Snowfall in Syracuse, Dec 3-10
| dates | 3 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 |
| snowfall | 0 | 2.1 | 6.8 | 12.9 | 9.3 | 11.8 | 1.9 | 0.1 |
Snowfall in Syracuse, Dec 10-18
| dates | 10.0 | 11 | 12 | 13.0 | 14 | 15.0 | 16.0 | 17 |
| snowfall | 0.1 | 0 | 0 | 1.4 | 5 | 7.6 | 3.4 | 1 |
Course Orientation
Dr Robert Batzinger
Instructor Emeritus
Payap University
Chiang Mai, Thailand
15-Aug-2022
to the first day of class!!
Who are you?
Speed round: (4 questions < 3min)
When you think about calculus what words or emotions come to mind?
What do you think about math textbooks?
email: robert_b@payap.ac.th
Office: PC314 (Office hrs by appointment
Canvas LMS: https://canvas.instructure.com/enroll/RWWR4A
Google Classroom: https://classroom.google.com/c/NTM3NzI0MDgxMjUx?cjc=tcitkp5
Slides: https://rpubs.com/rbatzing/
Definition and properties of the limit, rate-of-change and the derivative, differentiation laws, development of the definite integral as area under the curve, the indefinite integral and the Fundamental Theorem of Calculus, integrals of standard functions, techniques of integration, applications of integration, simple differential equations, introduction to partial differentiation and multi-variable integration.
By the end of the course, students should be able to:
Flight state: x,y,z,yaw,spin1,spin2,spin3,spin4
Flight path: Jerk, Snap, Acceleration, Velocity, Distance and Time
\(\begin{eqnarray} J_{t} &=& J_{(t-1)} + S_{t} dt\cr A_{t} &=& A_{(t-1)} + J_{t} dt\cr V_{t} &=& V_{(t-1)} + A_{t} dt\cr D_{t} &=& D_{(t-1)} + V_{t} dt\cr \end{eqnarray}\)
Snowfall in Syracuse, Dec 3-10
| dates | 3 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 |
| snowfall | 0 | 2.1 | 6.8 | 12.9 | 9.3 | 11.8 | 1.9 | 0.1 |
Snowfall in Syracuse, Dec 10-18
| dates | 10.0 | 11 | 12 | 13.0 | 14 | 15.0 | 16.0 | 17 |
| snowfall | 0.1 | 0 | 0 | 1.4 | 5 | 7.6 | 3.4 | 1 |
\[y = \frac{1}{a}\left(\left(x-3\right)\left(x-11\right)\left(x-18\right)\right)^4\]
Data:
| temp | chirp1 | chirp2 | chirp3 | chirp4 | chirp5 | V7 |
|---|---|---|---|---|---|---|
| 15 | 80 | 83 | 68 | 77 | 78 | 77.2 |
| 20 | 115 | 127 | 114 | 116 | 120 | 118.4 |
| 25 | 157 | 151 | 149 | 145 | 150 | 150.4 |
| 30 | 189 | 199 | 184 | 190 | 184 | 189.2 |
| 35 | 229 | 212 | 211 | 224 | 226 | 220.4 |
\[T = 0.1381 C_{60} + 4.13\]
where \(T\) equals Temperature in Celsius, and \(C_{60}\) equals the number of chirps per min
\[T = \frac{C_{58}}{7} + 4\]
| Statistic | Mean value | Std dev |
|---|---|---|
| slope | 0.138089 | 0.00337 |
| intercept | 4.132055 | 0.536978 |
| \(R^2\) | 0.9859 | NA |
Algebra was described in the 9th century book (cIlm al-jabr wa l-muqābala) “The Science of Restoring and Balancing”, by the Persian mathematician al-Khwarizmi Muḥammad ibn Mūsā al-Khwārizmī. الجبر al-jabr “resetting” refers to moving a term between the sides of an equation, المقابلة al-muqābala “balancing” referred to adding equal terms to both sides. The book is full of algorithms for solving equations.
