Análisis de datos para tesis del Dr. Omar Quintero

la base d

library(readxl)
demogradromar <- read_excel("C:/Users/fidel/OneDrive - CINVESTAV/PROYECTO MDatos/TRABAJOS/Dr Omar quintero  entrega 12-08/demogradromar.xlsx")
View(demogradromar)


dbomar <- demogradromar

#para hacer las tablas trabajaremos con los siguientes paquetes

#Trabajamos con estos paquetes 

library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✔ ggplot2 3.3.6     ✔ purrr   0.3.4
## ✔ tibble  3.1.7     ✔ dplyr   1.0.9
## ✔ tidyr   1.2.0     ✔ stringr 1.4.0
## ✔ readr   2.1.2     ✔ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(magrittr)
## 
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
## 
##     set_names
## The following object is masked from 'package:tidyr':
## 
##     extract
library(gt)

names(dbomar)
##  [1] "paquete"                "sexo"                   "edad"                  
##  [4] "peso"                   "talla"                  "gporh"                 
##  [7] "dx"                     "díasextraccion"         "cantidadpg"            
## [10] "mortalidad28d"          "tiepouci"               "ventilaciondias"       
## [13] "vasoactivocardiacodias" "soporterenaldias"       "eventosinfecciosos"    
## [16] "eventosadbersos"
str(dbomar)
## tibble [26 × 16] (S3: tbl_df/tbl/data.frame)
##  $ paquete               : chr [1:26] "Gfresco" "Gfresco" "Gfresco" "Gfresco" ...
##  $ sexo                  : chr [1:26] "Masculino" "Masculino" "Masculino" "Masculino" ...
##  $ edad                  : num [1:26] 60 30 21 23 22 24 56 24 24 45 ...
##  $ peso                  : num [1:26] 82.5 79 79 91 87 ...
##  $ talla                 : num [1:26] 176 180 189 172 187 163 170 176 180 175 ...
##  $ gporh                 : chr [1:26] "O Positivo" "O Positivo" "A Positivo" "O Positivo" ...
##  $ dx                    : chr [1:26] "TCE Severo" "TCE Severo" "TCE Severo" "TCE Severo" ...
##  $ díasextraccion        : num [1:26] 15 15 15 15 14 14 14 14 13 13 ...
##  $ cantidadpg            : num [1:26] 2 1 1 2 1 2 2 2 3 1 ...
##  $ mortalidad28d         : chr [1:26] "SI" "NO" "NO" "NO" ...
##  $ tiepouci              : num [1:26] 10 3 9 6 10 8 10 16 7 6 ...
##  $ ventilaciondias       : num [1:26] 28 1 9 5 8 6 7 16 7 6 ...
##  $ vasoactivocardiacodias: num [1:26] 10 1 8 5 7 5 7 16 6 5 ...
##  $ soporterenaldias      : num [1:26] 0 0 0 0 0 0 0 0 0 0 ...
##  $ eventosinfecciosos    : chr [1:26] "SI" "NO" "SI" "SI" ...
##  $ eventosadbersos       : chr [1:26] "NO" "NO" "NO" "NO" ...
dbomar$tiepouci = as.numeric(dbomar$tiepouci)

dbomar %>% gt()
paquete sexo edad peso talla gporh dx díasextraccion cantidadpg mortalidad28d tiepouci ventilaciondias vasoactivocardiacodias soporterenaldias eventosinfecciosos eventosadbersos
Gfresco Masculino 60 82.5 176 O Positivo TCE Severo 15 2 SI 10 28 10 0 SI NO
Gfresco Masculino 30 79.0 180 O Positivo TCE Severo 15 1 NO 3 1 1 0 NO NO
Gfresco Masculino 21 79.0 189 A Positivo TCE Severo 15 1 NO 9 9 8 0 SI NO
Gfresco Masculino 23 91.0 172 O Positivo TCE Severo 15 2 NO 6 5 5 0 SI NO
Gfresco Masculino 22 87.0 187 O Positivo TCE Severo 14 1 NO 10 8 7 0 SI NO
Gfresco Masculino 24 64.0 163 O Positivo TCE Severo 14 2 NO 8 6 5 0 SI NO
Gfresco Masculino 56 67.5 170 O Positivo TCE Severo 14 2 NO 10 7 7 0 SI NO
Gfresco Masculino 24 96.5 176 A Positivo TCE Severo 14 2 SI 16 16 16 0 SI NO
Gfresco Masculino 24 98.0 180 O Positivo TCE Severo 13 3 NO 7 7 6 0 SI NO
Gfresco Masculino 45 100.5 175 O Positivo TCE Severo 13 1 NO 6 6 5 0 SI NO
Gfresco Masculino 32 87.0 187 O Positivo TCE Severo 12 3 NO 8 4 4 0 NO NO
Gfresco Femenino 65 67.5 165 O Positivo TCE Severo 10 1 NO 3 1 1 0 NO NO
Gfresco Femenino 28 91.0 178 B Positivo TCE Severo 7 1 SI 12 19 12 0 SI NO
Gestandard Femenino 28 105.0 178 B Negativo TCE Severo 38 2 NO 3 1 1 0 SI NO
Gestandard Femenino 44 49.0 156 A Positivo TCE Severo 38 3 NO 8 14 5 0 SI NO
Gestandard Masculino 28 105.0 178 A Positivo TCE Severo 26 3 NO 3 1 NA 0 NO NO
Gestandard Masculino 21 87.5 166 A Positivo TCE Severo 24 1 NO 12 10 9 0 SI NO
Gestandard Femenino 45 58.0 160 A Positivo TCE Severo 23 1 NO 16 16 12 0 NO NO
Gestandard Femenino 77 60.0 156 A Positivo TCE Severo 18 3 NO 10 23 8 0 SI NO
Gestandard Masculino 45 93.0 169 O Positivo TCE Severo 18 3 SI 15 19 15 0 SI NO
Gestandard Masculino 25 87.0 172 O Positivo TCE Severo 17 2 NO 15 35 11 0 SI NO
Gestandard Masculino 41 91.0 164 O Positivo TCE Severo 17 2 SI 6 6 6 0 SI NO
Gestandard Femenino 35 88.5 163 A Positivo TCE Severo 17 1 SI 8 8 8 0 SI NO
Gestandard Femenino 44 59.8 167 O Positivo TCE Severo 16 5 NO 7 18 6 0 SI NO
Gestandard Femenino 72 63.0 163 A Positivo TCE Severo 16 1 SI 15 15 15 0 SI NO
Gestandard Masculino 31 60.0 165 O Positivo TCE Severo 16 1 NO 7 18 6 0 SI NO

