Loading libraries

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)
library(tidyr)
library(ggplot2)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ tibble  3.1.4     ✓ stringr 1.4.0
## ✓ purrr   0.3.4     ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()

Introduction

Research Questions

Reading in new data

car_data <- read.csv("electric_cars.csv", header=TRUE, stringsAsFactors=FALSE)

head(car_data)
##                                   title topspeed_km.h range_km efficiency_Wh.km
## 1   Tesla Model 3 Long Range Dual Motor           233      455              154
## 2      Renault Megane E-Tech EV60 220hp           160      360              167
## 3   Tesla Model Y Long Range Dual Motor           217      410              171
## 4                            Kia EV6 GT           260      395              196
## 5                     Skoda Enyaq iV 80           160      420              183
## 6 Tesla Model 3 Standard Range Plus LFP           225      350              150
##   fastcharge_speed_km.h price_de_euro price_nl_euro price_uk_pound
## 1                   650            NA            NA          48490
## 2                   520         40000         40000          35000
## 3                   590         59965         65010          54000
## 4                   920         65990         63595          58295
## 5                   510         43950         47780          39365
## 6                   630         43560         49990          40990

Observing variables

str(car_data)
## 'data.frame':    185 obs. of  8 variables:
##  $ title                : chr  "Tesla Model 3 Long Range Dual Motor" "Renault Megane E-Tech EV60 220hp" "Tesla Model Y Long Range Dual Motor" "Kia EV6 GT" ...
##  $ topspeed_km.h        : int  233 160 217 260 160 225 125 144 160 185 ...
##  $ range_km             : int  455 360 410 395 420 350 170 225 535 385 ...
##  $ efficiency_Wh.km     : int  154 167 171 196 183 150 158 164 168 189 ...
##  $ fastcharge_speed_km.h: num  650 520 590 920 510 630 120 230 680 890 ...
##  $ price_de_euro        : num  NA 40000 59965 65990 43950 ...
##  $ price_nl_euro        : num  NA 40000 65010 63595 47780 ...
##  $ price_uk_pound       : num  48490 35000 54000 58295 39365 ...