| Property | Example |
|---|---|
| Addition property of equality: | \(a + \color{red}{c}= b + \color{red}{c}\) |
| Subtraction property of equality: | \(a - \color{red}{c} = b - \color{red}{c}\) |
| Multiplicative property of equality: | \(a \color{red}{c}= b \color{red}{c}\) |
| Division property of equality: | \(a /\color{red}{c} = b / \color{red}{c}\) |
| Reciprocal property of equality: | \(\frac{1}{a} = \frac{1}{b}\) |
| Functional equivalents of equality: | \(f(a) = f(b)\) |
| Property | Addition | Multiplication |
|---|---|---|
| commutative | \(a + b = b + a\) | \(a b = b a\) |
| associative | \((a+b)+c = a+(b+c)\) | \((ab)c = a(bc)\) |
| distributive | \(a(b+c)=ab + ac\) | |
| identity | \(a+0 = a\) | \(a\times 1 = a\) |
| inverse | \(I(a) = -a\) | \(I(a) = \frac{1}{a}\) |
\[\frac{x+2}{4} = \frac{x-1}{3} +2\]
\[\eqalign{\frac{x+2}{4} \color{red}{{- \frac{x-1}{3}}} &=& \color{yellow}{\frac{x-1}{3}} + 2 \color{red}{- \frac{x-1}{3}}\cr \color{red}{\left(\frac{3}{3}\right)}\left(\frac{x+2}{\color{yellow}{4}}\right) - \color{red}{\left(\frac{4}{4}\right)}\left(\frac{x-1}{\color{yellow}{3}}\right) &=& 2\cr \color{red}{12}\left(\frac{3x +6}{\color{yellow}{12}} - \frac{4x-4}{\color{yellow}{12}}\right) &=& 2 \color{red}{\times 12}}\]
\[2(x-3) - 17 = 13 - 3(x+2)\]
\[\frac{3}{x+6} + \frac{1}{x-2} = \frac{4}{x^2 + 4x -12}\] \[\frac{1}{x} + \frac{1}{q} = \frac{1}{f}\]
\[(x^2 -25)(x + 5) = 11(x-5)\]
\(\eqalign{(ax+b)(cx+d) &=& (acx^2 + adx) + bcx + bd)\\ &=& acx^2 + (ad+bc)x + bd}\)
\[(x+3)(x-2) = (x^x -2x) + (3x - 6)= x^2 + x -6\]
\[(x+3)(x+3) = (x^x +3x) + (3x + 9)= x^2 + 6x + 9\] \[(x+3)(x-3) = (x^x -3x) + (3x - 9)=x^2 - 9\]
Given this graph of an unknown relationship what can we say about its root factors and its behavior?
\[\begin{eqnarray} y &=& \frac{x}{2} -1 \\ y &=& -2x + 1\\ \\ \frac{x}{2} -1 &=& -2x + 1\\ \frac{x}{2} -1 \color{red}{+ 2x +1}&=& -2x + 1\color{red}{+ 2x +1}\\ \left(\frac{5}{2}\right)x\color{red}{\times \frac{2}{5}} &=& 2\color{red}{\times \frac{2}{5}}\\ x &=& \frac{4}{5}\\ y &=& -2\left(\frac{4}{5}\right) + 1 = -\frac{8}{5} + 1\\ y &=&-\frac{3}{5} \end{eqnarray}\]
\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\]
* For \(x^2-25 = 0\) : \((x+5)(x-5)\)
\[x = \frac{\pm\sqrt{-4(-25)}}{2} = \pm \frac{\sqrt{100}}{2} = \pm 5\]
\(\frac{-b}{2a} = \cases{x_{(y_{max})}, & if a < 0\cr x_{(y_{min})}, & if a > 0\cr}\)
\(\begin{eqnarray} 2x & + y & + z &=& 5\cr 4x &- 6y & &=& -2\cr -2x &+ 7y & + 2z &=& 9 \cr \end{eqnarray}\)
\(\left[\begin{matrix} 2 & 1M& 1\cr 4&-6& 0\cr -2& 7& 2&\cr\end{matrix}\right] \left[ \begin{matrix} x \cr y \cr z \cr\end{matrix}\right] = \left[\begin{matrix} 5\cr -2\cr 9 \cr \end{matrix}\right]\)