Tabla 1

En esta tabla se incluyerón las variables demografias y de los objetivos primarios y secundarios

library(gtsummary)

tb1demo<- dbomar %>% select(paquete, sexo, edad, peso, talla, gporh, dx, díasextraccion,
cantidadpg, mortalidad28d, tiepouci,ventilaciondias, vasoactivocardiacodias,
soporterenaldias, eventosinfecciosos,eventosadbersos) %>% tbl_summary (by=paquete,
                                                                       type = list(tiepouci ~ "continuous")) %>% 
  add_p() %>% add_overall()
## Warning for variable 'edad':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'peso':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'talla':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## There was an error in 'add_p()/add_difference()' for variable 'dx', p-value omitted:
## Error in stats::chisq.test(x = c("TCE Severo", "TCE Severo", "TCE Severo", : 'x' and 'y' must have at least 2 levels
## Warning for variable 'díasextraccion':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'tiepouci':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ventilaciondias':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'vasoactivocardiacodias':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## There was an error in 'add_p()/add_difference()' for variable 'soporterenaldias', p-value omitted:
## Error in stats::chisq.test(x = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, : 'x' and 'y' must have at least 2 levels
## There was an error in 'add_p()/add_difference()' for variable 'eventosadbersos', p-value omitted:
## Error in stats::chisq.test(x = c("NO", "NO", "NO", "NO", "NO", "NO", "NO", : 'x' and 'y' must have at least 2 levels
tb1demo
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic Overall, N = 261 Gestandard, N = 131 Gfresco, N = 131 p-value2
sexo 0.10
Femenino 9 (35%) 7 (54%) 2 (15%)
Masculino 17 (65%) 6 (46%) 11 (85%)
edad 32 (24, 45) 41 (28, 45) 28 (24, 45) 0.2
peso 87 (65, 91) 87 (60, 91) 87 (79, 91) 0.4
talla 171 (164, 178) 165 (163, 169) 176 (172, 180) 0.004
gporh 0.062
A Positivo 9 (35%) 7 (54%) 2 (15%)
B Negativo 1 (3.8%) 1 (7.7%) 0 (0%)
B Positivo 1 (3.8%) 0 (0%) 1 (7.7%)
O Positivo 15 (58%) 5 (38%) 10 (77%)
dx
TCE Severo 26 (100%) 13 (100%) 13 (100%)
díasextraccion 16 (14, 18) 18 (17, 24) 14 (13, 15) <0.001
cantidadpg 0.7
1 11 (42%) 5 (38%) 6 (46%)
2 8 (31%) 3 (23%) 5 (38%)
3 6 (23%) 4 (31%) 2 (15%)
5 1 (3.8%) 1 (7.7%) 0 (0%)
mortalidad28d >0.9
NO 19 (73%) 9 (69%) 10 (77%)
SI 7 (27%) 4 (31%) 3 (23%)
tiepouci 8.0 (6.2, 11.5) 8.0 (7.0, 15.0) 8.0 (6.0, 10.0) 0.6
ventilaciondias 8 (6, 18) 15 (8, 18) 7 (5, 9) 0.13
vasoactivocardiacodias 7.0 (5.0, 10.0) 8.0 (6.0, 11.2) 6.0 (5.0, 8.0) 0.2
Unknown 1 1 0
soporterenaldias 0 (0%) 0 (0%) 0 (0%)
eventosinfecciosos >0.9
NO 5 (19%) 2 (15%) 3 (23%)
SI 21 (81%) 11 (85%) 10 (77%)
eventosadbersos
NO 26 (100%) 13 (100%) 13 (100%)
1 n (%); Median (IQR)
2 Fisher's exact test; Wilcoxon rank sum test

Análisis de datos cuantitativos (variables continuas)

Tabla 2. Se muestra las variables cuantitativas

library(readxl)
continuasdromar <- read_excel("C:/Users/fidel/OneDrive - CINVESTAV/PROYECTO MDatos/TRABAJOS/Dr Omar quintero  entrega 12-08/continuasdromar.xlsx")
View(continuasdromar)

