0.08943089 0.7096774  0.12601626
## [7]   {Data Engineer}            => {MI}      0.09756098 0.6315789  0.15447154
## [8]   {Data Engineer}            => {L}       0.09349593 0.6052632  0.15447154
## [9]   {S}                        => {100}     0.14227642 0.6034483  0.23577236
## [10]  {50}                       => {Europe}  0.17479675 0.6056338  0.28861789
## [11]  {50}                       => {L}       0.18699187 0.6478873  0.28861789
## [12]  {"<200K"}                  => {N_Amer}  0.22357724 0.7432432  0.30081301
## [13]  {"<200K"}                  => {100}     0.21544715 0.7162162  0.30081301
## [14]  {MI}                       => {L}       0.25203252 0.6019417  0.41869919
## [15]  {N_Amer}                   => {L}       0.26829268 0.6407767  0.41869919
## [16]  {N_Amer}                   => {100}     0.30894309 0.7378641  0.41869919
## [17]  {">200K", N_Amer}          => {L}       0.06504065 0.8421053  0.07723577
## [18]  {">200K", L}               => {N_Amer}  0.06504065 0.9411765  0.06910569
## [19]  {">200K", N_Amer}          => {100}     0.06097561 0.7894737  0.07723577
## [20]  {">200K", 100}             => {N_Amer}  0.06097561 1.0000000  0.06097561
## [21]  {">200K", L}               => {100}     0.05284553 0.7647059  0.06910569
## [22]  {">200K", 100}             => {L}       0.05284553 0.8666667  0.06097561
## [23]  {"<70K", 50}               => {Europe}  0.05691057 0.8235294  0.06910569
## [24]  {"<70K", Europe}           => {50}      0.05691057 0.6363636  0.08943089
## [25]  {Data Engineer, MI}        => {L}       0.06910569 0.7083333  0.09756098
## [26]  {Data Engineer, L}         => {MI}      0.06910569 0.7391304  0.09349593
## [27]  {100, Data Engineer}       => {MI}      0.05284553 0.6500000  0.08130081
## [28]  {Data Engineer, L}         => {100}     0.05691057 0.6086957  0.09349593
## [29]  {100, Data Engineer}       => {L}       0.05691057 0.7000000  0.08130081
## [30]  {"<100K", 50}              => {L}       0.05284553 0.7222222  0.07317073
## [31]  {"<100K", MI}              => {L}       0.06910569 0.7391304  0.09349593
## [32]  {"<100K", N_Amer}          => {100}     0.06504065 0.6956522  0.09349593
## [33]  {"<100K", 100}             => {N_Amer}  0.06504065 0.6153846  0.10569106
## [34]  {EN, S}                    => {100}     0.06097561 0.6818182  0.08943089
## [35]  {EN, N_Amer}               => {100}     0.06097561 0.8333333  0.07317073
## [36]  {"<200K", M}               => {N_Amer}  0.05284553 0.6842105  0.07723577
## [37]  {M, N_Amer}                => {"<200K"} 0.05284553 0.6190476  0.08536585
## [38]  {"<200K", M}               => {100}     0.06504065 0.8421053  0.07723577
## [39]  {M, N_Amer}                => {100}     0.06097561 0.7142857  0.08536585
## [40]  {50, Data Scientist}       => {Europe}  0.05691057 0.6666667  0.08536585
## [41]  {50, Data Scientist}       => {L}       0.06097561 0.7142857  0.08536585
## [42]  {"<200K", Data Scientist}  => {N_Amer}  0.05691057 0.8750000  0.06504065
## [43]  {Data Scientist, N_Amer}   => {"<200K"} 0.05691057 0.6666667  0.08536585
## [44]  {Data Scientist, Europe}   => {MI}      0.06097561 0.6000000  