library(RJDemetra)

X-12-ARIMA is a seasonal adjustment program developed and supported by the U.S. Census Bureau. It includes all the capabilities of the X-11 program (see Dagum, E.B. (1980)) which estimates trend and seasonal component using moving averages. X-12-ARIMA offers useful enhancements including: extension of the time series with forecasts and backcasts from ARIMA models prior to seasonal adjustment, adjustment for effects estimated with user-defined regressors, additional seasonal and trend filter options, alternative seasonal-trend-irregular decomposition, additional diagnostics of the quality and stability of the adjustments, extensive time series modelling and model selection capabilities for linear regression models with ARIMA errors. For basic information on the X-12-ARIMA program see X-12-ARIMA Reference Manual (2007). More information on X-12-ARIMA can be found at http://www.census.gov.

X-13ARIMA-SEATS is a seasonal adjustment program developed and supported by the U.S. Census Bureau that contains two seasonal adjustment modules: the enhanced X-11 seasonal adjustment procedure and ARIMA model based seasonal adjustment procedure from the SEATS seasonal adjustment procedure originally developed by Victor Gómez and Agustín Maravall at the Bank of Spain.

For information on the X-3ARIMA-SEATS program see X-13ARIMA-SEATS Reference Manual (2013). More information on X-13ARIMA-SEATS can be found at http://www.census.gov. https://www.census.gov/srd/www/winx13

TRAMO/SEATS is a model-based seasonal adjustment method developed by Victor Gomez and Agustin Maravall (the Bank of Spain). It consists of two linked programs: TRAMO and SEATS. TRAMO (“Time Series Regression with ARIMA Noise, Missing Observations, and Outliers”) performs estimation, forecasting, and interpolation of regression models with missing observations and ARIMA errors, in the presence of possibly several types of outliers.

SEATS (“Signal Extraction in ARIMA Time Series”) performs an ARIMA-based decomposition of an observed time series into unobserved components. Both programs are supported by the Bank of Spain.

For basic information on the TRAMO/SEATS see CAPORELLO, G., and MARAVALL, A. (2004). More information on TRAMO/SEATS can be found at www.bde.es.

regarima

RegARIMA model, pre-adjustment in X13 and TRAMO-SEATS

The regarima/regarima_x13/regarima_tramoseats functions decompose the input time series in a linear deterministic component and in a stochastic component.

When seasonally adjusting with X13 and TRAMO-SEATS, the first step consists in pre-adjusting the original series with a RegARIMA model, where the original series is corrected for any deterministic effects and missing observations.

This step is also referred to as the linearization of the original series.

The RegARIMA model (model with ARIMA errors) is specified as such: \(z_t = y_tβ + x_t\)

myseries <- ipi_c_eu[, "FR"]
myspec1 <- regarima_spec_tramoseats(spec = "TRfull")
myreg1 <- regarima(myseries, spec = myspec1)
layout(matrix(1:2,2,1))
plot(myreg1)

# To modify a pre-specified model specification
myspec2 <- regarima_spec_tramoseats(spec = "TRfull",
  tradingdays.mauto = "Unused",
  tradingdays.option = "WorkingDays",
  easter.type = "Standard",
  automdl.enabled = FALSE, arima.mu = TRUE)
myreg2 <- regarima(myseries, spec = myspec2)

# To modify the model specification of a "regarima" object
myspec3 <- regarima_spec_tramoseats(myreg1,
  tradingdays.mauto = "Unused",
  tradingdays.option = "WorkingDays",
  easter.type = "Standard", 
  automdl.enabled = FALSE,
  arima.mu = TRUE)
myreg3 <- regarima(myseries, myspec3)

# To modify the model specification of a "regarima_spec" object
myspec4 <- regarima_spec_tramoseats(myspec1,
  tradingdays.mauto = "Unused",
  tradingdays.option = "WorkingDays",
  easter.type = "Standard",
  automdl.enabled = FALSE, arima.mu = TRUE)
myreg4 <- regarima(myseries, myspec4)