Data Wrangling

# Arranging the vehicles by price 
top_price <- arrange(car_data, desc(`price_uk_pound`))
# Dataset for hgihest priced vehicles 
top_price <- top_price %>% slice(1:10)
top_price
##                                   title topspeed_km.h range_km efficiency_Wh.km
## 1                       Tesla Roadster            410      970              206
## 2  Porsche Taycan Turbo S Cross Turismo           250      380              220
## 3                Porsche Taycan Turbo S           260      390              215
## 4           Mercedes EQS AMG 53 4MATIC+           250      565              191
## 5               Lucid Air Grand Touring           270      660              167
## 6                   Tesla Model S Plaid           322      535              168
## 7    Porsche Taycan Turbo Cross Turismo           250      385              217
## 8                  Porsche Taycan Turbo           260      400              209
## 9               Mercedes EQS 580 4MATIC           210      610              177
## 10                  Tesla Model X Plaid           262      455              198
##    fastcharge_speed_km.h price_de_euro price_nl_euro price_uk_pound
## 1                    920        215000        215000         189000
## 2                    790        187746        193200         139910
## 3                    860        186336        191700         138830
## 4                    740        175000        175000         135000
## 5                   1380        140000        140000         125000
## 6                    800        126990        131000         118980
## 7                    800        154444        159300         116950
## 8                    840        153016        157900         115860
## 9                    800        135529        154949         115000
## 10                   680        116990        121000         110980
# Arranging vehicles by lowest price 
low_price <- arrange(car_data, `price_uk_pound`)
low_price
##                                      title topspeed_km.h range_km
## 1                    Smart EQ fortwo coupe           130      100
## 2                        Smart EQ forfour            130       95
## 3               Fiat 500e Hatchback 24 kWh           135      165
## 4                        Volkswagen e-Up!            130      205
## 5                   Smart EQ fortwo cabrio           130       95
## 6               Fiat 500e Hatchback 42 kWh           150      250
## 7                                MG MG5 EV           185      295
## 8                             Nissan Leaf            144      225
## 9                                 MG ZS EV           140      220
## 10                         Mini Cooper SE            150      185
## 11                             Mazda MX-30           140      170
## 12                    MG MG5 EV Long Range           185      340
## 13                        Fiat 500e Cabrio           150      245
## 14                   Renault Zoe ZE50 R110           135      315
## 15        Volkswagen ID.3 Pure Performance           160      275
## 16                           Opel Corsa-e            150      275
## 17                           Peugeot e-208           150      275
## 18                                Honda e            145      170
## 19            Hyundai Kona Electric 39 kWh           155      250
## 20                     Volkswagen ID.3 Pro           160      350
## 21              CUPRA Born 110 kW - 55 kWh           160      275
## 22                   Renault Zoe ZE50 R135           140      310
## 23         Volkswagen ID.3 Pro Performance           160      350
## 24                         Honda e Advance           145      170
## 25                   Nissan e-NV200 Evalia           123      170
## 26                       Kia e-Niro 39 kWh           155      235
## 27        Peugeot e-Rifter Standard 50 kWh           135      200
## 28                          Nissan Leaf e+           157      325
## 29              CUPRA Born 150 kW - 62 kWh           160      350
## 30                           Opel Mokka-e            150      255
## 31                  Hyundai IONIQ Electric           165      250
## 32                      Peugeot e-2008 SUV           150      250
## 33                            Citroen e-C4           150      250
## 34                           BMW i3 120 Ah           150      235
## 35                  DS 3 Crossback E-Tense           150      250
## 36              CUPRA Born 170 kW - 62 kWh           160      345
## 37               Renault Kangoo Maxi ZE 33           130      160
## 38          Citroen e-SpaceTourer M 50 kWh           130      180
## 39                       Skoda Enyaq iV 60           160      330
## 40                    Volkswagen ID.4 Pure           160      285
## 41                          BMW i3s 120 Ah           160      230
## 42                       Kia e-Niro 64 kWh           167      370
## 43            Peugeot e-Rifter Long 50 kWh           135      195
## 44        Renault Megane E-Tech EV40 130hp           160      245
## 45            Hyundai Kona Electric 64 kWh           167      395
## 46        Renault Megane E-Tech EV60 220hp           160      360
## 47        Volkswagen ID.4 Pure Performance           160      285
## 48      Hyundai IONIQ 5 Standard Range 2WD           185      310
## 49                       Kia e-Soul 64 kWh           167      370
## 50                      Nissan Ariya 63kWh           160      335
## 51         Volkswagen ID.3 Pro S - 4 Seats           160      450
## 52           Tesla Cybertruck Single Motor           180      390
## 53                       Skoda Enyaq iV 80           160      420
## 54  Polestar 2 Standard Range Single Motor           160      350
## 55              Nissan Ariya e-4ORCE 63kWh           200      325
## 56                       Audi Q4 e-tron 35           160      280
## 57                     Volkswagen ID.4 1st           160      410
## 58              Kia EV6 Standard Range 2WD           185      320
## 59   Tesla Model 3 Standard Range Plus LFP           225      350
## 60       Tesla Model 3 Standard Range Plus           225      350
## 61              Ford Mustang Mach-E SR RWD           180      345
## 62         Volkswagen ID.4 Pro Performance           160      410
## 63          Hyundai IONIQ 5 Long Range 2WD           185      385
## 64              CUPRA Born 170 kW - 82 kWh           160      450
## 65             Audi Q4 Sportback e-tron 35           160      295
## 66      Polestar 2 Long Range Single Motor           160      425
## 67            Skoda Enyaq iV Sportline 80x           160      400
## 68                        Mercedes EQA 250           160      355
## 69                           Lexus UX 300e           160      260
## 70                       Audi Q4 e-tron 40           160      405
## 71                      Nissan Ariya 87kWh           160      445
## 72          Hyundai IONIQ 5 Long Range AWD           185      375
## 73        Polestar 2 Long Range Dual Motor           205      395
## 74                       Skoda Enyaq iV RS           180      395
## 75              Ford Mustang Mach-E SR AWD           180      330
## 76              Hyundai IONIQ 5 Project 45           185      370
## 77                  Kia EV6 Long Range 2WD           185      420
## 78             Tesla Cybertruck Dual Motor           190      460
## 79              Nissan Ariya e-4ORCE 87kWh           200      420
## 80     Tesla Model 3 Long Range Dual Motor           233      455
## 81     Peugeot e-Traveller Standard 50 kWh           130      185
## 82             Opel Zafira-e Life L 50 kWh           130      175
## 83         Peugeot e-Traveller Long 50 kWh           130      185
## 84  Volvo XC40 Recharge Twin Pure Electric           180      340
## 85              Ford Mustang Mach-E ER RWD           180      440
## 86                 Mercedes EQB 350 4MATIC           160      340
## 87                 Byton M-Byte 72 kWh 2WD           190      325
## 88               Audi Q4 e-tron 50 quattro           180      385
## 89                         BMW i4 eDrive40           190      475
## 90                  Kia EV6 Long Range AWD           185      410
## 91  Nissan Ariya e-4ORCE 87kWh Performance           200      385
## 92     Audi Q4 Sportback e-tron 50 quattro           180      400
## 93     Tesla Model Y Long Range Dual Motor           217      410
## 94                     Volkswagen ID.4 GTX           180      400
## 95              Ford Mustang Mach-E ER AWD           180      420
## 