0.10162602
## [45]  {Data Scientist, L}        => {MI}      0.07317073 0.6000000  0.12195122
## [46]  {100, Data Scientist}      => {MI}      0.06910569 0.6296296  0.10975610
## [47]  {Data Scientist, N_Amer}   => {L}       0.05284553 0.6190476  0.08536585
## [48]  {Data Scientist, N_Amer}   => {100}     0.05284553 0.6190476  0.08536585
## [49]  {50, SE}                   => {L}       0.06097561 0.7142857  0.08536585
## [50]  {50, MI}                   => {Europe}  0.08130081 0.6666667  0.12195122
## [51]  {50, Europe}               => {L}       0.11788618 0.6744186  0.17479675
## [52]  {50, L}                    => {Europe}  0.11788618 0.6304348  0.18699187
## [53]  {Europe, L}                => {50}      0.11788618 0.6170213  0.19105691
## [54]  {50, MI}                   => {L}       0.08943089 0.7333333  0.12195122
## [55]  {"<200K", SE}              => {N_Amer}  0.11382114 0.7368421  0.15447154
## [56]  {N_Amer, SE}               => {"<200K"} 0.11382114 0.6829268  0.16666667
## [57]  {"<200K", SE}              => {100}     0.10975610 0.7105263  0.15447154
## [58]  {"<200K", MI}              => {N_Amer}  0.08943089 0.8148148  0.10975610
## [59]  {"<200K", MI}              => {L}       0.07723577 0.7037037  0.10975610
## [60]  {"<200K", MI}              => {100}     0.07723577 0.7037037  0.10975610
## [61]  {"<200K", N_Amer}          => {L}       0.14634146 0.6545455  0.22357724
## [62]  {"<200K", L}               => {N_Amer}  0.14634146 0.8372093  0.17479675
## [63]  {"<200K", N_Amer}          => {100}     0.17479675 0.7818182  0.22357724
## [64]  {"<200K", 100}             => {N_Amer}  0.17479675 0.8113208  0.21544715
## [65]  {"<200K", L}               => {100}     0.11788618 0.6744186  0.17479675
## [66]  {N_Amer, SE}               => {L}       0.10975610 0.6585366  0.16666667
## [67]  {L, SE}                    => {N_Amer}  0.10975610 0.6279070  0.17479675
## [68]  {N_Amer, SE}               => {100}     0.12195122 0.7317073  0.16666667
## [69]  {100, SE}                  => {N_Amer}  0.12195122 0.6521739  0.18699187
## [70]  {Europe, MI}               => {L}       0.09756098 0.6000000  0.16260163
## [71]  {MI, N_Amer}               => {L}       0.11788618 0.7250000  0.16260163
## [72]  {MI, N_Amer}               => {100}     0.10975610 0.6750000  0.16260163
## [73]  {L, N_Amer}                => {100}     0.19918699 0.7424242  0.26829268
## [74]  {100, N_Amer}              => {L}       0.19918699 0.6447368  0.30894309
## [75]  {100, L}                   => {N_Amer}  0.19918699 0.7101449  0.28048780
## [76]  {">200K", L, N_Amer}       => {100}     0.05284553 0.8125000  0.06504065
## [77]  {">200K", 100, N_Amer}     => {L}       0.05284553 0.8666667  0.06097561
## [78]  {">200K", 100, L}          => {N_Amer}  0.05284553 1.0000000  0.05284553
## [79]  {50, Europe, MI}           => {L}       0.06504065 0.8000000  0.08130081
## [80]  {50, L, MI}                => {Europe}  0.06504065 0.7272727  0.08943089
## [81]  {Europe, L, MI}            => {50}      0.06504065 0.6666667  0.09756098
## [82]  {"<200K", N_Amer, SE}      => {L}       0.07723577 0.6785714  0.11382114
## [83]  {"<200K", L, SE}           => {N_Amer}  0.07723577 1.0000000  0.07723577
## [84]  {L, N_Amer, SE}            => {"<200K"} 0.07723577 0.7037037  0.10975610
## [85]  {"<200K", N_Amer, SE}      => {100}     0.08536585 0.7500000  0.11382114
## [86]  {"<200K", 100, SE}         => {N_Amer}  0.08536585 0.7777778  0.10975610
## [87]  {100, N_Amer, SE}          => {"<200K"} 0.08536585 0.7000000  0.12195122
## [88]  {"<200K", L, SE}           => {100}     0.05284553 0.6842105  0.07723577
## [89]  {"<200K", MI, N_Amer}      => {L}       0.06504065 0.7272727  0.08943089
## [90]  {"<200K", L, MI}           => {N_Amer}  0.06504065 0.8421053  0.07723577
## [91]  {"<200K", MI, N_Amer}      => {100}     0.06910569 0.7727273  0.08943089
## [92]  {"<200K", 100, MI}         => {N_Amer}  0.06910569 0.8947368  0.07723577
## [93]  {100, MI, N_Amer}          => {"<200K"} 0.06910569 0.6296296  0.10975610
## [94]  {"<200K", L, MI}           => {100}     0.05284553 0.6842105  0.07723577
## [95]  {"<200K", 100, MI}         => {L}       0.05284553 0.6842105  0.07723577
## [96]  {"<200K", L, N_Amer}       => {100}     0.10975610 0.7500000  0.14634146
## [97]  {"<200K", 100, N_Amer}     => {L}       0.10975610 0.6279070  0.17479675
## [98]  {"<200K", 100, L}          => {N_Amer}  0.10975610 0.9310345  0.11788618
## [99]  {L, N_Amer, SE}            => {100}     0.07723577 0.7037037  0.10975610
## [100] {100, N_Amer, SE}          => {L}       0.07723577 0.6333333  0.12195122
## [101] {100, L, SE}               => {N_Amer}  0.07723577 0.7916667  0.09756098
## [102] {L, MI, N_Amer}            => {100}     0.08943089 0.7586207  0.11788618
## [103] {100, MI, N_Amer}          => {L}       0.08943089 0.8148148  0.10975610
## [104] {100, L, MI}               => {N_Amer}  0.08943089 0.7096774  0.12601626
## [105] {"<200K", L, N_Amer, SE}   => {100}     0.05284553 0.6842105  0.07723577
## [106] {"<200K", 100, N_Amer, SE} => {L}       0.05284553 0.6190476  0.08536585
## [107] {"<200K", 100, L, SE}      => {N_Amer}  0.05284553 1.0000000  0.05284553
## [108] {100, L, N_Amer, SE}       => {"<200K"} 0.05284553 0.6842105  0.07723577
## [109] {"<200K", L, MI, N_Amer}   => {100}     0.05284553 0.8125000  0.06504065
## [110] {"<200K", 100, MI, N_Amer} => {L}       0.05284553 0.7647059  0.06910569
## [111] {"<200K", 100, L, MI}      => {N_Amer}  0.05284553 1.0000000  0.05284553
##       lift     count
## [1]   2.160888 19   
## [2]   1.508658 17   
## [3]   1.311301 15   
## [4]   1.787179 17   
## [5]   1.561613 17   
## [6]   1.939785 22   
## [7]   1.508431 24   
## [8]   1.127990 23   
## [9]   1.107823 35   
## [10]  1.655399 43   
## [11]  1.207426 46   
## [12]  1.775125 55   
## [13]  1.314845 53   
## [14]  1.121801 62   
## [15]  1.194175 66   
## [16]  1.354586 76   
## [17]  1.569378 16   
## [18]  2.247858 16   
## [19]  1.449332 15   
## [20]  2.388350 15   
## [21]  1.403863 13   
## [22]  1.615152 13   
## [23]  2.250980 14   
## [24]  2.204866 14   
## [25]  1.320076 17   
## [26]  1.765302 17   
## [27]  1.552427 13   
## [28]  1.117456 14   
## [29]  1.304545 14   
## [30]  1.345960 13   
## [31]  1.377470 17   
## [32]  1.277093 