continuasdromar %>% tbl_summary(by=paquete) %>% add_p()
## Warning for variable 'TAM_PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'TAM_TRANS':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'TAM_POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'FC_PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'FC_TRANS':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'FC_POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'FR_PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'FR_TRANS':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'FR_POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'TEMP_PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'TEMP_TRANS':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'TEMP_POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'GC_FICK POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'GC_Indexado PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN_pH_PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. pH_POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. pCO2_PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. pCO2_POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN_pO2_PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. pO2 POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. HCO3 PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. HCO3 POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. BE PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. BE POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. SO2 PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. SO2 POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. pH PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. pH POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. pCO2 PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. pCO2 POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. pO2 PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. pO2 POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. HCO3 PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. HCO3 POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. BE PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. BE POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. SO2 PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'Hb PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'Hb POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'HTC PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'HTC POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'LEUCOS PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'LEUCOS POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'PROCA PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'PROCA POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'LACTATO PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'LACTATO POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic gestandard, N = 131 gfresco, N = 131 p-value2
paqueteg 0.3
1 5 (38%) 6 (46%)
2 2 (15%) 5 (38%)
3 5 (38%) 2 (15%)
5 1 (7.7%) 0 (0%)
TA_PRE 0.7
100/58 0 (0%) 1 (7.7%)
104/52 0 (0%) 1 (7.7%)
106/66 0 (0%) 1 (7.7%)
107/53 1 (7.7%) 0 (0%)
108/55 1 (7.7%) 0 (0%)
114/59 1 (7.7%) 0 (0%)
115/57 1 (7.7%) 1 (7.7%)
116/55 1 (7.7%) 0 (0%)
119/83 0 (0%) 1 (7.7%)
120/105 1 (7.7%) 0 (0%)
124/61 0 (0%) 1 (7.7%)
124/74 0 (0%) 1 (7.7%)
124/78 0 (0%) 2 (15%)
130/64 0 (0%) 1 (7.7%)
132/70 1 (7.7%) 0 (0%)
135/68 1 (7.7%) 0 (0%)
135/77 0 (0%) 1 (7.7%)
141/74 1 (7.7%) 0 (0%)
143/69 0 (0%) 1 (7.7%)
147/57 0 (0%) 1 (7.7%)
156/82 1 (7.7%) 0 (0%)
158/104 1 (7.7%) 0 (0%)
189/100 1 (7.7%) 0 (0%)
90/56 1 (7.7%) 0 (0%)
TA_TRANS 0.7
107/53 0 (0%) 1 (7.7%)
109/70 0 (0%) 1 (7.7%)
112/62 1 (7.7%) 0 (0%)
113/66 0 (0%) 1 (7.7%)
115/54 1 (7.7%) 0 (0%)
115/57 1 (7.7%) 0 (0%)
121/62 0 (0%) 1 (7.7%)
122/63 1 (7.7%) 0 (0%)
124/70 0 (0%) 1 (7.7%)
125/69 0 (0%) 1 (7.7%)
125/76 0 (0%) 2 (15%)
127/63 1 (7.7%) 0 (0%)
135/68 1 (7.7%) 1 (7.7%)
135/95 1 (7.7%) 0 (0%)
136/71 1 (7.7%) 0 (0%)
136/79 1 (7.7%) 0 (0%)
137/52 0 (0%) 1 (7.7%)
140/69 0 (0%) 1 (7.7%)
146/77 1 (7.7%) 0 (0%)
148/89 1 (7.7%) 0 (0%)
153/99 1 (7.7%) 0 (0%)
92/53 1 (7.7%) 0 (0%)
95/60 0 (0%) 1 (7.7%)
98/61 0 (0%) 1 (7.7%)
TA_POST 0.5
100/60 0 (0%) 1 (7.7%)
100/78 0 (0%) 1 (7.7%)
107/68 0 (0%) 1 (7.7%)
110/51 0 (0%) 1 (7.7%)
113/64 0 (0%) 1 (7.7%)
114/54 1 (7.7%) 0 (0%)
114/57 1 (7.7%) 0 (0%)
115/69 0 (0%) 1 (7.7%)
117/52 1 (7.7%) 0 (0%)
117/74 0 (0%) 1 (7.7%)
126/65 1 (7.7%) 0 (0%)
127/66 0 (0%) 1 (7.7%)
128/61 1 (7.7%) 0 (0%)
128/72 0 (0%) 1 (7.7%)
129/61 1 (7.7%) 0 (0%)
130/76 1 (7.7%) 0 (0%)
131/83 0 (0%) 2 (15%)
132/60 0 (0%) 1 (7.7%)
134/70 1 (7.7%) 0 (0%)
135/78 1 (7.7%) 0 (0%)
141/91 1 (7.7%) 0 (0%)
