setwd("D:/Compositional regression/July2022")
load("HclimateB2.RDATA")
require(tidyverse)
require(graphics)
#=============Plot the results
yrname <- "2016"
provincename <- unique(names(HclimateB2[[yrname]]))[50]#[1:10]

spline0B2_n <- HclimateB2[[yrname]][[provincename]]

n <- 2
h12_n <- c(1, -1 )

Year 2014

#op <- par(mfcol=c(1,1))

yrname <- "2014"
  for (provincename in unique(names(HclimateB2[[yrname]])))
       {
         spline0B2_n <- HclimateB2[[yrname]][[provincename]]
         matplot(spline0B2_n$Partition, 
        spline0B2_n[, 3:(n+2)], 
        type = "l", lty = 1, #las = 1, 
        ylab = "Density", xlab = "Temperature",
        lwd = 1.5, cex.lab = 1, 
        cex.axis = 0.5, 
        col = rainbow(7)[1:n],#)#,
   main = c(paste("Province", provincename , "and year", yrname ))) #and 16th
lines(spline0B2_n[, 1], 
      spline0B2_n[, 2], lwd = 1.5)
#abline(v = CFR.tmax$knots, col = "gray", lty = 2)
legend("topleft", legend = c(paste0( "h = ", h12_n), "Original"), 
       col =  c(rainbow(7)[1:n], "black"),
       ncol = 2, cex = 0.5, lwd = 1.5)
  }

#par(op)

Year 2015

#op <- par(mfcol=c(1,1))

yrname <- "2015"
  for (provincename in unique(names(HclimateB2[[yrname]])))
       {
         spline0B2_n <- HclimateB2[[yrname]][[provincename]]
         matplot(spline0B2_n$Partition, 
        spline0B2_n[, 3:(n+2)], 
        type = "l", lty = 1, #las = 1, 
        ylab = "Density", xlab = "Temperature",
        lwd = 1.5, cex.lab = 1, 
        cex.axis = 0.5, 
        col = rainbow(7)[1:n],#)#,
   main = c(paste("Province", provincename , "and year", yrname ))) #and 16th
lines(spline0B2_n[, 1], 
      spline0B2_n[, 2], lwd = 1.5)
#abline(v = CFR.tmax$knots, col = "gray", lty = 2)
legend("topleft", legend = c(paste0( "h = ", h12_n), "Original"), 
       col =  c(rainbow(7)[1:n], "black"),
       ncol = 2, cex = 0.5, lwd = 1.5)
  }

#par(op)

Year 2016

#op <- par(mfcol=c(1,1))

yrname <- "2016"
  for (provincename in unique(names(HclimateB2[[yrname]])))
       {
         spline0B2_n <- HclimateB2[[yrname]][[provincename]]
         matplot(spline0B2_n$Partition, 
        spline0B2_n[, 3:(n+2)], 
        type = "l", lty = 1, #las = 1, 
        ylab = "Density", xlab = "Temperature",
        lwd = 1.5, cex.lab = 1, 
        cex.axis = 0.5, 
        col = rainbow(7)[1:n],#)#,
   main = c(paste("Province", provincename , "and year", yrname ))) #and 16th
lines(spline0B2_n[, 1], 
      spline0B2_n[, 2], lwd = 1.5)
#abline(v = CFR.tmax$knots, col = "gray", lty = 2)
legend("topleft", legend = c(paste0( "h = ", h12_n), "Original"), 
       col =  c(rainbow(7)[1:n], "black"),
       ncol = 2, cex = 0.5, lwd = 1.5)
  }