\(\left[ \begin{matrix} 1 & \frac{1}{2} & \frac{1}{2}\cr 4-2\times2 &-6-2\times1 & 0-2\times1\cr -2+2& 7+1& 2+1\cr\end{matrix}\right] \left[ \begin{matrix} x \cr y \cr z \cr\end{matrix}\right] = \left[\begin{matrix} \frac{5}{2}\cr -2-2\times5\cr 9 + 5\cr \end{matrix}\right]\)
\(\left[ \begin{matrix} 1 & \frac{1}{2} & \frac{1}{2}\cr 0 &-8 & -2\cr 0& 8& 3\cr\end{matrix}\right] \left[ \begin{matrix} x \cr y \cr z \cr\end{matrix}\right] = \left[\begin{matrix} \frac{5}{2}\cr -12\cr 14\cr \end{matrix}\right]\)
\(\left[ \begin{matrix} 1 & \frac{1}{2} & \frac{1}{2}\cr 0 &\frac{-8}{-8} & \frac{-2}{-8}\cr 0& 8-8& 3-2\cr\end{matrix}\right] \left[ \begin{matrix} x \cr y \cr z \cr\end{matrix}\right] = \left[\begin{matrix} \frac{5}{2}\cr \frac{-12}{-8}\cr 14-12\cr \end{matrix}\right]\)
\(\left[ \begin{matrix} 1 & \frac{1}{2} & \frac{1}{2}\cr 0 & 1 & \frac{1}{4}\cr 0& 0& 1\cr\end{matrix}\right] \left[ \begin{matrix} x \cr y \cr z \cr\end{matrix}\right] = \left[\begin{matrix} \frac{5}{2}\cr \frac{3}{2}\cr 2\cr \end{matrix}\right]\)
Back substitute the third variable \(\left[ \begin{matrix} 1 & \frac{1}{2} & \frac{1}{2}-\frac{1}{2}\cr 0 & 1 & \frac{1}{4}-\frac{1}{4}\cr 0& 0& 1\cr\end{matrix}\right] \left[ \begin{matrix} x \cr y \cr z \cr\end{matrix}\right] = \left[\begin{matrix} \frac{5}{2} -\frac{2}{2}\cr \frac{3}{2}-\frac{2}{4}\cr 2\cr \end{matrix}\right]\)
Rearrange
\(\left[ \begin{matrix} 1 & \frac{1}{2} & 0 \cr 0 & 1 & 0 \cr 0& 0& 1\cr\end{matrix}\right] \left[ \begin{matrix} x \cr y \cr z \cr\end{matrix}\right] = \left[\begin{matrix} \frac{3}{2}\cr 1 \cr 2\cr \end{matrix}\right]\)
\(\left[ \begin{matrix} 1 & \frac{1}{2}-\frac{1}{2} & 0 \cr 0 & 1 & 0 \cr 0& 0& 1\cr\end{matrix}\right] \left[ \begin{matrix} x \cr y \cr z \cr\end{matrix}\right]= \left[\begin{matrix} \frac{3}{2} - \frac{1}{2} \cr 1 \cr 2\cr \end{matrix}\right]\)
\(\left[ \begin{matrix} 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0& 0& 1\cr\end{matrix}\right] \left[ \begin{matrix} x \cr y \cr z \cr\end{matrix}\right] = \left[\begin{matrix} 1 \cr 1 \cr 2\cr \end{matrix}\right]\)
\(\left[ \begin{matrix} x \cr y \cr z \cr\end{matrix}\right] = \left[\begin{matrix} 1 \cr 1 \cr 2\cr \end{matrix}\right]\)
\[\left[\begin{matrix} 2 & 1 & 1\cr 4&-6& 0\cr -2& 7& 2&\cr\end{matrix}\right] \left[\begin{matrix} 1 \cr 1 \cr 2\cr \end{matrix}\right] = \left[\begin{matrix} 2\times 1 + 1\times 1 +1\times 2\cr 4 \times 1 + -6\times 1 + 0\times 2\cr -2\times 1+ 7\times 1 + 2\times 2 \cr\end{matrix}\right] =\]
\[\left[\begin{matrix} 2 + 1 + 2\cr 4 + -6 \cr -2 + 7 + 4\cr\end{matrix}\right] = \left[\begin{matrix} 5\cr -2\cr 9 \cr \end{matrix}\right]\]