96                      Volvo C40 Recharge           180      340
## 97                 Byton M-Byte 95 kWh 2WD           190      400
## 98                              Kia EV6 GT           260      395
## 99                                 BMW iX3           180      385
## 100              Tesla Model 3 Performance           261      470
## 101                       Mercedes EQE 350           160      535
## 102              Tesla Model Y Performance           241      430
## 103                Byton M-Byte 95 kWh 4WD           190      390
## 104                 Audi e-tron 50 quattro           190      280
## 105                             BMW i4 M50           225      450
## 106                    Jaguar I-Pace EV400           200      380
## 107                Mercedes EQC 400 4MATIC           180      370
## 108                 Ford Mustang Mach-E GT           200      410
## 109             Tesla Cybertruck Tri Motor           210      750
## 110       Audi e-tron Sportback 50 quattro           190      295
## 111                        BMW iX xDrive40           200      350
## 112                         Lucid Air Pure           200      540
## 113                  Mercedes EQV 300 Long           160      320
## 114                        Porsche Taycan            230      395
## 115                 Audi e-tron 55 quattro           200      365
## 116                    Porsche Taycan Plus           230      460
## 117         Porsche Taycan 4 Cross Turismo           220      405
## 118                 Audi e-tron GT quattro           245      420
## 119       Audi e-tron Sportback 55 quattro           200      375
## 120                      Porsche Taycan 4S           250      375
## 121               Tesla Model S Long Range           250      555
## 122               Audi e-tron S 55 quattro           210      320
## 123        Porsche Taycan 4S Cross Turismo           240      405
## 124                 Porsche Taycan 4S Plus           250      435
## 125     Audi e-tron S Sportback 55 quattro           210      335
## 126                      Lucid Air Touring           250      530
## 127               Tesla Model X Long Range           250      475
## 128                        BMW iX xDrive50           200      505
## 129                      Mercedes EQS 450+           210      640
## 130                      Audi e-tron GT RS           250      405
## 131                    Tesla Model X Plaid           262      455
## 132                Mercedes EQS 580 4MATIC           210      610
## 133                   Porsche Taycan Turbo           260      400
## 134     Porsche Taycan Turbo Cross Turismo           250      385
## 135                    Tesla Model S Plaid           322      535
## 136                Lucid Air Grand Touring           270      660
## 137            Mercedes EQS AMG 53 4MATIC+           250      565
## 138                 Porsche Taycan Turbo S           260      390
## 139   Porsche Taycan Turbo S Cross Turismo           250      380
## 140                        Tesla Roadster            410      970
## 141                  Dacia Spring Electric           125      170
## 142           Hyundai Kona Electric 64 kWh           167      395
## 143                              Aiways U5           150      335
## 144    Tesla Model 3 Long Range Dual Motor           233      490
## 145                MG Marvel R Performance           200      330
## 146                      Skoda Enyaq iV 50           160      295
## 147                         Lightyear One            150      575
## 148           Hyundai Kona Electric 39 kWh           155      250
## 149                  Renault Zoe ZE40 R110           135      255
## 150                Renault Twingo Electric           135      130
## 151            Audi Q4 Sportback e-tron 40           160      425
## 152        Volkswagen ID.3 Pro S - 5 Seats           160      450
## 153                         Opel Ampera-e            150      335
## 154      Volvo XC40 Recharge Pure Electric           160      315
## 155                                Seres 3           155      270
## 156                Mercedes EQA 350 4MATIC           160      350
## 157                     SEAT Mii Electric            130      205
## 158              Audi Q4 e-tron 45 quattro           180      385
## 159                        MG MG5 Electric           180      340
## 160                          Fiat 500e 3+1           150      245
## 161                             Sono Sion            140      260
## 162                           MG Marvel R            200      340
## 163                Mercedes EQA 300 4MATIC           160      350
## 164                              JAC iEV7s           132      225
## 165     Hyundai IONIQ 5 Standard Range AWD           185      305
## 166                      Kia e-Soul 64 kWh           167      370
## 167                 Audi e-tron 55 quattro           200      365
## 168                      Kia e-Soul 39 kWh           157      230
## 169            Mercedes EQV 300 Extra-Long           160      320
## 170           Toyota PROACE Verso M 75 kWh           130      250
## 171       Audi e-tron Sportback 55 quattro           200      375
## 172            Opel Zafira-e Life L 75 kWh           130      250
## 173           Toyota PROACE Verso L 75 kWh           130      250
## 174        Peugeot e-Traveller Long 75 kWh           130      270
## 175    Peugeot e-Traveller Standard 75 kWh           130      270
## 176         Citroen e-SpaceTourer M 75 kWh           130      250
## 177           Toyota PROACE Verso M 50 kWh           130      185
## 178        Citroen e-SpaceTourer XL 75 kWh           130      250
## 179     Peugeot e-Traveller Compact 50 kWh           130      185
## 180            Opel Zafira-e Life M 75 kWh           130      250
## 181           Toyota PROACE Verso L 50 kWh           130      180
## 182            Opel Zafira-e Life M 50 kWh           130      180
## 183        Citroen e-SpaceTourer XS 50 kWh           130      185
## 184            Opel Zafira-e Life S 50 kWh           130      185
## 185        Citroen e-SpaceTourer XL 50 kWh           130      175
##     efficiency_Wh.km fastcharge_speed_km.h price_de_euro price_nl_euro
## 1                167                    NA         18460         23995
## 2                176                    NA         19120         23995
## 3                144                   260         23560         24900
## 4                158                   170            NA         25850
## 5                176                    NA         21720         26995
## 6                149                   420         27560         28600
## 7                165                   340            NA            NA
## 8                164                   230         29990         34990
## 9                193                   260         31990         30985
## 10               156                   260         32500         36200
## 11               176                   180         34490         33990
## 12               168                   340            NA            NA
## 13               152                   410         30560         31600
## 14               165                   230         31990         33990
## 15               164                   410            NA         33490
## 16               164                   370         29000         30599
## 17               164                   370         30450         34900
## 18               168                   190         33850         35820
## 19               157                   210         35650         37000
## 20               166                   490         35460         36240
## 21               164                   440         32700         33000
## 22               168                   230         33990         35590
## 23               166                   490         36960         37740
## 24               168                   190         38000         39080
## 25               218                   170         43433         45173
## 26               167                   230         35290         35995
## 27               225                   270         37590            NA
## 28               172                   390         38350         41940
## 29               166                   440         37220         37990
## 30               176                   340         34110         34399
## 31               153                   220         35350         37015
## 32               180                   330         