#Prueba de Dickey Fuller con dos diferencias
seriedif2=diff(Arimar.ts, differences =2)
plot(seriedif2)

adf.test(seriedif2)
Augmented Dickey-Fuller Test
data: seriedif2
Dickey-Fuller = -5.1673, Lag order = 4, p-value = 0.01
alternative hypothesis: stationary
#Paso 4: Analisis visual de las graficas
plot(seriedif2, type="o", lty="dashed",main="Serie de Tiempo",col="red")

par(mfrow=c(2,1), mar=c(4,4,4,1)+.1)
acf(seriedif2)
pacf(seriedif2)

acf(ts(seriedif2, frequency=1))
pacf(ts(seriedif2, frequency=1))

#Modelo Arima
modelo1=arima(Arimar.ts,order=c(1,2,1))
summary(modelo1)
Call:
arima(x = Arimar.ts, order = c(1, 2, 1))
Coefficients:
ar1 ma1
0.4173 -1.000
s.e. 0.1100 0.047
sigma^2 estimated as 17.51: log likelihood = -244.07, aic = 494.14
Training set error measures:
ME RMSE MAE MPE MAPE MASE
Training set -0.1842755 4.136183 3.135096 -0.2061955 6.279221 0.9152235
ACF1
Training set -0.02472726
tsdiag(modelo1)

Box.test(residuals(modelo1),type="Ljung-Box")
Box-Ljung test
data: residuals(modelo1)
X-squared = 0.055051, df = 1, p-value = 0.8145
error=residuals(modelo1)
plot(error)
#Pronosticos Arima
pronostico=forecast::forecast(modelo1,h=10)
pronostico
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Apr 2020 21.856654 16.4633719 27.24994 13.608341 30.10497
May 2020 18.398192 8.9934192 27.80296 4.014833 32.78155
Jun 2020 16.445341 3.6136910 29.27699 -3.178974 36.06966
Jul 2020 15.120795 -0.6776994 30.91929 -9.040917 39.28251
Aug 2020 14.058445 -4.3652157 32.48211 -14.118113 42.23500
Sep 2020 13.105513 -7.6904599 33.90149 -18.699183 44.91021
Oct 2020 12.198241 -10.7797404 35.17622 -22.943549 47.34003
Nov 2020 11.310024 -13.7033148 36.32336 -26.944576 49.56462
Dec 2020 10.429758 -16.5031190 37.36264 -30.760523 51.62004
Jan 2021 9.552811 -19.2060240 38.31165 -34.430032 53.53565
plot(pronostico)