\[C_6H_{12}O_6 + O_2 \longrightarrow CO_2 + H_2O\]
Setup the Stoichiometry Table
| Parameter | \(C_6H_12O_6\) | \(O_2\) | \(CO_2\) | \(H_2O\) |
|---|---|---|---|---|
| Number of Molecules | \(x\) | \(y\) | \(z\) | \(w\) |
| Sugar molecule | \(x = 1\) | |||
| Carbon atoms | \(6x\) | \(-z\) | ||
| Hydrogen atoms | \(12x\) | \(-2w\) | ||
| Oxygen atoms | \(6x\) | \(2y\) | \(-2z\) | \(-w\) |
\[\left[\begin{matrix} 1 & 0 & 0 & 0\cr 6 & 2 & -2 & -1\cr12 & 0 & 0 & -2\cr 6 & 0 & -2 & 0 \cr\end{matrix}\right]\left[\begin{matrix}x\cr y\cr z\cr w\cr\end{matrix}\right] = \left[\begin{matrix}1\cr0\cr0\cr0\cr\end{matrix}\right]\]
\[\left[\begin{matrix} 1 & 0 & 0 & 0\cr 0 & 2 & -2 & -1\cr 0 & 0 & 0 & -2\cr 0 & 0 & -2 & 0 \cr\end{matrix}\right]\left[\begin{matrix}x\cr y\cr z\cr w\cr\end{matrix}\right] = \left[\begin{matrix}1\cr -6\cr -12\cr -6\cr\end{matrix}\right]\]
\[\left[\begin{matrix} 1 & 0 & 0 & 0\cr 0 & 1 & -1 & -\frac{1}{2}\cr 0 & 0 & 0 & -2\cr 0 & 0 & -2 & 0 \cr\end{matrix}\right]\left[\begin{matrix}x\cr y\cr z\cr w\cr\end{matrix}\right] = \left[\begin{matrix}1\cr -3\cr -12\cr -6\cr\end{matrix}\right]\]
\[\left[\begin{matrix} 1 & 0 & 0 & 0\cr 0 & 1 & -1 & -\frac{1}{2}\cr0 & 0 & 1 & 0 \cr 0 & 0 & 0 & 1\cr \end{matrix}\right]\left[\begin{matrix}x\cr y\cr z\cr w\cr\end{matrix}\right] = \left[\begin{matrix}1\cr -3\cr 3\cr 6\cr\end{matrix}\right]\]
\[\left[\begin{matrix} 1 & 0 & 0 & 0\cr 0 & 1 & 0 & 0 \cr0 & 0 & 1 & 0 \cr 0 & 0 & 0 & 1\cr \end{matrix}\right]\left[\begin{matrix}x\cr y\cr z\cr w\cr\end{matrix}\right] = \left[\begin{matrix}1\cr 3\cr 3\cr 6\cr\end{matrix}\right]\]
\[C_6H_{12}O_6 + 3 O_2 \longrightarrow 3 CO_2 + 6 H_2O\]
\[\left[\begin{matrix} 1 & 0 & 0 & 0\cr 6 & 2 & -2 & -1\cr12 & 0 & 0 & -2\cr 6 & 0 & -2 & 0 \cr\end{matrix}\right]\left[\begin{matrix}1\cr 3\cr 3\cr 6\cr\end{matrix}\right] = \left[\begin{matrix}1\cr6+6-6-6\cr12-12\cr6-6\cr\end{matrix}\right]=\left[\begin{matrix}1\cr0\cr0\cr0\cr\end{matrix}\right]\]
\[IO_3^- + I^- + H^+ \longrightarrow I_3^- + H_2O\]
| Variables | \(x\) | \(y\) | \(z\) | \(w\) | \(v\) | total |
|---|---|---|---|---|---|---|
| Molecules | \(IO_3^-\) | \(I^-\) | \(H^+\) | \({I_3}^-\) | \(H_2O\) | - |
| I | \(x\) | \(y\) | \(-3w\) | 0 | ||
| O | \(3x\) | \(-v\) | 0 | |||
| H | \(z\) | \(-2v\) | 0 | |||
| electrons | \(x\) | \(y\) | \(-z\) | \(-w\) | 0 | |
| Multiple | \(x\) | 1 |
\[IO_3^- + 8I^- + 6H^+ \longrightarrow 3{I_3}^- + 3H_2O\]
The slide rule was a mechanical analog computer based on logrithms. It was invented in the 1600’2 to multiply and divide numbers and provide values for logarithmic, and trigonometric functions. Output was 3 significant decimal digits in scientific notation.