35450         40930
## 33               180                   330         34640         33990
## 34               161                   270         39000         39995
## 35               180                   330         30040         39990
## 36               168                   430         39000         39000
## 37               194                    NA            NA         38801
## 38               250                   240         51440         53011
## 39               176                   420         38850         40780
## 40               182                   410         36950         40690
## 41               165                   260         42600         43690
## 42               173                   350         39090         38995
## 43               231                   260         42590            NA
## 44               163                   510         35000         35000
## 45               162                   370         41850         41000
## 46               167                   520         40000         40000
## 47               182                   410         38450         42190
## 48               187                   720         41900         43500
## 49               173                   350            NA            NA
## 50               188                   450         45000         44000
## 51               171                   550         42460            NA
## 52               256                   740         45000         45000
## 53               183                   510         43950         47780
## 54               174                   430         46500         45900
## 55               194                   440         50000         46000
## 56               184                   390         41900         48295
## 57               188                   500            NA            NA
## 58               181                   740         44990         44595
## 59               150                   630         43560         49990
## 60               146                   700         43560         49990
## 61               197                   380         46900         50425
## 62               188                   500         44450         47790
## 63               189                   890         45100         46500
## 64               171                   550         43000         43000
## 65               175                   410         43900         50345
## 66               176                   550         49500         49900
## 67               193                   490         47000         50000
## 68               187                   420         47541         49995
## 69               192                   150         47550         39990
## 70               189                   500         47500         52815
## 71               196                   530         50000         52000
## 72               194                   870         48900         54500
## 73               190                   510         52500         53900
## 74               195                   480         50000         55000
## 75               206                   360         54000         58165
## 76               196                   860         59550         58995
## 77               184                   980         48990         52095
## 78               261                   710         55000         56000
## 79               207                   500         57500         55000
## 80               154                   650            NA            NA
## 81               243                   250         55900            NA
## 82               257                   230         54625         54196
## 83               243                   250         56690            NA
## 84               221                   440         59250         56495
## 85               200                   430         54475         58575
## 86               196                   400         60000         60000
## 87               222                   420         53500         55000
## 88               199                   470         53600         64815
## 89               170                   660         58300         60697
## 90               189                   950         52850         54595
## 91               226                   460         65000         60000
## 92               192                   490         55600         66865
## 93               171                   590         59965         65010
## 94               193                   490         50415         52190
## 95               210                   410         62900         67640
## 96               221                   440         62050         57995
## 97               238                   480         62000         62500
## 98               196                   920         65990         63595
## 99               192                   520         67300         69000
## 100              162                   790         58560         64990
## 101              168                   680         70000         70000
## 102              177                   720         66965         71010
## 103              244                   460         64000         65000
## 104              231                   470         69100         62700
## 105              179                   630         69900         73496
## 106              223                   360         77300         83072
## 107              216                   440         66069         77935
## 108              215                   400            NA         75490
## 109              267                   710         75000         78000
## 110              219                   490         71350         65100
## 111              203                   470         77300         86972
## 112              157                  1410         80000         80000
## 113              281                   280         71388         74609
## 114              180                   790         83520         87200
## 115              237                   590            NA            NA
## 116              182                   960         89244         93244
## 117              207                   850         93635         97399
## 118              202                   840         99800        104895
## 119              231                   600            NA            NA
## 120              189                   750        106487        110600
## 121              162                   830         86990         91000
## 122              270                   510         93800        104540
## 123              207                   850        111842        116000
## 124              192                   910        113008        116431
## 125              258                   540         96050        106940
## 126              160                  1390         95000        100000
## 127              189                   710         95990        101000
## 128              208                   620         98000        105472
## 129              168                   840        106374        118891
## 130              210                   810        138200        146295
## 131              198                   680        116990        121000
## 132              177                   800        135529        154949
## 133              209                   840        153016        157900
## 134              217                   800        154444        159300
## 135              168                   800        126990        131000
## 136              167                  1380        140000        140000
## 137              191                   740        175000        175000
## 138              215                   860        186336        191700
## 139              220                   790        187746        193200
## 140              206                   920        215000        215000
## 141              158                   120         20490         17890
## 142              162                   370         41850         41595
## 143              188                   350         35993         39950
## 144              155                   820         53560         57990
## 145              197                   380         50000         50000
## 146              176                   240         33800         35000
## 147              104                   540        149000        149990
## 148              157                   210         34850         36795
## 149              