146/72 0 (0%) 1 (7.7%)
150/66 1 (7.7%) 0 (0%)
163/108 1 (7.7%) 0 (0%)
91/52 1 (7.7%) 0 (0%)
TAM_PRE 90 (75, 107) 87 (79, 93) 0.8
TAM_TRANS 90 (79, 100) 83 (80, 90) 0.2
TAM_POST 85 (76, 94) 85 (81, 90) 0.9
FC_PRE 89 (75, 100) 79 (78, 100) 0.9
FC_TRANS 85 (75, 94) 85 (73, 92) 0.7
FC_POST 82 (61, 92) 79 (70, 96) >0.9
FR_PRE 15.0 (12.0, 16.0) 17.0 (16.0, 20.0) 0.011
FR_TRANS 15.00 (13.00, 16.00) 17.00 (16.00, 18.00) 0.018
FR_POST 15.00 (14.00, 17.00) 18.00 (17.00, 20.00) 0.015
SAO2_PRE 0.14
93 0 (0%) 1 (7.7%)
94 1 (7.7%) 0 (0%)
95 0 (0%) 1 (7.7%)
96 4 (31%) 5 (38%)
97 2 (15%) 3 (23%)
98 6 (46%) 1 (7.7%)
99 0 (0%) 2 (15%)
SAO2_TRANS 0.7
94 1 (7.7%) 0 (0%)
95 0 (0%) 1 (7.7%)
96 3 (23%) 3 (23%)
97 4 (31%) 2 (15%)
98 3 (23%) 6 (46%)
99 1 (7.7%) 0 (0%)
100 1 (7.7%) 1 (7.7%)
SAO2_POST >0.9
96 3 (23%) 3 (23%)
97 4 (31%) 4 (31%)
98 4 (31%) 3 (23%)
99 1 (7.7%) 2 (15%)
100 1 (7.7%) 1 (7.7%)
TEMP_PRE 36.50 (36.10, 37.00) 37.50 (37.00, 37.60) 0.016
TEMP_TRANS 36.50 (36.30, 37.00) 37.50 (37.00, 37.70) 0.010
TEMP_POST 36.50 (36.20, 37.00) 37.50 (36.80, 37.70) 0.018
GC_FICK_PRE 10 (5, 14) 8 (7, 9) 0.4
GC_FICK POST 8.8 (5.8, 13.3) 10.3 (8.4, 12.1) 0.5
GC_Indexado PRE 5.9 (3.0, 8.0) 4.2 (3.7, 4.5) 0.3
GC_Idexado_POST 5.31 (3.49, 6.37) 4.95 (4.31, 5.69) >0.9
Vol._Sistólico_PRE 86 (69, 184) 87 (80, 116) 0.8
Vol. Sistólico_POST 101 (81, 153) 125 (101, 154) 0.5
Vol. Sistólico I._PRE 59 (34, 97) 43 (37, 57) 0.4
Vol_Sistólico_I_POST >0.9
115.75 1 (7.7%) 0 (0%)
35.43 1 (7.7%) 0 (0%)
35.65 1 (7.7%) 0 (0%)
39.42 1 (7.7%) 0 (0%)
39.93 0 (0%) 1 (7.7%)
40.299999999999997 1 (7.7%) 0 (0%)
48.43 0 (0%) 1 (7.7%)
51-81 0 (0%) 1 (7.7%)
51.51 0 (0%) 1 (7.7%)
51.62 0 (0%) 1 (7.7%)
55.3 0 (0%) 1 (7.7%)
57.58 0 (0%) 1 (7.7%)
59.96 1 (7.7%) 0 (0%)
61.66 1 (7.7%) 0 (0%)
65.930000000000007 1 (7.7%) 0 (0%)
67.31 1 (7.7%) 0 (0%)
72.66 0 (0%) 1 (7.7%)
73.77 0 (0%) 1 (7.7%)
74.81 1 (7.7%) 0 (0%)
75.81 0 (0%) 1 (7.7%)
79.5 1 (7.7%) 0 (0%)
82.4 0 (0%) 1 (7.7%)
85.12 0 (0%) 1 (7.7%)
88.42 1 (7.7%) 0 (0%)
88.58 1 (7.7%) 0 (0%)
94.9 0 (0%) 1 (7.7%)
VEN_pH_PRE 7.32 (7.28, 7.40) 7.36 (7.33, 7.40) 0.2
VEN. pH_POST 7.41 (7.32, 7.43) 7.35 (7.32, 7.41) 0.3
VEN. pCO2_PRE 41.0 (33.0, 42.0) 42.0 (39.0, 46.0) 0.15
VEN. pCO2_POST 38 (36, 38) 44 (40, 49) 0.030
VEN_pO2_PRE 47 (43, 50) 38 (35, 42) 0.2
VEN. pO2 POST 45.0 (42.0, 55.0) 45.0 (41.0, 45.0) 0.3
VEN. HCO3 PRE 23.0 (16.8, 24.8) 26.0 (24.2, 27.2) 0.048
VEN. HCO3 POST 26.0 (22.6, 26.0) 25.3 (22.8, 27.5) 0.6
VEN. BE PRE -2.1 (-10.3, -0.2) -1.3 (-6.2, 0.9) 0.4
VEN. BE POST -0.4 (-8.3, 1.0) -0.2 (-2.4, 1.4) 0.3
VEN. SO2 PRE 70 (70, 83) 68 (65, 70) 0.061
VEN. SO2 POST 80.0 (78.0, 80.0) 75.0 (73.0, 78.0) 0.2
ART. pH PRE 7.41 (7.32, 7.44) 7.41 (7.35, 7.41) 0.9
ART. pH POST 7.42 (7.32, 7.45) 7.42 (7.39, 7.45) 0.7
ART. pCO2 PRE 33.0 (30.0, 36.0) 36.0 (32.0, 40.0) 0.2
ART. pCO2 POST 34.0 (33.0, 35.0) 32.0 (30.0, 41.0) 0.7
ART. pO2 PRE 93 (73, 112) 92 (88, 124) 0.4
ART. pO2 POST 114 (95, 116) 103 (86, 112) 0.2
ART. HCO3 PRE 22.3 (19.7, 23.8) 22.4 (18.8, 26.0) 0.6
ART. HCO3 POST 22.1 (19.6, 24.0) 24.2 (20.9, 24.9) 0.2
ART. BE PRE -2.2 (-6.5, -0.4) -1.8 (-6.4, 1.2) 0.7
ART. BE POST -0.4 (-6.0, -0.3) -0.5 (-2.9, 1.1) 0.5
ART. SO2 PRE 97.00 (97.00, 98.00) 97.00 (97.00, 99.00) 0.5
ART. SO2 POST 0.4
95 1 (7.7%) 2 (15%)
96 0 (0%) 3 (23%)
97 1 (7.7%) 0 (0%)
98 5 (38%) 5 (38%)
99 5 (38%) 3 (23%)
100 1 (7.7%) 0 (0%)
Hb PRE 8.00 (7.90, 8.10) 8.00 (7.30, 8.50) 0.9
Hb POST 8.60 (8.40, 9.40) 8.50 (7.80, 9.00) 0.6
HTC PRE 24.7 (23.7, 24.7) 23.8 (22.0, 27.3) 0.4
HTC POST 26.5 (25.4, 28.5) 25.8 (23.5, 28.5) 0.6
LEUCOS PRE 12.8 (10.2, 14.1) 14.0 (9.6, 14.9) 0.7
LEUCOS POST 12.7 (10.8, 13.4) 13.4 (9.5, 14.1) >0.9
PROCA PRE 0.22 (0.07, 0.43) 0.83 (0.23, 5.58) 0.031
PROCA POST 0 (0, 0) 1 (0, 5) 0.022
LACTATO PRE 1.50 (0.80, 2.10) 1.40 (1.10, 2.90) 0.4
LACTATO POST 1.00 (0.70, 1.90) 1.20 (0.70, 1.90) >0.9
1 n (%); Median (IQR)
2 Fisher's exact test; Wilcoxon rank sum test; Wilcoxon rank sum exact test
str(continuasdromar)
## tibble [26 × 62] (S3: tbl_df/tbl/data.frame)
##  $ paqueteg             : num [1:26] 2 1 1 2 1 2 2 2 3 1 ...
##  $ paquete              : chr [1:26] "gfresco" "gfresco" "gfresco" "gfresco" ...
##  $ TA_PRE               : chr [1:26] "124/74" "147/57" "130/64" "106/66" ...
##  $ TA_TRANS             : chr [1:26] "125/69" "137/52" "140/69" "109/70" ...
##  $ TA_POST              : chr [1:26] "113/64" "132/60" "146/72" "107/68" ...
##  $ TAM_PRE              : num [1:26] 90 87 86 79 95 96 68 76 93 82 ...
##  $ TAM_TRANS            : num [1:26] 87.6 80 93 83 82 72 71 82 90 73 ...
##  $ TAM_POST             : num [1:26] 80.3 84 97 81 73 85 71 84 90 88 ...
##  $ FC_PRE               : num [1:26] 85 78 79 93 111 78 113 71 114 100 ...