# Pre-specified outliers
myspec1 <- regarima_spec_tramoseats(spec = "TRfull",
  usrdef.outliersEnabled = TRUE,
  usrdef.outliersType = c("LS", "LS"),
  usrdef.outliersDate = c("2008-10-01" ,"2003-01-01"),
  usrdef.outliersCoef = c(10, -8), transform.function = "None")
s_preOut(myspec1)
myreg1 <- regarima(myseries, myspec1)
myreg1
## y = regression model + arima (2, 1, 0, 1, 1, 1)
## Log-transformation: no
## Coefficients:
##           Estimate Std. Error
## Phi(1)      0.4872      0.051
## Phi(2)      0.2964      0.051
## BPhi(1)    -0.2070      0.071
## BTheta(1)  -0.8048      0.044
## 
##              Estimate Std. Error
## Week days      0.6814      0.039
## Leap year      1.9125      0.726
## Easter [6]    -2.4901      0.461
## TC (4-2020)  -22.4492      2.288
## TC (3-2020)  -21.2013      2.296
## AO (5-2011)   12.6414      1.908
## LS (11-2008) -14.2909      1.954
## 
## Fixed outliers: 
##              Coefficients
## LS (10-2008)           10
## LS (1-2003)            -8
## 
## 
## Residual standard error: 2.421 on 347 degrees of freedom
## Log likelihood = -831.3, aic =  1687 aicc =  1688, bic(corrected for length) = 1.949
s_preOut(myreg1)
# User-defined variables
var1 <- ts(rnorm(length(myseries))*10, start = start(myseries),frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries),frequency = 12)
var <- ts.union(var1, var2)
myspec1 <- regarima_spec_tramoseats(spec = "TRfull", 
                                    usrdef.varEnabled = TRUE,
                                    usrdef.var = var)
s_preVar(myspec1)
## $series
##                  var1          var2
## Jan 1990  16.38492292  167.94350673
## Feb 1990  -3.20301667  164.18586576
## Mar 1990  -0.99940799   68.16033169
## Apr 1990  13.13429575  133.60062553
## May 1990  -5.92383395   90.34007014
## Jun 1990  -6.87066265 -138.40761325
## Jul 1990  -5.55115920  -31.52421526
## Aug 1990   9.01278759  -93.90060924
## Sep 1990  -2.15358678   53.05553370
## Oct 1990  11.26230583  -49.26827187
## Nov 1990   4.26942485 -162.77216032
## Dec 1990  -6.01171770  -20.38310342
## Jan 1991  -4.16121688   19.56135338
## Feb 1991   7.85257518  -59.81028307
## Mar 1991   3.58743423   28.71178840
## Apr 1991  -0.13210587   -8.52875028
## May 1991   2.72555235  -79.34068953
## Jun 1991  12.65511131   89.47294368
## Jul 1991   6.72828392  -35.51020571
## Aug 1991  -4.68212521   69.36984879
## Sep 1991  -4.75354959 -264.71615460
## Oct 1991   2.89208330 -286.76658043
## Nov 1991 -10.08517278    5.19860742
## Dec 1991  -4.05272098   18.04882751
## Jan 1992  -1.80971492  -25.51701650
## Feb 1992  22.80403863  217.20614182
## Mar 1992  -5.37264595  -29.59698206
## Apr 1992   4.44502921  101.17043028
## May 1992  -4.69884337  -28.06924873
## Jun 1992 -13.25524457 -121.42143336
## Jul 1992 -16.02512027  -54.31380524
## Aug 1992   0.41124257 -209.70594603
## Sep 1992   7.46526711  135.03700389
## Oct 1992  23.33056492  -69.26006311
## Nov 1992   0.11416412  -95.00553002
## Dec 1992  -6.98448997  -25.34213706
## Jan 1993  13.22414693  -57.46474867
## Feb 1993  16.61127888  -12.23834712
## Mar 1993 -17.92372538   74.42882743
## Apr 1993  11.72440543 -109.44554831
## May 1993  15.05319226  -45.37213729
## Jun 1993  -4.39639799  243.64490328
## Jul 1993  22.30921469 -122.61672637
## Aug 1993  -7.41987687  280.68857151
## Sep 1993   4.31407888   28.47413604
## Oct 1993   0.23138705   11.32911292
## Nov 1993  -0.20880546   77.48667520
## Dec 1993   4.87965447  -31.31851258
## Jan 1994   6.64225542   -8.97063980
## Feb 1994   2.42570225  -44.25266094
## Mar 1994  13.26797208  -17.34122217
## Apr 1994  -6.88566575 -137.20905329
## May 1994  -9.13008027  201.48955440
## Jun 1994  11.81577576   42.01452253
## Jul 1994  -3.29311745  -75.09091637
## Aug 1994   4.09389342   53.38185991
## Sep 1994  -2.42130632  -51.06907026
## Oct 1994  -0.38121979 -129.91187012
## Nov 1994   6.33857689  -79.29621441
## Dec 1994  16.52271893  -75.11892307
## Jan 1995   6.42283042  -56.91568119
## Feb 1995   4.00615962 -138.45348117
## Mar 1995  22.93325369  -13.26495682
## Apr 1995   5.64318399   54.88528510
## May 1995  -3.18187547  -40.04395713
## Jun 1995  -3.97376179  -60.10343495
## Jul 1995 -16.62896277 -179.40171947
## Aug 1995   7.69573244 -110.75919661
## Sep 1995  14.40815045   17.60841752
## Oct 1995  -7.61843401 -271.78837266
## Nov 1995  -3.10100290  -50.54661525
## Dec 1995  -6.85773985  -28.51461167
## Jan 1996  -3.82170393   -4.94147205
## Feb 1996 -12.31869971   42.35833862
## Mar 1996  15.16218503  -95.33793066
## Apr 1996  -0.46314583   37.27677875
## May 1996   4.51579824   39.00611550
## Jun 1996  12.78559105 -211.73323051
## Jul 1996  -3.40675956  -50.86359709
## Aug 1996  -6.75366729  -13.51872094
## Sep 1996   2.79233825   