161                   230         29990            NA
## 150              164                    NA         24790         20690
## 151              180                   520         49500         54865
## 152              171                   550         42620         41990
## 153              173                   210         42990            NA
## 154              213                   400            NA         45995
## 155              193                   390            NA         37995
## 156              190                   420         56216            NA
## 157              158                   170         24650            NA
## 158              199                   470         50900         58065
## 159              168                   440         35000         35000
## 160              152                   410         29560         30600
## 161              181                   310         25500         26000
## 162              191                   390         40000         40000
## 163              190                   420         53538            NA
## 164              173                   160            NA         32210
## 165              190                   710         45700            NA
## 166              173                   350         37790         36495
## 167              237                   590         81500         71500
## 168              170                   220         33990         33495
## 169              281                   280         72281         75674
## 170              260                   290         64530         58995
## 171              231                   600         83750         73900
## 172              260                   290         60625         63150
## 173              260                   290         65385         60195
## 174              252                   290         58230            NA
## 175              252                   290         57440            NA
## 176              260                   290         57440         62026
## 177              243                   250         58530            NA
## 178              260                   290         58230         63962
## 179              243                   250         50880            NA
## 180              260                   290         59800         62061
## 181              250                   240         59385            NA
## 182              250                   240         53800         53107
## 183              243                   250         50880            NA
## 184              243                   250         56700            NA
## 185              257                   230         52230         54947
##     price_uk_pound
## 1            19200
## 2            19795
## 3            20495
## 4            21055
## 5            21620
## 6            23995
## 7            25095
## 8            25995
## 9            25995
## 10           26000
## 11           26045
## 12           26495
## 13           26645
## 14           26795
## 15           27135
## 16           27140
## 17           27225
## 18           27660
## 19           27950
## 20           28435
## 21           28500
## 22           28795
## 23           29755
## 24           30160
## 25           30255
## 26           30345
## 27           30375
## 28           30445
## 29           30500
## 30           30540
## 31           30550
## 32           30730
## 33           30895
## 34           31305
## 35           31500
## 36           31500
## 37           31680
## 38           31995
## 39           32010
## 40           32150
## 41           32305
## 42           32445
## 43           32455
## 44           32500
## 45           32550
## 46           35000
## 47           36030
## 48           36995
## 49           37545
## 50           38000
## 51           38815
## 52           39000
## 53           39365
## 54           39900
## 55           40000
## 56           40750
## 57           40800
## 58           40985
## 59           40990
## 60           40990
## 61           41330
## 62           41570
## 63           41945
## 64           42000
## 65           42250
## 66           42900
## 67           42915
## 68           43495
## 69           43900
## 70           44990
## 71           45000
## 72           45145
## 73           45900
## 74           46000
## 75           46650
## 76           48000
## 77           48000
## 78           48000
## 79           48000
## 80           48490
## 81           49065
## 82           49465
## 83           49905
## 84           49950
## 85           49980
## 86           50000
## 87           50000
## 88           51370
## 89           51905
## 90           52000
## 91           52000
## 92           52870
## 93           54000
## 94           55540
## 95           57030
## 96           57400
## 97           57500
## 98           58295
## 99           59730
## 100          59990
## 101          60000
## 102          60000
## 103          60000
## 104          60600
## 105          63905
## 106          65195
## 107          65720
## 108          67225
## 109          68000
## 110          69100
## 111          69905
## 112          70000
## 113          70665
## 114          70690
## 115          71500
## 116          74739
## 117          79340
## 118          79900
## 119          79900
## 120          83580
## 121          83980
## 122          87000
## 123          87820
## 124          88193
## 125          88700
## 126          90000
## 127          90980
## 128          91905
## 129          95000
## 130         110950
## 131         110980
## 132         115000
## 133         115860
## 134         116950
## 135         118980
## 136         125000
## 137         135000
## 138         138830
## 139         139910
## 140         189000
## 141             NA
## 142             NA
## 143             NA
## 144             NA
## 145             NA
## 146             NA
## 147             NA
## 148             NA
## 149             NA
## 150             NA
## 151             NA
## 152             NA
## 153             NA
## 154             NA
## 155             NA
## 156             NA
## 157             NA
## 158             NA
## 159             NA
## 160             NA
## 161             NA
## 162             NA
## 163             NA
## 164             NA
## 165             NA
## 166             NA
## 167             NA
## 168             NA
## 169             NA
## 170             NA
## 171             NA
## 172             NA
## 173             NA
## 174             NA
## 175             NA
## 176             NA
## 177             NA
## 178             NA
## 179             NA
## 180             NA
## 181             NA
## 182             NA
## 183             NA
## 184             NA
## 185             NA
# Isolating low price
low_price <- low_price %>% slice(1:10)
# Re-arranging vehicles to find mid-priced
car_data <- arrange(car_data, `price_uk_pound`)
# calculating median price
median(car_data$price_uk_pound, na.rm = TRUE)
## [1] 44995
# Isolating mid_price
mid_price <- car_data %>% slice(66:74)
mid_price
##                                title topspeed_km.h range_km efficiency_Wh.km
## 1 Polestar 2 Long Range Single Motor           160      425              176
## 2       Skoda Enyaq iV Sportline 80x           160      400              193
## 3                   Mercedes EQA 250           160      355              187
## 4                      Lexus UX 300e           160      260              192
## 5                  Audi Q4 e-tron 40           160      405              189
## 6                 Nissan Ariya 87kWh           160      445              196
## 7     Hyundai IONIQ 5 Long Range AWD           185      375              194
## 8   Polestar 2 Long Range Dual Motor           205      395              190
## 9                  Skoda Enyaq iV RS           180      395              195
##   fastcharge_speed_km.h price_de_euro price_nl_euro price_uk_pound
## 1                   550         49500         49900          42900
## 2                   490         47000         50000          42915
## 3                   420         47541         49995          43495
## 4                   150         47550         39990          43900
## 5                   500         47500         52815          44990
## 6                   530         50000         52000          45000
## 7                   870         48900         54500          45145
## 8                   510         52500         53900          45900
## 9                   480         50000         55000          46000