#par(op)
LS0tDQp0aXRsZTogIkNsaW1hdGVfY2hhbmdlX2FsbF9EZW5zaXRpZXM6IENCMTQgYW5kIENCMTUgbW92ZSINCmF1dGhvcjogIkh1b25nIg0KZGF0ZTogIjIwMjItMDgtMDUiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgY29kZV9kb3dubG9hZDogeWVzDQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQogICAgaGlnaGxpZ2h0OiBweWdtZW50cw0KICAgIHRoZW1lOiBmbGF0bHkNCiAgICB0b2M6IHllcw0KICAgIHRvY19mbG9hdDogeWVzDQogIHdvcmRfZG9jdW1lbnQ6DQogICAgdG9jOiB5ZXMNCi0tLQ0KDQpgYGB7ciBzZXR1cCxpbmNsdWRlPUZBTFNFfQ0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFLCB3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRSkNCmBgYA0KDQoNCmBgYHtyfQ0Kc2V0d2QoIkQ6L0NvbXBvc2l0aW9uYWwgcmVncmVzc2lvbi9KdWx5MjAyMiIpDQpsb2FkKCJIY2xpbWF0ZUIyLlJEQVRBIikNCnJlcXVpcmUodGlkeXZlcnNlKQ0KcmVxdWlyZShncmFwaGljcykNCmBgYA0KDQoNCg0KYGBge3J9DQojPT09PT09PT09PT09PVBsb3QgdGhlIHJlc3VsdHMNCnlybmFtZSA8LSAiMjAxNiINCnByb3ZpbmNlbmFtZSA8LSB1bmlxdWUobmFtZXMoSGNsaW1hdGVCMltbeXJuYW1lXV0pKVs1MF0jWzE6MTBdDQoNCnNwbGluZTBCMl9uIDwtIEhjbGltYXRlQjJbW3lybmFtZV1dW1twcm92aW5jZW5hbWVdXQ0KDQpuIDwtIDINCmgxMl9uIDwtIGMoMSwgLTEgKQ0KDQpgYGANCg0KDQoNCiMjIFllYXIgMjAxNA0KYGBge3J9DQojb3AgPC0gcGFyKG1mY29sPWMoMSwxKSkNCg0KeXJuYW1lIDwtICIyMDE0Ig0KICBmb3IgKHByb3ZpbmNlbmFtZSBpbiB1bmlxdWUobmFtZXMoSGNsaW1hdGVCMltbeXJuYW1lXV0pKSkNCiAgICAgICB7DQogICAgICAgICBzcGxpbmUwQjJfbiA8LSBIY2xpbWF0ZUIyW1t5cm5hbWVdXVtbcHJvdmluY2VuYW1lXV0NCiAgICAgICAgIG1hdHBsb3Qoc3BsaW5lMEIyX24kUGFydGl0aW9uLCANCiAgICAgICAgc3BsaW5lMEIyX25bLCAzOihuKzIpXSwgDQogICAgICAgIHR5cGUgPSAibCIsIGx0eSA9IDEsICNsYXMgPSAxLCANCiAgICAgICAgeWxhYiA9ICJEZW5zaXR5IiwgeGxhYiA9ICJUZW1wZXJhdHVyZSIsDQogICAgICAgIGx3ZCA9IDEuNSwgY2V4LmxhYiA9IDEsIA0KICAgICAgICBjZXguYXhpcyA9IDAuNSwgDQogICAgICAgIGNvbCA9IHJhaW5ib3coNylbMTpuXSwjKSMsDQogICBtYWluID0gYyhwYXN0ZSgiUHJvdmluY2UiLCBwcm92aW5jZW5hbWUgLCAiYW5kIHllYXIiLCB5cm5hbWUgKSkpICNhbmQgMTZ0aA0KbGluZXMoc3BsaW5lMEIyX25bLCAxXSwgDQogICAgICBzcGxpbmUwQjJfblssIDJdLCBsd2QgPSAxLjUpDQojYWJsaW5lKHYgPSBDRlIudG1heCRrbm90cywgY29sID0gImdyYXkiLCBsdHkgPSAyKQ0KbGVnZW5kKCJ0b3BsZWZ0IiwgbGVnZW5kID0gYyhwYXN0ZTAoICJoID0gIiwgaDEyX24pLCAiT3JpZ2luYWwiKSwgDQogICAgICAgY29sID0gIGMocmFpbmJvdyg3KVsxOm5dLCAiYmxhY2siKSwNCiAgICAgICBuY29sID0gMiwgY2V4ID0gMC41LCBsd2QgPSAxLjUpDQogIH0NCg0KI3BhcihvcCkNCmBgYA0KDQoNCiMjIFllYXIgMjAxNQ0KYGBge