11.43623834
## Oct 1996  14.20171427    7.55904627
## Nov 1996   4.06932409 -137.87513104
## Dec 1996  -6.89148477   70.89235549
## Jan 1997   5.13443829  -88.00701490
## Feb 1997 -13.82335658   70.90406099
## Mar 1997   8.23547443  164.88760549
## Apr 1997 -15.82489860  -91.97962373
## May 1997  -5.98327749 -136.81057787
## Jun 1997   2.36498436  -25.40461740
## Jul 1997   3.94092963  -69.42821587
## Aug 1997  -5.71673075   21.67348123
## Sep 1997   4.14338161  -59.44048916
## Oct 1997  -2.08229943   70.95193200
## Nov 1997   0.24914460  -91.92475345
## Dec 1997 -18.58964684 -130.67952098
## Jan 1998 -15.67462080  -22.12278542
## Feb 1998   3.06115598   19.59772066
## Mar 1998   0.02564113  -59.64568942
## Apr 1998  10.33473809  -16.81882612
## May 1998  -5.18396309   96.10452269
## Jun 1998  -4.42549443 -241.59753081
## Jul 1998   2.12013915  -46.12072700
## Aug 1998   0.51487091  -34.40996066
## Sep 1998  12.18123515  -19.25152611
## Oct 1998  -7.92627114   88.41979483
## Nov 1998   2.11797793  114.52613256
## Dec 1998  -9.40709251  -42.51651945
## Jan 1999  15.22593542  144.38354530
## Feb 1999  -7.21105691   78.01775433
## Mar 1999  -2.88914737  104.22602054
## Apr 1999  17.17858746 -221.18413199
## May 1999  11.52286818    3.80380041
## Jun 1999  -4.91092907   32.26338600
## Jul 1999   9.33868993   24.50839279
## Aug 1999   4.65588136  -54.68288066
## Sep 1999  12.83418385  -59.24808244
## Oct 1999   0.34553874  156.42439200
## Nov 1999  -1.76820507  -76.35765127
## Dec 1999  -4.51127363  -41.92192552
## Jan 2000 -16.80921771  -64.31902556
## Feb 2000  -7.55660246  -72.85386634
## Mar 2000   8.54545945  175.93800622
## Apr 2000  -3.76686723  -88.92850333
## May 2000  -3.92641217   12.31043194
## Jun 2000  -4.81792134  151.39401059
## Jul 2000   8.74590968  187.11757492
## Aug 2000   5.57416543   71.15529004
## Sep 2000   9.73360068   93.00669851
## Oct 2000 -18.37271977  192.63969872
## Nov 2000  -8.65109091   11.65460267
## Dec 2000  10.12988282  -96.04836809
## Jan 2001  -2.58261261 -105.48130843
## Feb 2001  -3.49696032  -61.68311501
## Mar 2001  -1.61395685  142.36776772
## Apr 2001  14.03106334   63.93416476
## May 2001  -9.62587413  -44.84153678
## Jun 2001   8.00705399   50.82555780
## Jul 2001  -9.35089160  168.92113342
## Aug 2001   0.13597512  -73.37546954
## Sep 2001  -4.25852056 -134.52339602
## Oct 2001   2.84463678   65.72611825
## Nov 2001 -11.61245965  -65.08534001
## Dec 2001   1.89489114  -82.44863678
## Jan 2002 -17.37333118  -31.20571053
## Feb 2002   0.99899248    1.93758459
## Mar 2002   0.09079389   27.81255428
## Apr 2002  -5.21111220    4.61518393
## May 2002 -12.90979615   73.31196445
## Jun 2002   0.26445386  -19.83392243
## Jul 2002   6.40969504   83.83262874
## Aug 2002 -14.35507591  101.89875839
## Sep 2002 -15.68600210  -57.86805886
## Oct 2002  -1.58284703   79.42373380
## Nov 2002  -2.59408719  129.05761942
## Dec 2002  -4.70120731  123.50483842
## Jan 2003  -8.53765768  -99.87649724
## Feb 2003  -6.23427231   28.73689998
## Mar 2003   3.35438307   39.58207171
## Apr 2003  -6.35035544  183.60272724
## May 2003   2.11488999 -179.15473426
## Jun 2003   1.53320004 -260.26753362
## Jul 2003  -4.62809458  104.35685228
## Aug 2003  -5.41921677 -141.07463039
## Sep 2003  -5.14279131  -19.14401371
## Oct 2003  -2.39862671 -123.05422334
## Nov 2003  -5.61601307  -22.07488692
## Dec 2003   5.43661475  -90.02158158
## Jan 2004   2.35749222 -143.06394048
## Feb 2004  -0.32781534   27.64701313
## Mar 2004   6.48881588  -74.76285281
## Apr 2004  -7.45063981  -65.43655673
## May 2004  -0.94426316  -13.27207796
## Jun 2004  -1.31419276 -209.55272696
## Jul 2004 -11.97761359 -132.81406540
## Aug 2004 -13.38495509 -246.15781188
## Sep 2004   1.43166143  -23.21718736
## Oct 2004   8.29382342   -0.03089156
## Nov 2004   5.85627083  -35.13743146
## Dec 2004  -4.53096786   62.60648277
## Jan 2005  -8.30071437  -63.23654194
## Feb 2005 -14.64584416  -47.36453930
## Mar 2005  11.31529760  -31.20161040
## Apr 2005  -6.01137583 -114.65942226
## May 2005 -14.73666107    3.59456198
## Jun 2005  11.93852216 -143.90266587
## Jul 2005  -0.18781359    4.50858286
## Aug 2005   7.60277641  160.38023781
## Sep 2005  -3.76443075   48.70556669
## Oct 2005 -18.80584186   67.61291307
## Nov 2005   1.28166204  147.63537901
## Dec 2005  -0.96664588  -74.50272839
## Jan 2006  13.75586115  120.07566757
## Feb 2006 -12.73468033 -211.66908724
## Mar 2006  -1.83984432  -76.98865919
## Apr 2006  -6.77036701 -120.91397332
## May 2006  12.67304303  -74.79980676
## Jun 2006  10.05894665   69.27257867
## Jul 2006   9.35477863  -65.30025400
## Aug 2006  -0.50980966   -7.14365205
## Sep 2006  -9.42228492 -122.93297030
## Oct 2006 -10.95951510    7.83563745
## Nov 