16   
## [33]  1.469754 16   
## [34]  1.251696 15   
## [35]  1.529851 15   
## [36]  1.634134 13   
## [37]  2.057915 13   
## [38]  1.545954 16   
## [39]  1.311301 15   
## [40]  1.822222 14   
## [41]  1.331169 15   
## [42]  2.089806 14   
## [43]  2.216216 14   
## [44]  1.433010 15   
## [45]  1.433010 18   
## [46]  1.503776 17   
## [47]  1.153680 13   
## [48]  1.136461 13   
## [49]  1.331169 15   
## [50]  1.822222 20   
## [51]  1.256871 29   
## [52]  1.723188 29   
## [53]  2.137848 29   
## [54]  1.366667 22   
## [55]  1.759836 28   
## [56]  2.270270 28   
## [57]  1.304399 27   
## [58]  1.946063 22   
## [59]  1.311448 19   
## [60]  1.291874 19   
## [61]  1.219835 36   
## [62]  1.999548 36   
## [63]  1.435278 43   
## [64]  1.937718 43   
## [65]  1.238112 29   
## [66]  1.227273 27   
## [67]  1.499661 27   
## [68]  1.343284 30   
## [69]  1.557619 30   
## [70]  1.118182 24   
## [71]  1.351136 29   
## [72]  1.239179 27   
## [73]  1.362958 49   
## [74]  1.201555 49   
## [75]  1.696074 49   
## [76]  1.491604 13   
## [77]  1.615152 13   
## [78]  2.388350 13   
## [79]  1.490909 16   
## [80]  1.987879 16   
## [81]  2.309859 16   
## [82]  1.264610 19   
## [83]  2.388350 19   
## [84]  2.339339 19   
## [85]  1.376866 21   
## [86]  1.857605 21   
## [87]  2.327027 21   
## [88]  1.256088 13   
## [89]  1.355372 16   
## [90]  2.011242 16   
## [91]  1.418589 17   
## [92]  2.136944 17   
## [93]  2.093093 17   
## [94]  1.256088 13   
## [95]  1.275120 13   
## [96]  1.376866 27   
## [97]  1.170190 27   
## [98]  2.223636 27   
## [99]  1.291874 19   
## [100] 1.180303 19   
## [101] 1.890777 19   
## [102] 1.392692 22   
## [103] 1.518519 22   
## [104] 1.694958 22   
## [105] 1.256088 13   
## [106] 1.153680 13   
## [107] 2.388350 13   
## [108] 2.274538 13   
## [109] 1.491604 13   
## [110] 1.425134 13   
## [111] 2.388350 13

Sort Rules decreasing redundancy and inspect the rules

DcRules <- sort(DcRules, by = "lift", decreasing = TRUE)
inspect(DcRules)
##       lhs                           rhs       support    confidence coverage  
## [1]   {">200K", 100}             => {N_Amer}  0.06097561 1.0000000  0.06097561
## [2]   {">200K", 100, L}          => {N_Amer}  0.05284553 1.0000000  0.05284553
## [3]   {"<200K", L, SE}           => {N_Amer}  0.07723577 1.0000000  0.07723577
## [4]   {"<200K", 100, L, SE}      => {N_Amer}  0.05284553 1.0000000  0.05284553
## [5]   {"<200K", 100, L, MI}      => {N_Amer}  0.05284553 1.0000000  0.05284553
## [6]   {L, N_Amer, SE}            => {"<200K"} 0.07723577 0.7037037  0.10975610
## [7]   {100, N_Amer, SE}          => {"<200K"} 0.08536585 0.7000000  0.12195122
## [8]   {Europe, L, MI}            => {50}      0.06504065 0.6666667  0.09756098
## [9]   {100, L, N_Amer, SE}       => {"<200K"} 0.05284553 0.6842105  0.07723577
## [10]  {N_Amer, SE}               => {"<200K"} 0.11382114 0.6829268  0.16666667
## [11]  {"<70K", 50}               => {Europe}  0.05691057 0.8235294  0.06910569
## [12]  {">200K", L}               => {N_Amer}  0.06504065 0.9411765  0.06910569
## [13]  {"<200K", 100, L}          => {N_Amer}  