Visualizations

# Plotting 
ggplot(car_data, aes(range_km)) +
  geom_histogram() +
  labs(title = "Scope of Vehicle Range", x = "Range (km)")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

# Plotting the spread of Vehicle Efficiencies 
ggplot(car_data, aes(title, efficiency_Wh.km)) + geom_point() +
  labs(title = "Efficiency of Models", x = "Model" , y = "Efficiency (wh/km)")

Price Range Visualizations

# Most expensive price vs range facet wrap 
ggplot(top_price, aes(efficiency_Wh.km, price_uk_pound)) + geom_point() +
  theme_bw() +
  labs(title = "Price vs Efficiency of Most Expensive Vehicles", y = "Price (UK pound)", x = "Efficiency (wh/km)") +
  facet_wrap(vars(title))

# Least expensive price vs efficiency facet wrap 
ggplot(low_price, aes(efficiency_Wh.km, price_uk_pound)) + geom_point() +
  theme_bw() +
  labs(title = "Price vs Efficiency of Least Expensive Vehicles", y = "Price (UK pound)", x = "Efficiency (wh/km)") +
  facet_wrap(vars(title))

# Mid priced price vs efficiency facet wrap 
ggplot(mid_price, aes(efficiency_Wh.km, price_uk_pound)) + geom_point() +
  theme_bw() +
  labs(title = "Price vs Efficiency Mid-Priced Vehicles", y = "Price (UK pound)", x = "Efficiency (wh/km)") +
  facet_wrap(vars(title))

Brand Visualizations

Tesla

# Pulling all tesla rows and creating dataframe
tesla_data <- car_data[c(52,59,60,78,80,93,100,102,109,121,127,131,135,140,144),]
tesla_data
##                                     title topspeed_km.h range_km
## 52          Tesla Cybertruck Single Motor           180      390
## 59  Tesla Model 3 Standard Range Plus LFP           225      350
## 60      Tesla Model 3 Standard Range Plus           225      350
## 78            Tesla Cybertruck Dual Motor           190      460
## 80    Tesla Model 3 Long Range Dual Motor           233      455
## 93    Tesla Model Y Long Range Dual Motor           217      410
## 100             Tesla Model 3 Performance           261      470
## 102             Tesla Model Y Performance           241      430
## 109            Tesla Cybertruck Tri Motor           210      750
## 121              Tesla Model S Long Range           250      555
## 127              Tesla Model X Long Range           250      475
## 131                   Tesla Model X Plaid           262      455
## 135                   Tesla Model S Plaid           322      535
## 140                       Tesla Roadster            410      970
## 144   Tesla Model 3 Long Range Dual Motor           233      490
##     efficiency_Wh.km fastcharge_speed_km.h price_de_euro price_nl_euro
## 52               256                   740         45000         45000
## 59               150                   630         43560         49990
## 60               146                   700         43560         49990
## 78               261                   710         55000         56000
## 80               154                   650            NA            NA
## 93               171                   590         59965         65010
## 100              162                   790         58560         64990
## 102              177                   720         66965         71010
## 109              267                   710         75000         78000
## 121              162                   830         86990         91000
## 127              189                   710         95990        101000
## 131              198                   680        116990        121000
## 135              168                   800        126990        131000
## 140              206                   920        215000        215000
## 144              155                   820         53560         57990
##     price_uk_pound
## 52           39000
## 59           40990
## 60           40990
## 78           48000
## 80           48490
## 93           54000
## 100          59990
## 102          60000
## 109          68000
## 121          83980
## 127          90980
## 131         110980
## 135         118980
## 140         189000
## 144             NA
# Arranging in order of least expensive to most
tesla_data <- arrange(tesla_data, `price_uk_pound`)
tesla_data
##                                    title topspeed_km.h range_km
## 1          Tesla Cybertruck Single Motor           180      390
## 2  Tesla Model 3 Standard Range Plus LFP           225      350
## 3      Tesla Model 3 Standard Range Plus           225      350
## 4            Tesla Cybertruck Dual Motor           190      460
## 5    Tesla Model 3 Long Range Dual Motor           233      455
## 6    Tesla Model Y Long Range Dual Motor           217      410
## 7              Tesla Model 3 Performance           261      470
## 8              Tesla Model Y Performance           241      430
## 9             Tesla Cybertruck Tri Motor           210      750
## 10              Tesla Model S Long Range           250      555
## 11              Tesla Model X Long Range           250      475
## 12                   Tesla Model X Plaid           262      455
## 13                   Tesla Model S Plaid           322      535
## 14                       Tesla Roadster            410      970
## 15   Tesla Model 3 Long Range Dual Motor           233      490
##    efficiency_Wh.km fastcharge_speed_km.h price_de_euro price_nl_euro
## 1               256                   740         45000         45000
## 2               150                   630         43560         49990
## 3               146                   700         43560         49990
## 4               261                   710         55000         56000
## 5               154                   650            NA            NA
## 6               171                   590         59965         65010
## 7               162                   790         58560         64990
## 8               177                   720         66965         71010
## 9               267                   710         75000         78000
## 10              162                   830         86990         91000
## 11              189                   710         95990        101000
## 12              198                   680        116990        121000
## 13              168                   800        126990        131000
## 14              206                   920        215000        215000
## 15              155                   820         53560         57990
##    price_uk_pound
## 1           39000
## 2           40990
## 3           40990
## 4           48000
## 5           48490
## 6           54000
## 7           59990
## 8           60000
## 9           68000
## 10          83980
## 11          90980
## 12         110980
## 13         118980
## 14         189000
## 15             NA
# Facet wraping tesla price vs efficiency
ggplot(tesla_data, aes(efficiency_Wh.km, price_uk_pound)) + geom_point() +
  theme_bw() +
  labs(title = "Telsa Price vs Efficiency", y = "Price (UK pound)", x = "Efficiency (wh/km)") +
  facet_wrap(vars(title))
## Warning: Removed 1 rows containing missing values (geom_point).

