Hard skills are those technical skills possessed by a professional. Thus, we speak of skills acquired throughout professional life, or in an academic institution, and that allow the professional to carry out their work.
These are my hard skills, divided by Category and Sub-Categories, and their levels.
library(readxl)
library(ggplot2)
library(dplyr)
library(tidyr)
hardSkills2<- read_excel("Habilidaedes2.xlsx" )
hardSkills2$Category<- factor(hardSkills2$Category, labels = c( "A"="BigData","B"="Ofimatica","C"="LengProgr.","D"="OtrasHerr.","E"="GestorDB"))
hardSkills2 <- hardSkills2 %>%
mutate(Level = if_else(Category == "No", Level -1, Level))
hardSkills2
## # A tibble: 27 × 3
## Category SubCategory Level
## <fct> <chr> <dbl>
## 1 BigData Hadoop 1
## 2 Ofimatica Word 3
## 3 LengProgr. Python 1
## 4 OtrasHerr. GIT 1
## 5 BigData Hive 1
## 6 BigData Flume 1
## 7 BigData Spark 1
## 8 OtrasHerr. LaTeX 2
## 9 LengProgr. R 2
## 10 LengProgr. SQL 2
## # … with 17 more rows
## # ℹ Use `print(n = ...)` to see more rows
# Graficando con ggplot 2
hardSkills <- hardSkills2 %>%
ggplot()+ geom_col(aes(reorder(SubCategory, Level), Level, fill=Category)) +coord_flip()+
scale_y_continuous(breaks = seq(-4,4,1), labels = c(4:0,1:4))+
theme(panel.grid.major = element_line(colour = "gray70",size = 0.1),
panel.grid.minor = element_line(linetype = "blank"),
axis.title = element_text(face = "bold"),
axis.text = element_text(face = "bold"),
plot.title = element_text(face = "bold.italic", hjust = 0.3),
panel.background = element_rect(fill = NA),
legend.key = element_rect(fill = NA),
legend.background = element_rect(fill = NA),
legend.position = "top", legend.direction = "horizontal") +
labs(title = "Hard Skills",
x= "SubCategory",
fill="Category* ",
caption = "* 1) Basic, 2) Intermediate and 3) Expert")+
scale_fill_brewer(palette = "Paired")
hardSkills
hardSkills
Radar charts compare several quantitative variables and are useful for visualizing which variables have similar values, or if there are outliers between variables. Radar charts are made up of a sequence of spokes, with each spoke representing a single variable.Radar charts are also useful for determining which variables are scoring high or low within a data set.
Soft skills are the skills that allow a person, or a professional, to interact with ease in their environment.
I wanted to graph my soft skills in radial form.
library(fmsb)
softSkills<- read_excel("dataA.xlsx" )
head(softSkills)
## # A tibble: 3 × 10
## Capable Resilient Responsible Easy-g…¹ Commi…² Ease …³ Teamw…⁴ Conti…⁵ Resea…⁶
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 20 20 20 20 20 20 20 20 20
## 2 0 0 0 0 0 0 0 0 0
## 3 19 18 20 20 19 18 16 20 20
## # … with 1 more variable: Graphing <dbl>, and abbreviated variable names
## # ¹`Easy-going`, ²Committed, ³`Ease of communication`, ⁴Teamwork,
## # ⁵`Continuous learning`, ⁶Research
## # ℹ Use `colnames()` to see all variable names
radarchart(softSkills, axistype=1 ,
pcol=rgb(0.2,0.5,0.5,0.9) , pfcol=rgb(0.2,0.5,0.5,0.5) , plwd=4 ,
cglcol="red", cglty=1, axislabcol="red", caxislabels=seq(0,20,5),
cglwd=0.8,vlcex=0.8
)