0.10975610 0.9310345  0.11788618
## [14]  {Data Scientist, N_Amer}   => {"<200K"} 0.05691057 0.6666667  0.08536585
## [15]  {"<70K", Europe}           => {50}      0.05691057 0.6363636  0.08943089
## [16]  {">200K"}                  => {N_Amer}  0.07723577 0.9047619  0.08536585
## [17]  {Europe, L}                => {50}      0.11788618 0.6170213  0.19105691
## [18]  {"<200K", 100, MI}         => {N_Amer}  0.06910569 0.8947368  0.07723577
## [19]  {100, MI, N_Amer}          => {"<200K"} 0.06910569 0.6296296  0.10975610
## [20]  {"<200K", Data Scientist}  => {N_Amer}  0.05691057 0.8750000  0.06504065
## [21]  {M, N_Amer}                => {"<200K"} 0.05284553 0.6190476  0.08536585
## [22]  {"<200K", L, MI}           => {N_Amer}  0.06504065 0.8421053  0.07723577
## [23]  {"<200K", L}               => {N_Amer}  0.14634146 0.8372093  0.17479675
## [24]  {50, L, MI}                => {Europe}  0.06504065 0.7272727  0.08943089
## [25]  {"<200K", MI}              => {N_Amer}  0.08943089 0.8148148  0.10975610
## [26]  {"<70K"}                   => {Europe}  0.08943089 0.7096774  0.12601626
## [27]  {"<200K", 100}             => {N_Amer}  0.17479675 0.8113208  0.21544715
## [28]  {100, L, SE}               => {N_Amer}  0.07723577 0.7916667  0.09756098
## [29]  {"<200K", 100, SE}         => {N_Amer}  0.08536585 0.7777778  0.10975610
## [30]  {50, Data Scientist}       => {Europe}  0.05691057 0.6666667  0.08536585
## [31]  {50, MI}                   => {Europe}  0.08130081 0.6666667  0.12195122
## [32]  {"<50K"}                   => {Europe}  0.06910569 0.6538462  0.10569106
## [33]  {"<200K"}                  => {N_Amer}  0.22357724 0.7432432  0.30081301
## [34]  {Data Engineer, L}         => {MI}      0.06910569 0.7391304  0.09349593
## [35]  {"<200K", SE}              => {N_Amer}  0.11382114 0.7368421  0.15447154
## [36]  {50, L}                    => {Europe}  0.11788618 0.6304348  0.18699187
## [37]  {100, L}                   => {N_Amer}  0.19918699 0.7101449  0.28048780
## [38]  {100, L, MI}               => {N_Amer}  0.08943089 0.7096774  0.12601626
## [39]  {50}                       => {Europe}  0.17479675 0.6056338  0.28861789
## [40]  {"<200K", M}               => {N_Amer}  0.05284553 0.6842105  0.07723577
## [41]  {">200K", 100}             => {L}       0.05284553 0.8666667  0.06097561
## [42]  {">200K", 100, N_Amer}     => {L}       0.05284553 0.8666667  0.06097561
## [43]  {">200K", N_Amer}          => {L}       0.06504065 0.8421053  0.07723577
## [44]  {"<50K"}                   => {MI}      0.06910569 0.6538462  0.10569106
## [45]  {100, SE}                  => {N_Amer}  0.12195122 0.6521739  0.18699187
## [46]  {100, Data Engineer}       => {MI}      0.05284553 0.6500000  0.08130081
## [47]  {"<200K", M}               => {100}     0.06504065 0.8421053  0.07723577
## [48]  {EN, N_Amer}               => {100}     0.06097561 0.8333333  0.07317073
## [49]  {100, MI, N_Amer}          => {L}       0.08943089 0.8148148  0.10975610
## [50]  {">200K"}                  => {L}       0.06910569 0.8095238  0.08536585
## [51]  {Data Engineer}            => {MI}      0.09756098 0.6315789  