Multiplying with a slide rule
\(\begin{eqnarray} \log(6) &=& \log(1) &+& \log(2) &+& \log(3)\\ 0.7781_{(6)} &=& 0.0000_{(0)} &+& 0.3010_{(2)} &+& 0.4771_{(3)}\\ \end{eqnarray}\)
\(\begin{eqnarray} \log(ab) &=& \log(1) &+& \log(a) &+& \log(b)\\ 1.0791_{(12)} &=& 0.0000_{(0)} &+& 0.3010_{(2)} &+& 0.7781_{(6)}\\ \end{eqnarray}\)
Exponentiation:
\(\begin{eqnarray} \log(x^y) &=& y \log(x)\\ \log(3^4) &=& 4 \log(3)\\ 1.9084_{(81)} &=& 4 \times 0.4771_{(3)}\\ \end{eqnarray}\)
Square root
\(\begin{eqnarray} \log(\sqrt{x}) &=& \log(x^{\frac{1}{2}}) = \frac{\log(x)}{2}\\ \log(\sqrt{4}) &=& \log(4^{\frac{1}{2}}) = \frac{\log(4)}{2}\\ 0.3010_{(2)} &=& 0.5 \times 0.6021_{(4)}\\ \end{eqnarray}\)
\[x = 10^{\log(x)}\]
1.00000 0.00000 1.00000
2.00000 0.30103 2.00000
3.00000 0.47712 3.00000
4.00000 0.60206 4.00000
5.00000 0.69897 5.00000
6.00000 0.77815 6.00000
7.00000 0.84510 7.00000
8.00000 0.90309 8.00000
9.00000 0.95424 9.00000
10.00000 1.00000 10.00000
\[log_n(x) = \frac{\log_{10}(x)}{\log_{10}{(n)}}\]
x log10(x) log10(n) log2(x) 2^(log2(x)
2 0.3010 0.3010 1.0000 2.0000
3 0.4771 0.3010 1.5850 3.0000
4 0.6021 0.3010 2.0000 4.0000
5 0.6990 0.3010 2.3219 5.0000
6 0.7782 0.3010 2.5850 6.0000
7 0.8451 0.3010 2.8074 7.0000
8 0.9031 0.3010 3.0000 8.0000
9 0.9542 0.3010 3.1699 9.0000
10 1.0000 0.3010 3.3219 10.0000
Archimedes: \(\frac{22}{7}\)
Zu Chongzhi: \(\frac{355}{113}\)
Gregory-Leibniz Series:
\(\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\ldots\)
Nilakantha Series:
\(\pi= 3+ \frac{4}{2\times 3 \times 4}-\frac{4}{4\times 5 \times 6}+\frac{4}{6\times 7 \times 8}-\frac{4}{8\times 9 \times 10}+\ldots\)
$$\[\begin{eqnarray} 1 &=& sin(x)^2 + cos(x)^2\cr sin(x) &=&\sqrt{1-cos(x)^2}\cr \end{eqnarray}\]$$
\(\frac{A}{sin(a)} = \frac{B}{sin(b)} = \frac{C}{sin(c)}\)
PYU IT204 2022/1: Calculus ….. [1]