##  $ FC_TRANS             : num [1:26] 85 77 75 88 93 92 112 88 105 73 ...
##  $ FC_POST              : num [1:26] 73 70 75 90 79 96 108 97 100 79 ...
##  $ FR_PRE               : num [1:26] 20 18 15 20 15 17 15 18 23 16 ...
##  $ FR_TRANS             : num [1:26] 18 18 16 20 14 16 16 16 19 16 ...
##  $ FR_POST              : num [1:26] 20 18 14 20 17 20 14 19 21 16 ...
##  $ SAO2_PRE             : num [1:26] 95 96 96 97 99 99 97 97 93 96 ...
##  $ SAO2_TRANS           : num [1:26] 95 96 96 98 100 97 98 97 98 98 ...
##  $ SAO2_POST            : num [1:26] 96 96 96 97 100 97 98 97 98 98 ...
##  $ TEMP_PRE             : num [1:26] 39 36.3 37.2 37.7 36.8 37.5 37 36.1 38.3 37.6 ...
##  $ TEMP_TRANS           : num [1:26] 39.3 36.4 37 37.8 37 37.7 37.2 36 38.2 37.6 ...
##  $ TEMP_POST            : num [1:26] 39 36.4 37 37.8 36.8 37.7 37.3 36 38.2 37.5 ...
##  $ GC_FICK_PRE          : num [1:26] 7.38 5.07 6.64 8.99 8.85 ...
##  $ GC_FICK POST         : num [1:26] 10.82 7.69 11.58 9.09 13.84 ...
##  $ GC_Indexado PRE      : num [1:26] 3.67 2.55 3.26 4.31 4.17 ...
##  $ GC_Idexado_POST      : num [1:26] 5.39 3.87 5.69 4.36 6.51 4.95 4.31 5.59 9.49 4.08 ...
##  $ Vol._Sistólico_PRE   : num [1:26] 86.8 65 84.1 96.7 79.8 ...
##  $ Vol. Sistólico_POST  : num [1:26] 148 110 154 101 175 ...
##  $ Vol. Sistólico I._PRE: num [1:26] 43.2 32.7 41.3 46.4 37.5 ...
##  $ Vol_Sistólico_I_POST : chr [1:26] "73.77" "55.3" "75.81" "48.43" ...
##  $ VEN_pH_PRE           : num [1:26] 7.4 7.36 7.41 7.36 7.33 7.35 7.36 7.31 7.25 7.32 ...
##  $ VEN. pH_POST         : num [1:26] 7.34 7.36 7.32 7.32 7.41 7.32 7.42 7.22 7.29 7.35 ...
##  $ VEN. pCO2_PRE        : num [1:26] 39 46 45 49 33 41 47 44 36 49 ...
##  $ VEN. pCO2_POST       : num [1:26] 56 49 46 40 36 52 44 41 38 45 ...
##  $ VEN_pO2_PRE          : num [1:26] 38 33 32 36 55 39 31 42 62 39 ...
##  $ VEN. pO2 POST        : num [1:26] 45 41 46 39 45 43 61 32 51 45 ...
##  $ VEN. HCO3 PRE        : num [1:26] 24.2 24.7 28.5 27.7 26 22.6 26.6 16.8 15.8 25.2 ...
##  $ VEN. HCO3 POST       : num [1:26] 30.2 25.3 23.7 19 22.8 26.8 28.5 16 18.3 25.9 ...
##  $ VEN. BE PRE          : num [1:26] -0.6 0.6 3.6 -10 -6.2 -2.8 0.9 -3.6 -10.6 -1.3 ...
##  $ VEN. BE POST         : num [1:26] 3.3 1.4 -2.4 -8.7 -1.4 0.6 3.7 -5.9 -7.7 -0.2 ...
##  $ VEN. SO2 PRE         : num [1:26] 70 61 62 66 65 70 60 72 87 68 ...
##  $ VEN. SO2 POST        : num [1:26] 78 74 78 70 81 74 70 69 81 75 ...
##  $ ART. pH PRE          : num [1:26] 7.35 7.42 7.48 7.36 7.41 7.41 7.47 7.35 7.29 7.38 ...
##  $ ART. pH POST         : num [1:26] 7.33 7.4 7.34 7.47 7.45 7.4 7.49 7.42 7.33 7.39 ...
##  $ ART. pCO2 PRE        : num [1:26] 31 32 36 42 28 41 36 38 39 40 ...
##  $ ART. pCO2 POST       : num [1:26] 32 38 42 29 30 42 32 40 32 41 ...
##  $ ART. pO2 PRE         : num [1:26] 124 101 111 79 141 88 169 92 72 69 ...
##  $ ART. pO2 POST        : num [1:26] 87 82 103 114 108 154 112 74 86 80 ...
##  $ ART. HCO3 PRE        : num [1:26] 17.1 22.4 26.8 21.1 17.7 26 26.2 21 18.8 23.8 ...
##  $ ART. HCO3 POST       : num [1:26] 16.9 24.2 22.7 23.7 20.9 26 24.4 25.9 16.9 24.8 ...
##  $ ART. BE PRE          : num [1:26] -7.5 -3.7 3 -1.8 -6.4 1.2 2.3 -4.2 -7.2 -1.3 ...
##  $ ART. BE POST         : num [1:26] -8.1 -0.5 -3.1 -1.7 -2.9 1.1 1.2 1.3 -8.3 -0.2 ...
##  $ ART. SO2 PRE         : num [1:26] 99 98 99 96 99 97 100 97 92 93 ...
##  $ ART. SO2 POST        : num [1:26] 96 96 98 98 98 99 99 95 96 95 ...
##  $ Hb PRE               : num [1:26] 8.5 9.8 8.1 7.8 7.5 8 6.7 7.2 7.3 10.6 ...
##  $ Hb POST              : num [1:26] 9 10.6 8.5 8.2 8.8 8.2 7.8 7 7.2 11.2 ...
##  $ HTC PRE              : num [1:26] 27.3 27.4 23.8 23.9 22.5 23.3 20.4 22 20.7 34.4 ...
##  $ HTC POST             : num [1:26] 28.5 29.8 25.1 25.8 26 23.9 23.5 22.1 21.5 33.5 ...
##  $ LEUCOS PRE           : num [1:26] 7.65 15.22 8.16 9.61 11.92 ...
##  $ LEUCOS POST          : num [1:26] 7.92 19.28 8.95 15.98 9.49 ...
##  $ PROCA PRE            : num [1:26] 2.98 10.47 3.49 0.23 0.23 ...
##  $ PROCA POST           : num [1:26] 19.14 12.47 3.49 0.23 0.05 ...
##  $ LACTATO PRE          : num [1:26] 0.9 6.8 1.1 1.9 0.6 1.3 2.9 5.5 1.3 1 ...
##  $ LACTATO POST         : num [1:26] 0.5 4.2 1.2 1.4 0.6 1.6 1.9 4.8 0.7 0.7 ...
continuasdromar$Vol_Sistólico_I_POST = as.numeric(continuasdromar$Vol_Sistólico_I_POST)
## Warning: NAs introducidos por coerción
continuasdromar$`ART. SO2 POST` = as.numeric(continuasdromar$`ART. SO2 POST`)
continuasdromar$SAO2_PRE = as.numeric(continuasdromar$SAO2_PRE)
continuasdromar$SAO2_TRANS = as.numeric(continuasdromar$SAO2_TRANS)
continuasdromar$SAO2_POST = as.numeric(continuasdromar$SAO2_POST)
continuasdromar$Vol_Sistólico_I_POST = as.numeric (continuasdromar$Vol_Sistólico_I_POST)