3J9DQojb3AgPC0gcGFyKG1mY29sPWMoMSwxKSkNCg0KeXJuYW1lIDwtICIyMDE1Ig0KICBmb3IgKHByb3ZpbmNlbmFtZSBpbiB1bmlxdWUobmFtZXMoSGNsaW1hdGVCMltbeXJuYW1lXV0pKSkNCiAgICAgICB7DQogICAgICAgICBzcGxpbmUwQjJfbiA8LSBIY2xpbWF0ZUIyW1t5cm5hbWVdXVtbcHJvdmluY2VuYW1lXV0NCiAgICAgICAgIG1hdHBsb3Qoc3BsaW5lMEIyX24kUGFydGl0aW9uLCANCiAgICAgICAgc3BsaW5lMEIyX25bLCAzOihuKzIpXSwgDQogICAgICAgIHR5cGUgPSAibCIsIGx0eSA9IDEsICNsYXMgPSAxLCANCiAgICAgICAgeWxhYiA9ICJEZW5zaXR5IiwgeGxhYiA9ICJUZW1wZXJhdHVyZSIsDQogICAgICAgIGx3ZCA9IDEuNSwgY2V4LmxhYiA9IDEsIA0KICAgICAgICBjZXguYXhpcyA9IDAuNSwgDQogICAgICAgIGNvbCA9IHJhaW5ib3coNylbMTpuXSwjKSMsDQogICBtYWluID0gYyhwYXN0ZSgiUHJvdmluY2UiLCBwcm92aW5jZW5hbWUgLCAiYW5kIHllYXIiLCB5cm5hbWUgKSkpICNhbmQgMTZ0aA0KbGluZXMoc3BsaW5lMEIyX25bLCAxXSwgDQogICAgICBzcGxpbmUwQjJfblssIDJdLCBsd2QgPSAxLjUpDQojYWJsaW5lKHYgPSBDRlIudG1heCRrbm90cywgY29sID0gImdyYXkiLCBsdHkgPSAyKQ0KbGVnZW5kKCJ0b3BsZWZ0IiwgbGVnZW5kID0gYyhwYXN0ZTAoICJoID0gIiwgaDEyX24pLCAiT3JpZ2luYWwiKSwgDQogICAgICAgY29sID0gIGMocmFpbmJvdyg3KVsxOm5dLCAiYmxhY2siKSwNCiAgICAgICBuY29sID0gMiwgY2V4ID0gMC41LCBsd2QgPSAxLjUpDQogIH0NCg0KI3BhcihvcCkNCmBgYA0KDQoNCg0KIyMgWWVhciAyMDE2DQpgYGB7cn0NCiNvcCA8LSBwYXIobWZjb2w9YygxLDEpKQ0KDQp5cm5hbWUgPC0gIjIwMTYiDQogIGZvciAocHJvdmluY2VuYW1lIGluIHVuaXF1ZShuYW1lcyhIY2xpbWF0ZUIyW1t5cm5hbWVdXSkpKQ0KICAgICAgIHsNCiAgICAgICAgIHNwbGluZTBCMl9uIDwtIEhjbGltYXRlQjJbW3lybmFtZV1dW1twcm92aW5jZW5hbWVdXQ0KICAgICAgICAgbWF0cGxvdChzcGxpbmUwQjJfbiRQYXJ0aXRpb24sIA0KICAgICAgICBzcGxpbmUwQjJfblssIDM6KG4rMildLCANCiAgICAgICAgdHlwZSA9ICJsIiwgbHR5ID0gMSwgI2xhcyA9IDEsIA0KICAgICAgICB5bGFiID0gIkRlbnNpdHkiLCB4bGFiID0gIlRlbXBlcmF0dXJlIiwNCiAgICAgICAgbHdkID0gMS41LCBjZXgubGFiID0gMSwgDQogICAgICAgIGNleC5heGlzID0gMC41LCANCiAgICAgICAgY29sID0gcmFpbmJvdyg3KVsxOm5dLCMpIywNCiAgIG1haW4gPSBjKHBhc3RlKCJQcm92aW5jZSIsIHByb3ZpbmNlbmFtZSAsICJhbmQgeWVhciIsIHlybmFtZSApKSkgI2FuZCAxNnRoDQpsaW5lcyhzcGxpbmUwQjJfblssIDFdLCANCiAgICAgIHNwbGluZTBCMl9uWywgMl0sIGx3ZCA9IDEuNSkNCiNhYmxpbmUodiA9IENGUi50bWF4JGtub3RzLCBjb2wgPSAiZ3JheSIsIGx0eSA9IDIpDQpsZWdlbmQoInRvcGxlZnQiLCBsZWdlbmQgPSBjKHBhc3RlMCggImggPSAiLCBoMTJfbiksICJPcmlnaW5hbCIpLCANCiAgICAgICBjb2wgPSAgYyhyYWluYm93KDcpWzE6bl0sICJibGFjayIpLA0KICAgICAgIG5jb2wgPSAyLCBjZXggPSAwLjUsIGx3ZCA9IDEuNSkNCiAgfQ0KDQojcGFyKG9wKQ0KYGBgDQo=