# Facet wraping tesla price vs range 
ggplot(tesla_data, aes(range_km, price_uk_pound)) + geom_point() +
  theme_bw() +
  labs(title = "Telsa Price vs Range", y = "Price (UK pound)", x = "Range (km)") +
  facet_wrap(vars(title))
## Warning: Removed 1 rows containing missing values (geom_point).

Hyundai

# Pulling all hyundai rows and creaing dataframe
hyun_data <- car_data[c(19,31,45,48,63,72,76,142,148,165),]
hyun_data
##                                  title topspeed_km.h range_km efficiency_Wh.km
## 19        Hyundai Kona Electric 39 kWh           155      250              157
## 31              Hyundai IONIQ Electric           165      250              153
## 45        Hyundai Kona Electric 64 kWh           167      395              162
## 48  Hyundai IONIQ 5 Standard Range 2WD           185      310              187
## 63      Hyundai IONIQ 5 Long Range 2WD           185      385              189
## 72      Hyundai IONIQ 5 Long Range AWD           185      375              194
## 76          Hyundai IONIQ 5 Project 45           185      370              196
## 142       Hyundai Kona Electric 64 kWh           167      395              162
## 148       Hyundai Kona Electric 39 kWh           155      250              157
## 165 Hyundai IONIQ 5 Standard Range AWD           185      305              190
##     fastcharge_speed_km.h price_de_euro price_nl_euro price_uk_pound
## 19                    210         35650         37000          27950
## 31                    220         35350         37015          30550
## 45                    370         41850         41000          32550
## 48                    720         41900         43500          36995
## 63                    890         45100         46500          41945
## 72                    870         48900         54500          45145
## 76                    860         59550         58995          48000
## 142                   370         41850         41595             NA
## 148                   210         34850         36795             NA
## 165                   710         45700            NA             NA
# Arranging in order of least expensive to most
hyun_data <- arrange(hyun_data, `price_uk_pound`)
hyun_data
##                                 title topspeed_km.h range_km efficiency_Wh.km
## 1        Hyundai Kona Electric 39 kWh           155      250              157
## 2              Hyundai IONIQ Electric           165      250              153
## 3        Hyundai Kona Electric 64 kWh           167      395              162
## 4  Hyundai IONIQ 5 Standard Range 2WD           185      310              187
## 5      Hyundai IONIQ 5 Long Range 2WD           185      385              189
## 6      Hyundai IONIQ 5 Long Range AWD           185      375              194
## 7          Hyundai IONIQ 5 Project 45           185      370              196
## 8        Hyundai Kona Electric 64 kWh           167      395              162
## 9        Hyundai Kona Electric 39 kWh           155      250              157
## 10 Hyundai IONIQ 5 Standard Range AWD           185      305              190
##    fastcharge_speed_km.h price_de_euro price_nl_euro price_uk_pound
## 1                    210         35650         37000          27950
## 2                    220         35350         37015          30550
## 3                    370         41850         41000          32550
## 4                    720         41900         43500          36995
## 5                    890         45100         46500          41945
## 6                    870         48900         54500          45145
## 7                    860         59550         58995          48000
## 8                    370         41850         41595             NA
## 9                    210         34850         36795             NA
## 10                   710         45700            NA             NA
# Hyundai price vs efficiency facet wrap
ggplot(hyun_data, aes(efficiency_Wh.km, price_uk_pound)) + geom_point() +
  theme_bw() +
  labs(title = "Hyundai Price vs Efficiency", y = "Price (UK pound)", x = "Efficiency (wh/km)") +
  facet_wrap(vars(title))
## Warning: Removed 3 rows containing missing values (geom_point).