0.15447154
## [52]  {100, Data Scientist}      => {MI}      0.06910569 0.6296296  0.10975610
## [53]  {L, SE}                    => {N_Amer}  0.10975610 0.6279070  0.17479675
## [54]  {">200K", L, N_Amer}       => {100}     0.05284553 0.8125000  0.06504065
## [55]  {"<200K", L, MI, N_Amer}   => {100}     0.05284553 0.8125000  0.06504065
## [56]  {50, Europe, MI}           => {L}       0.06504065 0.8000000  0.08130081
## [57]  {"<100K", 100}             => {N_Amer}  0.06504065 0.6153846  0.10569106
## [58]  {">200K", N_Amer}          => {100}     0.06097561 0.7894737  0.07723577
## [59]  {"<200K", N_Amer}          => {100}     0.17479675 0.7818182  0.22357724
## [60]  {Data Scientist, Europe}   => {MI}      0.06097561 0.6000000  0.10162602
## [61]  {Data Scientist, L}        => {MI}      0.07317073 0.6000000  0.12195122
## [62]  {"<200K", 100, MI, N_Amer} => {L}       0.05284553 0.7647059  0.06910569
## [63]  {"<200K", MI, N_Amer}      => {100}     0.06910569 0.7727273  0.08943089
## [64]  {">200K", L}               => {100}     0.05284553 0.7647059  0.06910569
## [65]  {L, MI, N_Amer}            => {100}     0.08943089 0.7586207  0.11788618
## [66]  {"<100K", MI}              => {L}       0.06910569 0.7391304  0.09349593
## [67]  {"<200K", N_Amer, SE}      => {100}     0.08536585 0.7500000  0.11382114
## [68]  {"<200K", L, N_Amer}       => {100}     0.10975610 0.7500000  0.14634146
## [69]  {50, MI}                   => {L}       0.08943089 0.7333333  0.12195122
## [70]  {L, N_Amer}                => {100}     0.19918699 0.7424242  0.26829268
## [71]  {"<200K", MI, N_Amer}      => {L}       0.06504065 0.7272727  0.08943089
## [72]  {N_Amer}                   => {100}     0.30894309 0.7378641  0.41869919
## [73]  {MI, N_Amer}               => {L}       0.11788618 0.7250000  0.16260163
## [74]  {"<100K", 50}              => {L}       0.05284553 0.7222222  0.07317073
## [75]  {N_Amer, SE}               => {100}     0.12195122 0.7317073  0.16666667
## [76]  {50, Data Scientist}       => {L}       0.06097561 0.7142857  0.08536585
## [77]  {50, SE}                   => {L}       0.06097561 0.7142857  0.08536585
## [78]  {Data Engineer, MI}        => {L}       0.06910569 0.7083333  0.09756098
## [79]  {"<200K"}                  => {100}     0.21544715 0.7162162  0.30081301
## [80]  {"<200K", MI}              => {L}       0.07723577 0.7037037  0.10975610
## [81]  {">200K"}                  => {100}     0.06097561 0.7142857  0.08536585
## [82]  {M, N_Amer}                => {100}     0.06097561 0.7142857  0.08536585
## [83]  {100, Data Engineer}       => {L}       0.05691057 0.7000000  0.08130081
## [84]  {"<200K", SE}              => {100}     0.10975610 0.7105263  0.15447154
## [85]  {"<200K", MI}              => {100}     0.07723577 0.7037037  0.10975610
## [86]  {L, N_Amer, SE}            => {100}     0.07723577 0.7037037  0.10975610
## [87]  {"<100K", N_Amer}          => {100}     0.06504065 0.6956522  0.09349593
## [88]  {"<200K", 100, MI}         => {L}       0.05284553 0.6842105  0.07723577
## [89]  {"<200K", N_Amer, SE}      => {L}       0.07723577 0.6785714  0.11382114
## [90]  {50, Europe}               => {L}       0.11788618 0.6744186  0.17479675
## [91]  {"<200K", L, SE}           => {100}     0.05284553 0.6842105  0.07723577
## [92]  {"<200K", L, MI}           => {100}     0.05284553 0.6842105  0.07723577
## [93]  {"<200K", L, N_Amer, SE}   => {100}     0.05284553 0.6842105  0.07723577
## [94]  {EN, S}                    => {100}     0.06097561 0.6818182  0.08943089
## [95]  {MI, N_Amer}               => {100}     0.10975610 0.6750000  0.16260163
## [96]  {"<200K", L}               => {100}     0.11788618 0.6744186  0.17479675
## [97]  {N_Amer, SE}               => {L}       0.10975610 0.6585366  0.16666667
## [98]  {"<200K", N_Amer}          => {L}       0.14634146 0.6545455  0.22357724
## [99]  {50}                       => {L}       0.18699187 0.6478873  0.28861789
## [100] {100, N_Amer}              => {L}       0.19918699 0.6447368  0.30894309
## [101] {N_Amer}                   => {L}       0.26829268 0.6407767  0.41869919
## [102] {100, N_Amer, SE}          => {L}       0.07723577 0.6333333  0.12195122
## [103] {"<200K", 100, N_Amer}     => {L}       0.10975610 0.6279070  0.17479675
## [104] {Data Scientist, N_Amer}   => {L}       0.05284553 0.6190476  0.08536585
## [105] {"<200K", 100, N_Amer, SE} => {L}       0.05284553 0.6190476  0.08536585
## [106] {Data Scientist, N_Amer}   => {100}     0.05284553 0.6190476  0.08536585
## [107] {Data Engineer}            => {L}       0.09349593 0.6052632  0.15447154
## [108] {MI}                       => {L}       0.25203252 0.6019417  0.41869919
## [109] {Europe, MI}               => {L}       0.09756098 0.6000000  0.16260163
## [110] {Data Engineer, L}         => {100}     0.05691057 0.6086957  0.09349593
## [111] {S}                        => {100}     0.14227642 0.6034483  0.23577236
##       lift     count
## [1]   2.388350 15   
## [2]   2.388350 13   
## [3]   2.388350 19   
## [4]   2.388350 13   
## [5]   2.388350 13   
## [6]   2.339339 19   
## [7]   2.327027 21   
## [8]   2.309859 16   
## [9]   2.274538 13   
## [10]  2.270270 28   
## [11]  2.250980 14   
## [12]  2.247858 16   
## [13]  2.223636 27   
## [14]  2.216216 14   
## [15]  2.204866 14   
## [16]  2.160888 19   
## [17]  2.137848 29   
## [18]  2.136944 17   
## [19]  2.093093 17   
## [20]  2.089806 14   
## [21]  2.057915 13   
## [22]  2.011242 16   
## [23]  1.999548 36   
## [24]  1.987879 16   
## [25]  1.946063 22   
## [26]  1.939785 22   
## [27]  1.937718 43   
## [28]  1.890777 19   
## [29]  1.857605 21   
## [30]  1.822222 14   
## [31]  1.822222 20   
## [32]  1.787179 17   
## [33]  1.775125 55   
## [34]  1.765302 17   
## [35]  1.759836 28   
## [36]  1.723188 29   
## [37]  1.696074 49   
## [38]  1.694958 22   
## [39]  1.655399 43   
## [40]  1.634134 13   
## [41]  1.615152 13   
## [42]  1.615152 13   
## [43]  1.569378 16   
## [44]  1.561613 17   
## [45]  1.557619 30   
## [46]  1.552427 13   
## [47]  1.545954 16   
## [48]  1.529851 15   
## [49]  1.518519 22   
## [50]  1.508658 17   
## [51]  1.508431 24   
## [52]  1.503776 17   
## [53]  1.499661 27   
## [54]  1.491604 13   
## [55]  1.491604 13   
## [56]  