2006  -0.38204801   97.03307558
## Dec 2006  -7.38743339   21.56007127
## Jan 2007  -6.86846049  -52.39579012
## Feb 2007 -21.70303845  -26.11232417
## Mar 2007  21.99404557 -123.72596638
## Apr 2007 -15.28247209  185.52017447
## May 2007  10.38301143  -64.63090966
## Jun 2007  -0.72637451  -40.97244154
## Jul 2007 -16.97995171   97.00418912
## Aug 2007  24.47098839   88.24886834
## Sep 2007  -7.88780632  -43.53906134
## Oct 2007 -16.02483515   26.61605193
## Nov 2007   4.22549743  -69.36484906
## Dec 2007   7.83445485   15.43923318
## Jan 2008  -4.23914386  -42.54378479
## Feb 2008 -12.00486183   45.89920645
## Mar 2008  11.30991816  -59.23000534
## Apr 2008  15.53753599 -110.95814406
## May 2008  -4.56595386    6.96087787
## Jun 2008   1.56937863  104.30746712
## Jul 2008  -8.24487472  115.65982067
## Aug 2008  32.16520089 -183.95742327
## Sep 2008   4.09185032  -16.88187093
## Oct 2008  -2.53349055  182.47304571
## Nov 2008  13.16347383  -26.14281870
## Dec 2008  -7.25010481 -152.06447107
## Jan 2009  15.06251027  131.21889203
## Feb 2009  -9.37472580   91.84172228
## Mar 2009  -4.11668592   45.36349780
## Apr 2009   6.27991871 -101.48220383
## May 2009  20.61583106   75.30824544
## Jun 2009  -7.49651661  111.56486795
## Jul 2009   1.79937650    8.47085554
## Aug 2009  16.16215620  -31.92595907
## Sep 2009   7.82535487   11.82943110
## Oct 2009  -4.18739428  201.92394698
## Nov 2009  -2.95268209  114.72429562
## Dec 2009  29.78782717  106.97176011
## Jan 2010  -7.26117209  -85.37366723
## Feb 2010  -1.11550958   71.25335798
## Mar 2010 -18.93446186    4.37379613
## Apr 2010 -10.90039054   79.29427656
## May 2010  -6.34395000   31.62636392
## Jun 2010  12.54823464  -74.15473027
## Jul 2010  -0.82875744   79.67043103
## Aug 2010  -0.04172684  -95.22084946
## Sep 2010  -5.91086593  -40.65786548
## Oct 2010  12.90745837  -22.89351701
## Nov 2010  16.80768807  115.38846060
## Dec 2010  -8.16681403   63.80341101
## Jan 2011 -10.40728296   23.29041351
## Feb 2011   4.55056114  161.51499652
## Mar 2011 -13.48489729   51.05983332
## Apr 2011  -8.45037743  -54.73278401
## May 2011 -10.63195110  -25.58572034
## Jun 2011  -2.80049194  162.65896075
## Jul 2011  -3.85642815   -9.20213512
## Aug 2011 -14.80270245   67.53555310
## Sep 2011 -10.50433865 -121.86157671
## Oct 2011 -15.17610839   -4.80211030
## Nov 2011 -11.33704659  -56.63230378
## Dec 2011  -1.35349773   12.05675875
## Jan 2012  -0.35760145  -25.05322146
## Feb 2012  13.75166720   18.82173087
## Mar 2012  13.14976644  -66.08161665
## Apr 2012  -1.26979316  115.50633179
## May 2012  -9.90748214   89.22271202
## Jun 2012   6.86048771  -98.79304838
## Jul 2012 -27.80063935  -30.44797212
## Aug 2012  -5.17126381   58.04630322
## Sep 2012  -8.50443186  -20.65905261
## Oct 2012   0.03957087   80.86215152
## Nov 2012   4.34876394 -117.05432199
## Dec 2012 -11.98276358  -51.82224341
## Jan 2013  19.98580173  -96.12149628
## Feb 2013   0.05521286    0.35265337
## Mar 2013  14.19346019  -57.15686057
## Apr 2013  -7.35701455   19.33268552
## May 2013  -8.29847089  -12.53339920
## Jun 2013  -2.30937161   90.06466692
## Jul 2013 -11.33129346   27.26056561
## Aug 2013  -1.58028544   98.95133052
## Sep 2013  12.01060285 -218.46936703
## Oct 2013   5.44992686   87.08148702
## Nov 2013 -11.00115168   40.44659461
## Dec 2013   7.49676782  -88.86359984
## Jan 2014 -19.57271106   24.77992963
## Feb 2014 -15.93034863  -89.55211029
## Mar 2014   1.99577622  -48.67089122
## Apr 2014  -2.12912656  -25.19884024
## May 2014   2.99912260  -23.57440587
## Jun 2014  -3.46255145   68.80053971
## Jul 2014  -6.16677782   59.71274904
## Aug 2014 -18.25959938   98.36909478
## Sep 2014  -6.04661662    1.82281637
## Oct 2014  -8.96354274 -107.77298661
## Nov 2014  -1.89800079   45.74121698
## Dec 2014  12.76305243    5.97422475
## Jan 2015  -4.34005640  -28.81172228
## Feb 2015  25.84993173 -160.08358779
## Mar 2015 -15.00832050  -55.90969028
## Apr 2015  -4.70820467  115.75321070
## May 2015  -3.20376110  238.19735352
## Jun 2015   6.05290898  179.30834063
## Jul 2015 -10.56598139   20.87063235
## Aug 2015 -15.71428363  110.11343619
## Sep 2015  -1.25305825    1.16090999
## Oct 2015   7.72038382   86.25776364
## Nov 2015  -3.76002411  -91.64539404
## Dec 2015  -5.03047478   -8.66392645
## Jan 2016 -16.29807726  100.57895618
## Feb 2016 -12.53498116 -190.16722777
## Mar 2016  -4.83611492   51.14354411
## Apr 2016   8.58512344 -116.60953670
## May 2016 -12.37386661  143.86007760
## Jun 2016   8.39088520   34.26977523
## Jul 2016  -3.78678863  160.77136379
## Aug 2016   0.18036925  103.95117222
## Sep 2016  -9.48250201  -93.19840477
## Oct 2016  -9.56090297  -44.83806716
## Nov 2016  -0.05678122 -136.70760280
## Dec 2016   2.36061588 -150.92549832