# Hyundai price vs range facet wrap 
ggplot(hyun_data, aes(range_km, price_uk_pound)) + geom_point() +
  theme_bw() +
  labs(title = "Hyundai Price vs Range", y = "Price (UK pound)", x = "Range (km)") +
  facet_wrap(vars(title))
## Warning: Removed 3 rows containing missing values (geom_point).

Volkswagon

# Pulling all volkswagon rows and creaing dataframe
volks_data <- car_data[c(4,15,20,23,40,47,51,57,62,94,152),]
volks_data
##                                title topspeed_km.h range_km efficiency_Wh.km
## 4                  Volkswagen e-Up!            130      205              158
## 15  Volkswagen ID.3 Pure Performance           160      275              164
## 20               Volkswagen ID.3 Pro           160      350              166
## 23   Volkswagen ID.3 Pro Performance           160      350              166
## 40              Volkswagen ID.4 Pure           160      285              182
## 47  Volkswagen ID.4 Pure Performance           160      285              182
## 51   Volkswagen ID.3 Pro S - 4 Seats           160      450              171
## 57               Volkswagen ID.4 1st           160      410              188
## 62   Volkswagen ID.4 Pro Performance           160      410              188
## 94               Volkswagen ID.4 GTX           180      400              193
## 152  Volkswagen ID.3 Pro S - 5 Seats           160      450              171
##     fastcharge_speed_km.h price_de_euro price_nl_euro price_uk_pound
## 4                     170            NA         25850          21055
## 15                    410            NA         33490          27135
## 20                    490         35460         36240          28435
## 23                    490         36960         37740          29755
## 40                    410         36950         40690          32150
## 47                    410         38450         42190          36030
## 51                    550         42460            NA          38815
## 57                    500            NA            NA          40800
## 62                    500         44450         47790          41570
## 94                    490         50415         52190          55540
## 152                   550         42620         41990             NA
# Arranging in order of least expensive to most
volks_data <- arrange(volks_data, `price_uk_pound`)
volks_data
##                               title topspeed_km.h range_km efficiency_Wh.km
## 1                 Volkswagen e-Up!            130      205              158
## 2  Volkswagen ID.3 Pure Performance           160      275              164
## 3               Volkswagen ID.3 Pro           160      350              166
## 4   Volkswagen ID.3 Pro Performance           160      350              166
## 5              Volkswagen ID.4 Pure           160      285              182
## 6  Volkswagen ID.4 Pure Performance           160      285              182
## 7   Volkswagen ID.3 Pro S - 4 Seats           160      450              171
## 8               Volkswagen ID.4 1st           160      410              188
## 9   Volkswagen ID.4 Pro Performance           160      410              188
## 10              Volkswagen ID.4 GTX           180      400              193
## 11  Volkswagen ID.3 Pro S - 5 Seats           160      450              171
##    fastcharge_speed_km.h price_de_euro price_nl_euro price_uk_pound
## 1                    170            NA         25850          21055
## 2                    410            NA         33490          27135
## 3                    490         35460         36240          28435
## 4                    490         36960         37740          29755
## 5                    410         36950         40690          32150
## 6                    410         38450         42190          36030
## 7                    550         42460            NA          38815
## 8                    500            NA            NA          40800
## 9                    500         44450         47790          41570
## 10                   490         50415         52190          55540
## 11                   550         42620         41990             NA
# Volkswagon price vs range facet wrap 
ggplot(volks_data, aes(efficiency_Wh.km, price_uk_pound)) + geom_point() +
  theme_bw() +
  labs(title = "Volkswagon Price vs Efficiency", y = "Price (UK pound)", x = "Efficiency (wh/km)") +
  facet_wrap(vars(title))
## Warning: Removed 1 rows containing missing values (geom_point).

# Volkswagon price vs range facet wrap 
ggplot(volks_data, aes(range_km, price_uk_pound)) + geom_point() +
  theme_bw() +
  labs(title = "Volkswagon Price vs Range", y = "Price (UK pound)", x = "Range (km)") +
  facet_wrap(vars(title))
## Warning: Removed 1 rows containing missing values (geom_point).

What is missing from your final project?

  • Before I can continue with my analysis I need to find a way to visualize how price and performance (efficiency/range/top-speed) compare among Tesla, Hyundai and Volkswagon. Also, my goal is to find a way to overlay the price vs efficiency/range plots of these three brands to visualize how they correlate. The same can be done for the most expensive, mid-priced and least expensive plots. Before submition time I would like accomplish these visualization goals, allowing me to offer clear answers to my research questions.