continuasdromar %>% select(paquete, TAM_PRE,TAM_TRANS,TAM_POST,FC_PRE,FC_TRANS,FC_POST,FR_PRE,FR_TRANS,
                           FR_POST,SAO2_PRE,SAO2_TRANS,SAO2_POST,TEMP_PRE,TEMP_TRANS,TEMP_POST,
                           GC_FICK_PRE,`GC_FICK POST`, `GC_Indexado PRE`, GC_Idexado_POST,
                           Vol._Sistólico_PRE, `Vol._Sistólico_PRE`,`Vol. Sistólico_POST`,
                           `Vol. Sistólico I._PRE`, Vol_Sistólico_I_POST, VEN_pH_PRE,
                           `VEN. pH_POST`, `VEN. pCO2_PRE`, `VEN. pCO2_POST`,VEN_pO2_PRE,
                           `VEN. pO2 POST`, `VEN. HCO3 PRE`, `VEN. HCO3 POST`, `VEN. BE PRE`,
                           `VEN. BE POST`,`VEN. SO2 PRE`, `VEN. SO2 POST`, `ART. pH PRE`,`ART. pH POST`,
                           `ART. pCO2 PRE`, `ART. pCO2 POST`, `ART. pO2 PRE`, `ART. pO2 POST`,
                           `ART. HCO3 PRE`, `ART. HCO3 POST`, `ART. BE PRE`, `ART. BE POST`,
                           `ART. SO2 PRE`, `ART. SO2 POST`,`Hb PRE`,`Hb POST`, `HTC PRE` ,`HTC POST`,
                           `LEUCOS PRE`, `LEUCOS POST`,`PROCA PRE`,
                           `PROCA POST` ,`LACTATO PRE`,`LACTATO POST`) %>% 
  tbl_summary(by=paquete, type = list(where(is.numeric) ~ "continuous")) %>% 
  add_p() %>% add_overall()
## Warning for variable 'TAM_PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'TAM_TRANS':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'TAM_POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'FC_PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'FC_TRANS':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'FC_POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'FR_PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'FR_TRANS':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'FR_POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'SAO2_PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'SAO2_TRANS':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'SAO2_POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'TEMP_PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'TEMP_TRANS':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'TEMP_POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'GC_FICK POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'GC_Indexado PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN_pH_PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. pH_POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. pCO2_PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. pCO2_POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN_pO2_PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. pO2 POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. HCO3 PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. HCO3 POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. BE PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. BE POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. SO2 PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'VEN. SO2 POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. pH PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. pH POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. pCO2 PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. pCO2 POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. pO2 PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. pO2 POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. HCO3 PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. HCO3 POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. BE PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. BE POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. SO2 PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'ART. SO2 POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'Hb PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'Hb POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'HTC PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'HTC POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'LEUCOS PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'LEUCOS POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'PROCA PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'PROCA POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'LACTATO PRE':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'LACTATO POST':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic Overall, N = 261 gestandard, N = 131 gfresco, N = 131 p-value2
TAM_PRE 88 (76, 94) 90 (75, 107) 87 (79, 93) 0.8
TAM_TRANS 86 (79, 93) 90 (79, 100) 83 (80, 90) 0.2
TAM_POST 85 (80, 94) 85 (76, 94) 85 (81, 90) 0.9
FC_PRE 84 (76, 100) 89 (75, 100) 79 (78, 100) 0.9
FC_TRANS 85 (75, 93) 85 (75, 94) 85 (73, 92) 0.7
FC_POST 79 (68, 95) 82 (61, 92) 79 (70, 96) >0.9
FR_PRE 16.0 (15.0, 18.0) 15.0 (12.0, 16.0) 17.0 (16.0, 20.0) 0.011
FR_TRANS 16.00 (14.25, 18.00) 15.00 (13.00, 16.00) 17.00 (16.00, 18.00) 0.018
FR_POST 17.00 (14.25, 18.00) 15.00 (14.00, 17.00) 18.00 (17.00, 20.00) 0.015
SAO2_PRE 97.00 (96.00, 98.00) 97.00 (96.00, 98.00) 96.00 (96.00, 97.00) 0.5
SAO2_TRANS 97.00 (96.00, 98.00) 97.00 (96.00, 98.00) 98.00 (96.00, 98.00) 0.8
SAO2_POST 97.00 (97.00, 98.00) 97.00 (97.00, 98.00) 97.00 (97.00, 98.00) >0.9
TEMP_PRE 37.00 (36.40, 37.50) 36.50 (36.10, 37.00) 37.50 (37.00, 37.60) 0.016
TEMP_TRANS 37.00 (36.50, 37.50) 36.50 (36.30, 37.00) 37.50 (37.00, 37.70) 0.010
TEMP_POST 36.90 (36.40, 37.50) 36.50 (36.20, 37.00) 37.50 (36.80, 37.70) 0.018
GC_FICK_PRE 9 (7, 13) 10 (5, 14) 8 (7, 9) 0.4
GC_FICK POST 9.7 (7.7, 12.3) 8.8 (5.8, 13.3) 10.3 (8.4, 12.1) 0.5
GC_Indexado PRE 4.2 (3.4, 6.4) 5.9 (3.0, 8.0) 4.2 (3.7, 4.5) 0.3
GC_Idexado_POST 5.13 (4.12, 6.07) 5.31 (3.49, 6.37) 4.95 (4.31, 5.69) >0.9
Vol._Sistólico_PRE 86 (69, 162) 86 (69, 184) 87 (80, 116) 0.8
Vol. Sistólico_POST 120 (92, 154) 101 (81, 153) 125 (101, 154) 0.5
Vol. Sistólico I._PRE 45 (35, 78) 59 (34, 97) 43 (37, 57) 0.4
Vol_Sistólico_I_POST 66 (52, 80) 66 (40, 80) 65 (52, 77) >0.9
Unknown 1 0 1
VEN_pH_PRE 7.34 (7.30, 7.40) 7.32 (7.28, 7.40) 7.36 (7.33, 7.40) 0.2
VEN. pH_POST 7.36 (7.32, 7.42) 7.41 (7.32, 7.43) 7.35 (7.32, 7.41) 0.3
VEN. pCO2_PRE 41.0 (33.8, 44.8) 41.0 (33.0, 42.0) 42.0 (39.0, 46.0) 0.15
VEN. pCO2_POST 39 (36, 46) 38 (36, 38) 44 (40, 49) 0.030
VEN_pO2_PRE 42 (35, 50) 47 (43, 50) 38 (35, 42) 0.2
VEN. pO2 POST 45.0 (41.2, 50.0) 45.0 (42.0, 55.0) 45.0 (41.0, 45.0) 0.3
VEN. HCO3 PRE 24.6 (21.4, 26.0) 23.0 (16.8, 24.8) 26.0 (24.2, 27.2) 0.048
VEN. HCO3 POST 25.6 (22.7, 26.7) 26.0 (22.6, 26.0) 25.3 (22.8, 27.5) 0.6
VEN. BE PRE -2.0 (-6.2, 0.6) -2.1 (-10.3, -0.2) -1.3 (-6.2, 0.9) 0.4
VEN. BE POST -0.4 (-5.7, 1.0) -0.4 (-8.3, 1.0) -0.2 (-2.4, 1.4) 0.3
VEN. SO2 PRE 70 (65, 75) 70 (70, 83) 68 (65, 70) 0.061
VEN. SO2 POST 78.0 (73.2, 80.0) 80.0 (78.0, 80.0) 75.0 (73.0, 78.0) 0.2
ART. pH PRE 7.41 (7.35, 7.44) 7.41 (7.32, 7.44) 7.41 (7.35, 7.41) 0.9
ART. pH POST 7.42 (7.35, 7.45) 7.42 (7.32, 7.45) 7.42 (7.39, 7.45) 0.7
ART. pCO2 PRE 35.0 (31.2, 38.8) 33.0 (30.0, 36.0) 36.0 (32.0, 40.0) 0.2
ART. pCO2 POST 33.5 (31.2, 38.0) 34.0 (33.0, 35.0) 32.0 (30.0, 41.0) 0.7
ART. pO2 PRE 92 (80, 116) 93 (73, 112) 92 (88, 124) 0.4
ART. pO2 POST 108 (92, 115) 114 (95, 116) 103 (86, 112) 0.2
ART. HCO3 PRE 22.4 (19.0, 24.2) 22.3 (19.7, 23.8) 22.4 (18.8, 26.0) 0.6
ART. HCO3 POST 23.9 (20.9, 24.7) 22.1 (19.6, 24.0) 24.2 (20.9, 24.9) 0.2
ART. BE PRE -2.0 (-6.4, 0.5) -2.2 (-6.5, -0.4) -1.8 (-6.4, 1.2) 0.7
ART. BE POST -0.5 (-3.1, -0.1) -0.4 (-6.0, -0.3) -0.5 (-2.9, 1.1) 0.5
ART. SO2 PRE 97.00 (97.00, 99.00) 97.00 (97.00, 98.00) 97.00 (97.00, 99.00) 0.5
ART. SO2 POST 98.00 (97.25, 99.00) 98.00 (98.00, 99.00) 98.00 (96.00, 98.00) 0.12
Hb PRE 8.00 (7.53, 8.40) 8.00 (7.90, 8.10) 8.00 (7.30, 8.50) 0.9
Hb POST 8.55 (8.20, 9.30) 8.60 (8.40, 9.40) 8.50 (7.80, 9.00) 0.6
HTC PRE 24.0 (22.6, 26.7) 24.7 (23.7, 24.7) 23.8 (22.0, 27.3) 0.4
HTC POST 25.9 (24.2, 28.5) 26.5 (25.4, 28.5) 25.8 (23.5, 28.5) 0.6
LEUCOS PRE 12.9 (9.9, 14.9) 12.8 (10.2, 14.1) 14.0 (9.6, 14.9) 0.7
LEUCOS POST 12.8 (9.5, 13.9) 12.7 (10.8, 13.4) 13.4 (9.5, 14.1) >0.9
PROCA PRE 0.35 (0.15, 2.69) 0.22 (0.07, 0.43) 0.83 (0.23, 5.58) 0.031
PROCA POST 0 (0, 2) 0 (0, 0) 1 (0, 5) 0.022
LACTATO PRE 1.45 (1.00, 2.75) 1.50 (0.80, 2.10) 1.40 (1.10, 2.90) 0.4
LACTATO POST 1.20 (0.70, 1.90) 1.00 (0.70, 1.90) 1.20 (0.70, 1.90) >0.9
1 Median (IQR)
2 Wilcoxon rank sum test; Wilcoxon rank sum exact test