## Jan 2017   1.96599298  -40.34826042
## Feb 2017  11.14178740  -34.02603340
## Mar 2017  16.14819918  -93.00038080
## Apr 2017  -2.31871002    7.34682201
## May 2017  15.49074630  -57.00961254
## Jun 2017   2.76487174  -69.20509552
## Jul 2017  11.22487671  207.13657705
## Aug 2017   5.53512025 -273.04557030
## Sep 2017  -4.28548319 -209.31470839
## Oct 2017  21.60882983   34.28315473
## Nov 2017 -13.87524279 -128.77709254
## Dec 2017  -3.57188360 -179.52660321
## Jan 2018  -2.75964229  116.38832779
## Feb 2018  -3.35816812   25.59683959
## Mar 2018 -12.70009837  -14.87188082
## Apr 2018  -7.26413243 -125.75146715
## May 2018  -6.45138059  -74.76562610
## Jun 2018   9.49805793  -36.72825709
## Jul 2018   3.13555298  170.16459237
## Aug 2018 -15.63034876  -50.04710699
## Sep 2018   5.76662427   96.78658410
## Oct 2018  -3.07806350  -18.58997580
## Nov 2018 -11.80931117 -153.55541113
## Dec 2018  17.91806341   73.55741092
## Jan 2019  -7.45828652   88.56367157
## Feb 2019  17.45923172  -30.00122936
## Mar 2019 -13.37947150  102.83424129
## Apr 2019  -0.89656199  140.23776101
## May 2019  -8.28797080  -37.07106573
## Jun 2019  -5.28905511   35.22273169
## Jul 2019   9.26210216  -55.17148365
## Aug 2019   2.40388366 -141.18472031
## Sep 2019   8.71468821  -89.53415403
## Oct 2019   2.50075400   -7.43265183
## Nov 2019   0.21080227  -40.05676304
## Dec 2019  -5.24462662 -120.22664859
## Jan 2020  -4.28220631 -106.66678285
## Feb 2020  16.17190173  -34.44109235
## Mar 2020 -10.56763878  -76.13753313
## Apr 2020  15.94003860  -55.10334658
## May 2020  -0.86418714  159.35889464
## Jun 2020  -0.36932039   35.62022270
## Jul 2020   6.47746523  195.23045372
## Aug 2020  11.97075968   99.81130888
## Sep 2020   0.72212259   -1.28290495
## Oct 2020  -9.64717757   17.09856669
## Nov 2020 -23.45500036 -154.79408650
## Dec 2020  14.90259938   25.73290499
## 
## $description
##           type coeff
## var1 Undefined    NA
## var2 Undefined    NA
myreg1 <- regarima(myseries,myspec1)
myspec2 <- regarima_spec_tramoseats(spec = "TRfull",
                                    usrdef.varEnabled = TRUE,
                                    usrdef.var = var, 
                                    usrdef.varCoef = c(17,-1),
                                    transform.function = "None")
myreg2 <- regarima(myseries, myspec2)
# Pre-specified ARMA coefficients
myspec1 <- regarima_spec_tramoseats(spec = "TRfull",
  arima.coefEnabled = TRUE, automdl.enabled = FALSE,
  arima.p = 2, arima.q = 0, arima.bp = 1, arima.bq = 1,
  arima.coef = c(-0.12, -0.12, -0.3, -0.99),
  arima.coefType = rep("Fixed", 4))
myreg1 <- regarima(myseries, myspec1)
myreg1
## y = regression model + arima (2, 1, 0, 1, 1, 1)
## Log-transformation: no
## Coefficients:
##           Estimate Std. Error
## Phi(1)       -0.12          0
## Phi(2)       -0.12          0
## BPhi(1)      -0.30          0
## BTheta(1)    -0.99          0
## 
##                Estimate Std. Error
## Mean          -0.007018      0.029
## Week days      0.704716      0.029
## Leap year      2.163501      0.675
## Easter [6]    -2.360603      0.385
## TC (4-2020)  -25.280857      2.517
## TC (3-2020)  -21.581618      2.569
## AO (5-2011)   14.219490      1.749
## LS (11-2008)  -6.225300      2.608
## 
## 
## Residual standard error: 2.712 on 350 degrees of freedom
## Log likelihood = -882.9, aic =  1784 aicc =  1784, bic(corrected for length) = 2.127
summary(myreg1)
## y = regression model + arima (2, 1, 0, 1, 1, 1)
## 
## Model: RegARIMA - TRAMO/SEATS
## Estimation span: from 1-1990 to 12-2020
## Log-transformation: no
## Regression model: mean, trading days effect(2), leap year effect, Easter effect, outliers(4)
## 
## Coefficients:
## ARIMA: 
##           Estimate Std. Error T-stat Pr(>|t|)
## Phi(1)       -0.12       0.00     NA       NA
## Phi(2)       -0.12       0.00     NA       NA
## BPhi(1)      -0.30       0.00     NA       NA
## BTheta(1)    -0.99       0.00     NA       NA
## 
## Regression model: 
##                Estimate Std. Error  T-stat Pr(>|t|)    
## Mean          -0.007018   0.028698  -0.245  0.80694    
## Week days      0.704716   0.029477  23.907  < 2e-16 ***
## Leap year      2.163501   0.675295   3.204  0.00148 ** 
## Easter [6]    -2.360603   0.384746  -6.135 2.24e-09 ***
## TC (4-2020)  -25.280857   2.517080 -10.044  < 2e-16 ***
## TC (3-2020)  -21.581618   2.569059  -8.401 8.88e-16 ***
## AO (5-2011)   14.219490   1.748501   8.132 6.88e-15 ***
## LS (11-2008)  -6.225300   2.608253  -2.387  0.01751 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 2.712 on 350 degrees of freedom
## Log likelihood = -882.9, aic =  1784, aicc =  1784, bic(corrected for length) = 2.127
s_arimaCoef(myspec1)
s_arimaCoef(myreg1)

