library(readxl)
Nemato2 <- read_excel("C:/Users/usuagro/Downloads/mmacostasaranorato.xlsx",
sheet = "data")
Nemato2
## # A tibble: 26 x 15
## g L MBW ABW E LRW DGO DCPE Le Lc Ph a b
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 L 527. 17.3 11.2 12.9 4.1 3.98 85.1 90.2 52.1 15.3 30.5 5.84
## 2 L 483. 16.2 11.0 14.0 4.29 4.19 88.9 100. 50.0 13.0 29.8 4.83
## 3 L 442. 18.5 11.8 13.5 3.8 4.89 92.3 98.2 51.4 13.2 24.0 4.50
## 4 L 451. 14.2 9.22 12.7 3.97 3.87 89.1 85.2 51.5 16.9 31.8 5.29
## 5 L 455. 15.4 12.3 12.1 4.72 3.96 88.1 88.9 51.0 13.3 29.7 5.12
## 6 L 460. 13.0 11.2 12.5 3.71 4.08 87.6 90.2 51.9 12.7 35.4 5.10
## 7 L 431. 13.0 10.4 12.5 4.62 4.37 90.1 92.3 49.0 12.6 33.1 4.67
## 8 L 467. 10.7 10.4 13.4 4.43 4.85 92.3 89.9 49.4 13.5 43.6 5.20
## 9 L 409. 15.4 14.2 13.2 3.79 4.21 86.8 95.2 52.7 12.4 26.6 4.30
## 10 L 446. 18.4 10.4 13.7 4.64 3.99 87.0 93.5 51.8 12.7 24.2 4.77
## # ... with 16 more rows, and 2 more variables: c1 <dbl>, c2 <dbl>
library(corrplot)
## corrplot 0.92 loaded
Nemato2= Nemato2[,-1]
M=cor(Nemato2)
corrplot(M, method = "circle")

corrplot(M, method = "number")

library(PerformanceAnalytics)
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
chart.Correlation(M, histogram = T, method = "pearson")

Nemato2.1 <- read_excel("C:/Users/usuagro/Downloads/mmacostasaranorato.xlsx",
sheet = "data")
library(lattice)
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:xts':
##
## first, last
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
P1<-ggplot(Nemato2.1, aes(x=g, y=L, fill=g))+geom_boxplot()
P2<-ggplot(Nemato2.1, aes(x=g, y=MBW, fill=g))+geom_boxplot()
P3<-ggplot(Nemato2.1, aes(x=g, y=ABW, fill=g))+geom_boxplot()
P4<-ggplot(Nemato2.1, aes(x=g, y=E, fill=g))+geom_boxplot()
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
## combine
grid.arrange(P1,P2,P3,P4)

P5<-ggplot(Nemato2.1, aes(x=g, y=c1, fill=g))+geom_boxplot()
P6<-ggplot(Nemato2.1, aes(x=g, y=c2, fill=g))+geom_boxplot()
grid.arrange(P5, P6)

for(i in 2:ncol(Nemato2.1)){
p<-ggplot(Nemato2.1,aes(x=g,y=unlist(Nemato2.1[,i]),fill=g))+
geom_boxplot()+
labs(y=colnames(Nemato2.1)[i])
print(p)
}