Figuras

Se diseñaron 4 figuras con base al análisis multivariado de las variables continuas que resultaron estadísticamente significativas

Figura 1

Variable: Frecuencia Respitaroria

#PAQUETES PARA ESTE ANALISIS
library(tidyr)
library(dplyr)
library(readr)
library(tidyverse)
library(ggpubr)
library(rstatix)
## 
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
## 
##     filter
#FR

FR <- continuasdromar %>% select(paquete, FR_PRE, FR_TRANS, FR_POST)

FR 
## # A tibble: 26 × 4
##    paquete FR_PRE FR_TRANS FR_POST
##    <chr>    <dbl>    <dbl>   <dbl>
##  1 gfresco     20       18      20
##  2 gfresco     18       18      18
##  3 gfresco     15       16      14
##  4 gfresco     20       20      20
##  5 gfresco     15       14      17
##  6 gfresco     17       16      20
##  7 gfresco     15       16      14
##  8 gfresco     18       16      19
##  9 gfresco     23       19      21
## 10 gfresco     16       16      16
## # … with 16 more rows
FRgat<-FR %>% 
  pivot_longer(
    cols = starts_with("F"), 
    names_to = "variable", 
    values_to = "valor") %>% 
  convert_as_factor (variable)


FRgat$variable <- ordered(FRgat$variable, levels = c("FR_PRE", "FR_TRANS", "FR_POST"))


FRplotfac <- ggboxplot(FRgat, x = "variable", y = "valor",
  facet.by = "paquete",color="variable", palette = "lancet") 

FRplotfac + stat_compare_means(method = "aov", label.y = 8, label.x= 2.5)+
  stat_compare_means(
    comparisons = list(c("FR_PRE", "FR_TRANS"), c("FR_TRANS", "FR_POST"),  c("FR_PRE", "FR_POST")), 
    label = "p.signif", paired = T)
## Warning in wilcox.test.default(c(16, 12, 14, 16, 21, 15, 17, 18, 14, 8, : cannot
## compute exact p-value with ties
## Warning in wilcox.test.default(c(16, 12, 14, 16, 21, 15, 17, 18, 14, 8, : cannot
## compute exact p-value with zeroes
## Warning in wilcox.test.default(c(16, 12, 14, 16, 21, 15, 17, 18, 14, 8, : cannot
## compute exact p-value with ties
## Warning in wilcox.test.default(c(16, 12, 14, 16, 21, 15, 17, 18, 14, 8, : cannot
## compute exact p-value with zeroes
## Warning in wilcox.test.default(c(16, 14, 15, 16, 13, 14, 18, 19, 18, 11, :
## cannot compute exact p-value with ties
## Warning in wilcox.test.default(c(16, 14, 15, 16, 13, 14, 18, 19, 18, 11, :
## cannot compute exact p-value with zeroes
## Warning in wilcox.test.default(c(20, 18, 15, 20, 15, 17, 15, 18, 23, 16, :
## cannot compute exact p-value with ties
## Warning in wilcox.test.default(c(20, 18, 15, 20, 15, 17, 15, 18, 23, 16, :
## cannot compute exact p-value with zeroes
## Warning in wilcox.test.default(c(20, 18, 15, 20, 15, 17, 15, 18, 23, 16, :
## cannot compute exact p-value with ties
## Warning in wilcox.test.default(c(20, 18, 15, 20, 15, 17, 15, 18, 23, 16, :
## cannot compute exact p-value with zeroes
## Warning in wilcox.test.default(c(18, 18, 16, 20, 14, 16, 16, 16, 19, 16, :
## cannot compute exact p-value with ties
## Warning in wilcox.test.default(c(18, 18, 16, 20, 14, 16, 16, 16, 19, 16, :
## cannot compute exact p-value with zeroes

Figura 2.