regarima_spec_tramoseats

RegARIMA model specification, pre-adjustment in TRAMO-SEATS

Function to create (and/or modify) a c(“regarima_spec”,“TRAMO_SEATS”) class object with the RegARIMA model specification for the TRAMO-SEATS method.

TR

Identifier Log/level detection Outliers detection Calendar effects ARIMA
TR0 NA NA NA Airline(+mean)
TR1 automatic AO/LS/TC NA Airline(+mean)
TR2 automatic AO/LS/TC 2 td vars + Easter Airline(+mean)
TR3 automatic AO/LS/TC NA automatic
TR4 automatic AO/LS/TC 2 td vars + Easter automatic
TR5 automatic AO/LS/TC 7 td vars + Easter automatic
TRfull automatic AO/LS/TC automatic automatic
# X13 method
myseries <- ipi_c_eu[, "FR"]
myreg <- regarima_x13(myseries, spec ="RG5c")
summary(myreg)
## y = regression model + arima (2, 1, 1, 0, 1, 1)
## 
## Model: RegARIMA - X13
## Estimation span: from 1-1990 to 12-2020
## Log-transformation: no
## Regression model: no mean, trading days effect(7), leap year effect, Easter effect, outliers(4)
## 
## Coefficients:
## ARIMA: 
##             Estimate Std. Error  T-stat Pr(>|t|)    
## Phi(1)     0.0003269  0.1077296   0.003   0.9976    
## Phi(2)     0.1688192  0.0740996   2.278   0.0233 *  
## Theta(1)  -0.5485606  0.1016550  -5.396 1.24e-07 ***
## BTheta(1) -0.6660849  0.0422242 -15.775  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Regression model: 
##               Estimate Std. Error  T-stat Pr(>|t|)    
## Monday         0.55932    0.22801   2.453 0.014638 *  
## Tuesday        0.88221    0.22832   3.864 0.000132 ***
## Wednesday      1.03996    0.22930   4.535 7.85e-06 ***
## Thursday       0.04943    0.22944   0.215 0.829549    
## Friday         0.91132    0.22988   3.964 8.88e-05 ***
## Saturday      -1.57769    0.22775  -6.927 1.99e-11 ***
## Leap year      2.15403    0.70527   3.054 0.002425 ** 
## Easter [1]    -2.37950    0.45391  -5.242 2.71e-07 ***
## TC (4-2020)  -35.59245    2.17330 -16.377  < 2e-16 ***
## AO (3-2020)  -20.89026    2.18013  -9.582  < 2e-16 ***
## AO (5-2011)   13.49850    1.85694   7.269 2.28e-12 ***
## LS (11-2008) -12.54901    1.63554  -7.673 1.60e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 2.218 on 342 degrees of freedom
## Log likelihood = -799.1, aic =  1632, aicc =  1634, bic(corrected for length) = 1.855
plot(myreg)

myspec1 <- regarima_spec_x13(myreg, tradingdays.option = "WorkingDays")
myreg1 <- regarima(myseries, myspec1)
myspec2 <- regarima_spec_x13(myreg, 
                             usrdef.outliersEnabled = TRUE,
                             usrdef.outliersType = c("LS", "AO"),
                             usrdef.outliersDate = c("2008-10-01", "2002-01-01"),
                             usrdef.outliersCoef = c(36, 14),
                             transform.function = "None")
myreg2 <- regarima(myseries, myspec2)
myreg2
## y = regression model + arima (2, 1, 1, 0, 1, 1)
## Log-transformation: no
## Coefficients:
##           Estimate Std. Error
## Phi(1)     0.07859      0.114
## Phi(2)     0.19792      0.076
## Theta(1)  -0.48272      0.111
## BTheta(1) -0.65916      0.043
## 
##               Estimate Std. Error
## Monday         0.64094      0.228
## Tuesday        0.81794      0.229
## Wednesday      1.05374      0.229
## Thursday       0.06981      0.228
## Friday         0.93434      0.228
## Saturday      -1.63686      0.226
## Leap year      2.11550      0.697
## Easter [1]    -2.38135      0.451
## AO (9-2008)   31.95554      2.924
## LS (9-2008)  -57.04093      2.657
## TC (4-2020)  -35.62104      2.120
## AO (3-2020)  -21.00931      2.145
## AO (5-2011)   13.21877      1.832
## TC (9-2008)   23.44654      4.001
## TC (12-2001) -20.47521      2.922
## AO (12-2001)  17.13461      2.962
## TC (2-2002)   10.61731      1.937
## 
## Fixed outliers: 
##              Coefficients
## LS (10-2008)           36
## AO (1-2002)            14
## 
## 
## Residual standard error: 2.178 on 337 degrees of freedom
## Log likelihood = -792.6, aic =  1629 aicc =  1632, bic(corrected for length) = 1.901
myspec3 <- regarima_spec_x13(myreg, automdl.enabled = FALSE,
  arima.p = 1, arima.q = 1,
  arima.bp = 0, arima.bq = 1,
  arima.coefEnabled = TRUE,
  arima.coef = c(-0.8, -0.6, 0),
  arima.coefType = c(rep("Fixed", 2), "Undefined"))
s_arimaCoef(myspec3)
myreg3 <- regarima(myseries, myspec3)
summary(myreg3)
## y = regression model + arima (1, 1, 1, 0, 1, 1)
## 
## Model: RegARIMA - X13
## Estimation span: from 1-1990 to 12-2020
## Log-transformation: yes
## Regression model: no mean, trading days effect(6), no leap year effect, Easter effect, outliers(3)
## 
## Coefficients:
## ARIMA: 
##           Estimate Std. Error T-stat Pr(>|t|)    
## Phi(1)     -0.8000     0.0000     NA       NA    
## Theta(1)   -0.6000     0.0000     NA       NA    
## BTheta(1)  -0.6977     0.0399 -17.49   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Regression model: 
##              Estimate Std. Error  T-stat Pr(>|t|)    
## Monday       0.006317   0.001791   3.526 0.000476 ***
## Tuesday      0.007824   0.001793   4.363 1.68e-05 ***
## Wednesday    0.010528   0.001802   5.841 1.16e-08 ***
## Thursday     0.001857   0.001811   1.025 0.306022    
## Friday       0.010099   0.001812   5.574 4.90e-08 ***
## Saturday    -0.018439   0.001781 -10.354  < 2e-16 ***
## Easter [1]  -0.020593   0.003515  -5.859 1.06e-08 ***
## TC (4-2020) -0.475720   0.031229 -15.233  < 2e-16 ***
## AO (3-2020) -0.213355   0.023246  -9.178  < 2e-16 ***
## AO (5-2011)  0.143705   0.015529   9.254  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 0.0256 on 347 degrees of freedom
## Log likelihood = 802.3, aic =  1733, aicc =  1734, bic(corrected for length) = -7.15
plot(myreg3)