1.490909 16   
## [57]  1.469754 16   
## [58]  1.449332 15   
## [59]  1.435278 43   
## [60]  1.433010 15   
## [61]  1.433010 18   
## [62]  1.425134 13   
## [63]  1.418589 17   
## [64]  1.403863 13   
## [65]  1.392692 22   
## [66]  1.377470 17   
## [67]  1.376866 21   
## [68]  1.376866 27   
## [69]  1.366667 22   
## [70]  1.362958 49   
## [71]  1.355372 16   
## [72]  1.354586 76   
## [73]  1.351136 29   
## [74]  1.345960 13   
## [75]  1.343284 30   
## [76]  1.331169 15   
## [77]  1.331169 15   
## [78]  1.320076 17   
## [79]  1.314845 53   
## [80]  1.311448 19   
## [81]  1.311301 15   
## [82]  1.311301 15   
## [83]  1.304545 14   
## [84]  1.304399 27   
## [85]  1.291874 19   
## [86]  1.291874 19   
## [87]  1.277093 16   
## [88]  1.275120 13   
## [89]  1.264610 19   
## [90]  1.256871 29   
## [91]  1.256088 13   
## [92]  1.256088 13   
## [93]  1.256088 13   
## [94]  1.251696 15   
## [95]  1.239179 27   
## [96]  1.238112 29   
## [97]  1.227273 27   
## [98]  1.219835 36   
## [99]  1.207426 46   
## [100] 1.201555 49   
## [101] 1.194175 66   
## [102] 1.180303 19   
## [103] 1.170190 27   
## [104] 1.153680 13   
## [105] 1.153680 13   
## [106] 1.136461 13   
## [107] 1.127990 23   
## [108] 1.121801 62   
## [109] 1.118182 24   
## [110] 1.117456 14   
## [111] 1.107823 35

North America continues to heavily populate the rules, so create a datasubset only including Europe for better output results

somerules<-subset(DcRules, subset=items %in% "Europe")
inspect(somerules)
##      lhs                         rhs      support    confidence coverage  
## [1]  {Europe, L, MI}          => {50}     0.06504065 0.6666667  0.09756098
## [2]  {"<70K", 50}             => {Europe} 0.05691057 0.8235294  0.06910569
## [3]  {"<70K", Europe}         => {50}     0.05691057 0.6363636  0.08943089
## [4]  {Europe, L}              => {50}     0.11788618 0.6170213  0.19105691
## [5]  {50, L, MI}              => {Europe} 0.06504065 0.7272727  0.08943089
## [6]  {"<70K"}                 => {Europe} 0.08943089 0.7096774  0.12601626
## [7]  {50, Data Scientist}     => {Europe} 0.05691057 0.6666667  0.08536585
## [8]  {50, MI}                 => {Europe} 0.08130081 0.6666667  0.12195122
## [9]  {"<50K"}                 => {Europe} 0.06910569 0.6538462  0.10569106
## [10] {50, L}                  => {Europe} 0.11788618 0.6304348  0.18699187
## [11] {50}                     => {Europe} 0.17479675 0.6056338  0.28861789
## [12] {50, Europe, MI}         => {L}      0.06504065 0.8000000  0.08130081
## [13] {Data Scientist, Europe} => {MI}     0.06097561 0.6000000  0.10162602
## [14] {50, Europe}             => {L}      0.11788618 0.6744186  0.17479675
## [15] {Europe, MI}             => {L}      0.09756098 0.6000000  0.16260163
##      lift     count
## [1]  2.309859 16   
## [2]  2.250980 14   
## [3]  2.204866 14   
## [4]  2.137848 29   
## [5]  1.987879 16   
## [6]  1.939785 22   
## [7]  1.822222 14   
## [8]  1.822222 20   
## [9]  1.787179 17   
## [10] 1.723188 29   
## [11] 1.655399 43   
## [12] 1.490909 16   
## [13] 1.433010 15   
## [14] 1.256871 29   
## [15] 1.118182 24