> #Creando Cabeceras
> nombres <-c("Numero de la Observacion","Boiling Point(F)","Pressure(in Hg)","Log(Pressure)","100log(Pressure)")
> #Importando
> bdForbes <- read.table(file="Actividad4Caso1.txt",header=FALSE, sep=" ",col.names=nombres)
Numero.de.la.Observacion Boiling.Point.F. Pressure.in.Hg. Log.Pressure. X100log.Pressure.
1 1 194.5 20.79 1.3179 131.79
2 2 194.3 20.79 1.3179 131.79
3 3 197.9 22.40 1.3502 135.02
4 4 198.4 22.67 1.3555 135.55
5 5 199.4 23.15 1.3646 136.46
6 6 199.9 23.35 1.3683 136.83
> #Convirtiendo a DataFrame
> df_forbes<-as.data.frame(bdForbes)
> head(df_forbes)
Numero.de.la.Observacion Boiling.Point.F. Pressure.in.Hg. Log.Pressure. X100log.Pressure.
1 1 194.5 20.79 1.3179 131.79
2 2 194.3 20.79 1.3179 131.79
3 3 197.9 22.40 1.3502 135.02
4 4 198.4 22.67 1.3555 135.55
5 5 199.4 23.15 1.3646 136.46
6 6 199.9 23.35 1.3683 136.83
> #Diagrama de Puntos Pressure versus Boiling point
> plot(x=df_forbes$Pressure.in.Hg.,y=df_forbes$Boiling.Point.F., main = "Diagrama de Puntos de Pressure vs. Boiling Point", xlab = "Boiling Point", ylab = "Pressure")
> #Diagrama de Puntos 100*log(Pressure) versus Boiling point
> plot(x=df_forbes$X100log.Pressure.,y=df_forbes$Boiling.Point.F., main = "Diagrama de Puntos de 100*log(Pressure) vs. Boiling Point", xlab = "Boiling Point", ylab = "Pressure")
> #Ajutar la linea de regresión de 100*log(Pressure) versus Boiling point. Trazar la línea sobre el plot hallado en la pregunta 2
> #Aplicamos la Regresión Lineal y Guardamos su valor en una variable
> reg_lienal<-lm(df_forbes$X100log.Pressure.~df_forbes$Boiling.Point.F.)
> #Graficamos
> plot(df_forbes$X100log.Pressure.~df_forbes$Boiling.Point.F.,xlab="Boiling.Point.F.", ylab="100*log(Pressure)")
> lines(reg_lienal$fitted.values~df_forbes$Boiling.Point.F.)
> title("Regresión Lineal Y Grafica de Puntos")
> #Interpretar los “p-values” de la prueba t y el de la prueba F
> summary(reg_lienal)
Call:
lm(formula = df_forbes$X100log.Pressure. ~ df_forbes$Boiling.Point.F.)
Residuals:
Min 1Q Median 3Q Max
-0.32220 -0.14473 -0.06664 0.02184 1.35978
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -42.13778 3.34020 -12.62 2.18e-09
df_forbes$Boiling.Point.F. 0.89549 0.01645 54.43 < 2e-16
(Intercept) ***
df_forbes$Boiling.Point.F. ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.379 on 15 degrees of freedom
Multiple R-squared: 0.995, Adjusted R-squared: 0.9946
F-statistic: 2963 on 1 and 15 DF, p-value: < 2.2e-16
> #Interpretar el Coeficiente de Determinación R
> reg_cuadrado<-lsfit(df_forbes$Boiling.Point.F.,df_forbes$X100log.Pressure.)
> ls.print(reg_cuadrado)
Residual Standard Error=0.379
R-Square=0.995
F-statistic (df=1, 15)=2962.785
p-value=0
Estimate Std.Err t-value Pr(>|t|)
Intercept -42.1378 3.3402 -12.6154 0
X 0.8955 0.0165 54.4315 0
> #Obtener un intervalo de confianza del 99% para 𝛽. Interpretar su resultado.
> beta<-summary(reg_lienal)$coef[2,1]
> eebeta<-summary(reg_lienal)$coef[2,2]
> dim(df_forbes)
[1] 17 5
> bint<-c(beta-qt(.995,15)*eebeta,beta+qt(.995,15)*eebeta)
> bint
[1] 0.8470150 0.9439723
> #Obtener un intervalo de confianza del 99% para el valor predicho y un intervalo de confianza para el valor medio de 100*log(Pressure) cuando el Boiling Point es de 195 °F.
> #Intervalo de Confiansa al 99% para el valor predicho
> limit99<-predict(reg_lienal,se.fit = T,interval = c("confidence"),level = .99)
> limit99
$fit
fit lwr upr
1 132.0357 131.5445 132.5270
2 131.8566 131.3573 132.3560
3 135.0804 134.7152 135.4456
4 135.5282 135.1787 135.8776
5 136.4237 136.1027 136.7447
6 136.8714 136.5627 137.1801
7 137.7669 137.4783 138.0555
8 137.9460 137.6606 138.2314
9 138.2146 137.9335 138.4958
10 138.1251 137.8426 138.4076
11 140.1847 139.9120 140.4574
12 141.0802 140.7978 141.3626
13 145.4681 145.0509 145.8854
14 144.6622 144.2771 145.0473
15 146.5427 146.0797 147.0058
16 147.6173 147.1059 148.1287
17 147.8860 147.3622 148.4097
$se.fit
[1] 0.16670329 0.16945786 0.12394054 0.11858031 0.10893736 0.10475387 0.09793575
[8] 0.09685029 0.09541188 0.09586552 0.09254197 0.09583811 0.14160608 0.13069760
[15] 0.15714613 0.17354259 0.17774802
$df
[1] 15
$residual.scale
[1] 0.3790275
> #Graficando
> plot(df_forbes$X100log.Pressure.~df_forbes$Boiling.Point.F.)
> lines(reg_lienal$fitted.values~df_forbes$Boiling.Point.F.)
> title("Banda de Confiansa al 99% y Regresión Lineal")
> #intervalo de confianza para el valor medio de 100*log(Pressure) cuando el Boiling Point es de 195 °F.
> #Calculando el Coeficiente y el Termino Independiente(Intercepto)
> intercept<-summary(reg_lienal)$coef[1,1]
> coeficiente<-summary(reg_lienal)$coef[2,1]
> Y<-intercept+coeficiente*195
> #Valor Predecido de Y (100*log(Pressure))
> Y
[1] 132.4835
> #Rango de Valores
desvt<-summary(reg_lienal)$coef[2,2]
> bint<-c(Y-qt(.995,15)*desvt,Y+qt(.995,15)*desvt)
> bint
[1] 132.435 132.532