Variable: Temperatura corporal

#TEMP

TC <- continuasdromar %>% select(paquete, TEMP_PRE, TEMP_TRANS, TEMP_POST)

TC 
## # A tibble: 26 × 4
##    paquete TEMP_PRE TEMP_TRANS TEMP_POST
##    <chr>      <dbl>      <dbl>     <dbl>
##  1 gfresco     39         39.3      39  
##  2 gfresco     36.3       36.4      36.4
##  3 gfresco     37.2       37        37  
##  4 gfresco     37.7       37.8      37.8
##  5 gfresco     36.8       37        36.8
##  6 gfresco     37.5       37.7      37.7
##  7 gfresco     37         37.2      37.3
##  8 gfresco     36.1       36        36  
##  9 gfresco     38.3       38.2      38.2
## 10 gfresco     37.6       37.6      37.5
## # … with 16 more rows
TCgat<-TC %>% 
  pivot_longer(
    cols = starts_with("TEMP"), 
    names_to = "variable", 
    values_to = "valor") %>% 
  convert_as_factor (variable)

TCgat
## # A tibble: 78 × 3
##    paquete variable   valor
##    <chr>   <fct>      <dbl>
##  1 gfresco TEMP_PRE    39  
##  2 gfresco TEMP_TRANS  39.3
##  3 gfresco TEMP_POST   39  
##  4 gfresco TEMP_PRE    36.3
##  5 gfresco TEMP_TRANS  36.4
##  6 gfresco TEMP_POST   36.4
##  7 gfresco TEMP_PRE    37.2
##  8 gfresco TEMP_TRANS  37  
##  9 gfresco TEMP_POST   37  
## 10 gfresco TEMP_PRE    37.7
## # … with 68 more rows
TCgat$variable <- ordered(TCgat$variable, levels = c("TEMP_PRE", "TEMP_TRANS", "TEMP_POST"))



TCplotfac <- ggboxplot(TCgat, x = "variable", y = "valor",
                       facet.by = "paquete",color="variable", palette = "lancet") 

TCplotfac + stat_compare_means(method = "aov", label.y = 35, label.x= 3)+
  stat_compare_means(
    comparisons = list(c("TEMP_PRE", "TEMP_TRANS"), c("TEMP_TRANS", "TEMP_POST"),  c("TEMP_PRE", "TEMP_POST")), 
    label = "p.signif", paired = T)
## Warning in wilcox.test.default(c(36, 36.5, 37, 36.1, 36.5, 37.3, 37.7, 36.4, :
## cannot compute exact p-value with ties
## Warning in wilcox.test.default(c(36, 36.5, 37, 36.1, 36.5, 37.3, 37.7, 36.4, :
## cannot compute exact p-value with zeroes
## Warning in wilcox.test.default(c(36, 36.5, 37, 36.1, 36.5, 37.3, 37.7, 36.4, :
## cannot compute exact p-value with ties
## Warning in wilcox.test.default(c(36, 36.5, 37, 36.1, 36.5, 37.3, 37.7, 36.4, :
## cannot compute exact p-value with zeroes
## Warning in wilcox.test.default(c(36.2, 36.5, 37, 36.1, 36.6, 37.5, 37.2, :
## cannot compute exact p-value with ties
## Warning in wilcox.test.default(c(36.2, 36.5, 37, 36.1, 36.6, 37.5, 37.2, :
## cannot compute exact p-value with zeroes
## Warning in wilcox.test.default(c(39, 36.3, 37.2, 37.7, 36.8, 37.5, 37, 36.1, :
## cannot compute exact p-value with ties
## Warning in wilcox.test.default(c(39, 36.3, 37.2, 37.7, 36.8, 37.5, 37, 36.1, :
## cannot compute exact p-value with zeroes
## Warning in wilcox.test.default(c(39, 36.3, 37.2, 37.7, 36.8, 37.5, 37, 36.1, :
## cannot compute exact p-value with ties
## Warning in wilcox.test.default(c(39, 36.3, 37.2, 37.7, 36.8, 37.5, 37, 36.1, :
## cannot compute exact p-value with zeroes
## Warning in wilcox.test.default(c(39.3, 36.4, 37, 37.8, 37, 37.7, 37.2, 36, :
## cannot compute exact p-value with zeroes

Figura 3

variable: Ven PCO2

#VEN. pCO2



venpco2 <- continuasdromar %>% select(paquete, `VEN. pCO2_PRE`, `VEN. pCO2_POST`)

venpco2 
## # A tibble: 26 × 3
##    paquete `VEN. pCO2_PRE` `VEN. pCO2_POST`
##    <chr>             <dbl>            <dbl>
##  1 gfresco              39               56
##  2 gfresco              46               49
##  3 gfresco              45               46
##  4 gfresco              49               40
##  5 gfresco              33               36
##  6 gfresco              41               52
##  7 gfresco              47               44
##  8 gfresco              44               41
##  9 gfresco              36               38
## 10 gfresco              49               45
## # … with 16 more rows
colnames(venpco2)
## [1] "paquete"        "VEN. pCO2_PRE"  "VEN. pCO2_POST"
pco2plot<-ggpaired(venpco2 , cond1 = "VEN. pCO2_PRE", cond2 = "VEN. pCO2_POST",
        palette = "lancet",color= "paquete",line.color = "gray", point.size = 2, line.size = 0.1) +
  facet_grid(~paquete) + stat_compare_means(paired = TRUE)
## Warning: `gather_()` was deprecated in tidyr 1.2.0.
## Please use `gather()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
pco2plot

Figura 4

Variable : Ven HCO3

#VEN HCO3




venhco3 <- continuasdromar %>% select(paquete, `ART. HCO3 PRE`, `ART. HCO3 POST`)

venhco3 
## # A tibble: 26 × 3
##    paquete `ART. HCO3 PRE` `ART. HCO3 POST`
##    <chr>             <dbl>            <dbl>
##  1 gfresco            17.1             16.9
##  2 gfresco            22.4             24.2
##  3 gfresco            26.8             22.7
##  4 gfresco            21.1             23.7
##  5 gfresco            17.7             20.9
##  6 gfresco            26               26  
##  7 gfresco            26.2             24.4
##  8 gfresco            21               25.9
##  9 gfresco            18.8             16.9
## 10 gfresco            23.8             24.8
## # … with 16 more rows
colnames(venhco3)
## [1] "paquete"        "ART. HCO3 PRE"  "ART. HCO3 POST"
hco3plot<-ggpaired(venhco3 , cond1 = "ART. HCO3 PRE", cond2 = "ART. HCO3 POST",
                   palette = "lancet",color= "paquete",line.color = "gray", point.size = 2, 
                   line.size = 0.1, ylim(0, 35)) +
  facet_grid(~paquete) + stat_compare_means(paired = TRUE, label.y = 35)


hco3plot + scale_y_continuous(name="value", limits=c(5, 35))
## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
## Warning: Removed 1 rows containing non-finite values (stat_compare_means).
## Warning: Computation failed in `stat_compare_means()`:
## 'x' and 'y' must have the same length
## Warning: Removed 1 row(s) containing missing values (geom_path).
## Warning: Removed 1 rows containing missing values (geom_point).