We will use plotly and we might need dplyr for data manipulation:
if (!require("plotly")) install.packages("plotly")
## Loading required package: plotly
## Loading required package: ggplot2
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
suppressMessages() cuts off some output printouts that clutter the document
suppressMessages(library(plotly))
suppressMessages(library(dplyr))
We can try two types of plot from the package description examples, box and scatter
plot_ly(iris, x = ~Petal.Width, color = ~Species, type = "box")
plot_ly(
data = iris,
x = ~Petal.Length,
y = ~Petal.Width,
type = "scatter",
mode = "markers",
color = ~Species
)
data("storms")
storms %>% head()
## # A tibble: 6 x 13
## name year month day hour lat long status category wind pressure
## <chr> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <chr> <ord> <int> <int>
## 1 Amy 1975 6 27 0 27.5 -79 tropical de… -1 25 1013
## 2 Amy 1975 6 27 6 28.5 -79 tropical de… -1 25 1013
## 3 Amy 1975 6 27 12 29.5 -79 tropical de… -1 25 1013
## 4 Amy 1975 6 27 18 30.5 -79 tropical de… -1 25 1013
## 5 Amy 1975 6 28 0 31.5 -78.8 tropical de… -1 25 1012
## 6 Amy 1975 6 28 6 32.4 -78.7 tropical de… -1 25 1012
## # … with 2 more variables: ts_diameter <dbl>, hu_diameter <dbl>
trying out storms data
plot_ly(data = storms, x = ~category, y =~wind, color = ~status, type = "scatter", mode = "markers", size = 5, alpha = .4)