# TRAMO-SEATS method
myspec <- regarima_spec_tramoseats("TRfull")
myreg <- regarima(myseries, myspec)
myreg
## y = regression model + arima (2, 1, 0, 0, 1, 1)
## Log-transformation: no
## Coefficients:
##           Estimate Std. Error
## Phi(1)      0.4032      0.051
## Phi(2)      0.2883      0.051
## BTheta(1)  -0.6641      0.042
## 
##             Estimate Std. Error
## Week days     0.6994      0.032
## Leap year     2.3231      0.690
## Easter [6]   -2.5154      0.436
## AO (5-2011)  13.4679      1.787
## TC (4-2020) -22.2128      2.205
## TC (3-2020) -21.0391      2.217
## AO (5-2000)   6.7386      1.794
## 
## 
## Residual standard error: 2.326 on 348 degrees of freedom
## Log likelihood = -816.1, aic =  1654 aicc =  1655, bic(corrected for length) = 1.852
myspec2 <- regarima_spec_tramoseats(myspec, 
                                    tradingdays.mauto = "Unused",
                                    tradingdays.option = "WorkingDays",
                                    easter.type = "Standard",
                                    automdl.enabled = FALSE, arima.mu = TRUE)
myreg2 <- regarima(myseries, myspec2)
var1 <- ts(rnorm(length(myseries))*10, start = start(myseries), frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries), frequency = 12)
var <- ts.union(var1, var2)
myspec3 <- regarima_spec_tramoseats(myspec, 
                                    usrdef.varEnabled = TRUE, 
                                    usrdef.var = var)
s_preVar(myspec3)
## $series
##                  var1         var2
## Jan 1990  -4.40401719  199.6101877
## Feb 1990   1.89091774   49.8916842
## Mar 1990   8.14085757  -15.5064781
## Apr 1990 -24.86976208  -56.4608460
## May 1990   5.70360269  -44.5788749
## Jun 1990  17.18738621   -2.0157288
## Jul 1990 -19.34324591 -117.5352599
## Aug 1990  14.31820305   87.3528873
## Sep 1990 -11.40214617  -23.4101144
## Oct 1990  -4.23628235  108.2749540
## Nov 1990  -8.46767803  -61.7862240
## Dec 1990 -11.88203333 -281.2603830
## Jan 1991 -11.68303497    3.1239895
## Feb 1991 -18.21499748   57.9946436
## Mar 1991   2.99785213   71.8058958
## Apr 1991  18.26701322 -209.9932040
## May 1991   1.65118362  131.0122953
## Jun 1991   5.63322407 -153.9564377
## Jul 1991  -5.23676101  -48.2660474
## Aug 1991  -7.31563034   43.5381927
## Sep 1991  22.98892443  -61.7903629
## Oct 1991  -3.58440075   35.5027311
## Nov 1991   4.91701099  -85.6213626
## Dec 1991  -9.49536754   -8.3038460
## Jan 1992   2.06863364  -43.8236225
## Feb 1992  -1.11243995   63.9551139
## Mar 1992 -12.79407733  -75.6585074
## Apr 1992  -5.34643607   -2.8862919
## May 1992 -12.72361095    9.1470433
## Jun 1992   9.15293561  -29.5699995
## Jul 1992   7.23165632  -57.0556836
## Aug 1992  -9.09629251 -100.6500356
## Sep 1992  -2.76464223  -49.4819003
## Oct 1992  -3.61356741   10.2712951
## Nov 1992  -1.88895946  -76.4452006
## Dec 1992 -22.93380253   58.9476101
## Jan 1993   5.75380939  -48.8900270
## Feb 1993  21.22260222  264.7417423
## Mar 1993  -0.23207487  -25.6799328
## Apr 1993  20.20476024  -13.5288442
## May 1993  13.82150176   99.5066800
## Jun 1993  -3.89882491  124.3436261
## Jul 1993   9.91761198   34.3160083
## Aug 1993  -0.61746246  -52.5160979
## Sep 1993   1.52919712  133.4981536
## Oct 1993   5.15745834   88.1222497
## Nov 1993   1.06406045  129.3276099
## Dec 1993   7.57545872    6.5210905
## Jan 1994  -6.41309066 -145.0259364
## Feb 1994  10.77608447   17.7969383
## Mar 1994  -2.93809463 -182.4449322
## Apr 1994  -1.69735855  -55.5647748
## May 1994 -16.92064604   72.3296907
## Jun 1994  -4.20867029  -89.6400009
## Jul 1994   4.62659691  223.0223703
## Aug 1994 -13.31142247 -159.7187297
## Sep 1994   8.91709763  105.3317470
## Oct 1994   2.52503735   15.6610545
## Nov 1994  -5.28606716  -22.7685947
## Dec 1994  -8.40031342   47.4206254
## Jan 1995  23.69090311 -160.4976813
## Feb 1995 -12.03433435  170.1094173
## Mar 1995  -5.23194528   49.3517904
## Apr 1995  -0.84763807  117.8895108
## May 1995  11.75867819 -245.1035045
## Jun 1995 -16.96107232   95.4737758
## Jul 1995 -11.06736917 -119.4405714
## Aug 1995 -11.05796616   87.7130118
## Sep 1995   8.07558442 -113.4636428
## Oct 1995  -3.38413126   87.8343659
## Nov 1995  -3.20600632   59.5661444
## Dec 1995   0.67420168  -13.7273453
## Jan 1996   4.19782646  -13.2972650
## Feb 1996   3.67167796  110.8006009
## Mar 1996  -6.26077416  -77.9718042
## Apr 1996  -0.25750768  -34.2017328
## May 1996   4.44687100 -161.9281174
## Jun 1996   8.06907697  -41.1110064
## Jul 1996  -7.37641965   53.6901786
## Aug 1996  -7.85211280   -1.2001923
## Sep 1996   9.08400324 -128.3845501
## Oct 1996   1.92731435 -133.6312557
## Nov 1996   6.65466453   23.0715907
## Dec 1996 -10.00785359 -180.4628844
## Jan 1997   2.48907268   -4.2005483
## Feb 1997  -1.15132332   55.2678852
## Mar 1997   0.21931668  -52.8641185
## Apr 1997   4.97902117  -14.7156142
## May 1997  -2.82535193  -65.7063657
## Jun 1997   3.94260970    6.4913486
## Jul 1997   9.75539933   63.2003842
## Aug 1997  -5.22275428  -65.6797543
## Sep 1997   0.29010133   48.3282684
## Oct 1997  20.87611304  134.4685625
## Nov 1997  -0.63329925  -95.4821782
## Dec 1997   7.53088002 -100.8111537
## Jan 1998   1.29547998   68.0456246
## Feb 1998  27.75815419  -68.7107778
## Mar 1998  -3.68666165  100.8576161
## Apr 1998  11.98948330  -84.2904103
## May 1998  -8.97869123  -17.0580638
## Jun 1998   0.31158605  -23.2727577
## Jul 1998   3.85341925    2.7044241
## Aug 1998   9.43476762  158.7175472
## Sep 1998   2.37830218   52.2878252
## Oct 1998  -8.96175576   43.5612834
## Nov 1998  13.24338303  -88.7856773
## Dec 1998  -9.07445337  -24.4611413
## Jan 1999 -24.23395155  142.4215424
## Feb 1999 -16.74363237 -187.0488722
## Mar 1999  12.60310241 -113.5610395
## Apr 1999  -0.80198720    6.1299610
## May 1999   4.78475520   78.8126271
## Jun 1999  -2.22085145  133.2927455
## Jul 1999  -2.36213248 -118.2278195
## Aug 1999  13.58262753 -164.9275543
## Sep 1999   7.61815817 -161.8763020
## Oct 1999 -13.55381770   70.3259917
## Nov 1999  -6.47032059   49.2131814
## Dec 1999   3.12313904 -126.1989018
## Jan 2000   1.64836998   40.2343427
## Feb 2000  -1.42591944   99.4988149
## Mar 2000   2.43459340   16.7340393
## Apr 2000  -3.99478419 -114.3532078
## May 2000  -0.08460240  135.6138000
## Jun 2000 -17.25885603   76.8897169
## Jul 2000  -6.59397092 -132.3525305
## Aug 2000  16.90131463  -26.9657782
## Sep 2000   8.87461057  109.3085865
## Oct 2000 -15.73110564  179.1609085
## Nov 2000  -9.89301515    7.4621613
## Dec 2000  -3.79516425  112.6751416
## Jan 2001  -3.00431215  -52.9214731
## Feb 2001  12.34282878  -23.3341352
## Mar 2001  17.34268612   96.9173878
## Apr 2001  -5.75317742  -74.3714002
## May 2001  -3.72689991  -39.2964913
## Jun 2001  -7.17066717  107.6991919
## Jul 2001   4.78152682   43.6762415
## Aug 2001  24.12247842    9.0275296
## Sep 2001   2.01279529  -27.6481501
## Oct 2001  -7.86872806  -48.2718222
## Nov 2001 -18.42323423  -11.2226668
## Dec 2001   8.45565906  108.0498340
## Jan 2002   2.78863367 -183.5160106
## Feb 2002   6.78646733  -28.5303555
## Mar 2002   4.18820745 -109.6829108
## Apr 2002  -3.53952687   15.0717375
## May 2002  -9.54112623  -80.7874415
## Jun 2002  -3.88655479   48.1280978
## Jul 2002  18.40143225   55.4450610
## Aug 2002  -5.05846872   29.0992833
## Sep 2002   3.72768932 -130.3354511
## Oct 2002   2.11354998  129.1172113
## Nov 2002  -3.43864495 -169.1574729
## Dec 2002   1.99956398   40.0514581
## Jan 2003  15.23041132  114.8678593
## Feb 2003   8.46237020  -65.1580436
## Mar 2003 -15.08300130   42.3962054
## Apr 2003   6.31395165  -17.6653270
## May 2003  15.78978043  -14.4294314
## Jun 2003  -7.81678547 -100.8561179
## Jul 2003  -5.42856007   77.5880281
## Aug 2003  -8.39649488   26.8350894
## Sep 2003  -2.17120682  -97.0915270
## Oct 2003   6.63211731    6.1394117
## Nov 2003 -11.22019807 -139.1206649
## Dec 2003   4.56295273 -251.0481253
## Jan 2004  23.05966717   82.2302312
## Feb 2004  -5.39112494   65.5433248
## Mar 2004   5.81456632   85.5316275
## Apr 2004  -1.66966870  -78.2999241
## May 2004  -7.59635968 -127.4317201
## Jun 2004  -7.71037489   68.5742434
## Jul 2004 -10.82634740  123.7382598
## Aug 2004  -2.20205972   -4.5164897
## Sep 2004 -14.95130925 -129.0678186
## Oct 2004  -1.71294065    6.2416163
## Nov 2004  -1.15897298    4.9760323
## Dec 2004  -6.79438386  186.3277656
## Jan 2005  -6.12030137   12.8775688
## Feb 2005  -9.24697243   32.5715623
## Mar 2005 -11.86502145    9.8525773
## Apr 2005   7.88252089   -5.2194366
## May 2005   9.73629869   14.4085916
## Jun 2005   5.58780895  -76.8144823
## Jul 2005  -8.66625060   57.8964653
## Aug 2005   1.77909422  -57.7471596
## Sep 2005  -8.74816764  -65.6719664
## Oct 2005   4.32449568   70.8474757
## Nov 2005 -14.93459180  -73.0496950
## Dec 2005  -5.31957606  161.8541752
## Jan 2006   6.15675114  -71.0029419
## Feb 2006   0.36299741  -54.4075001
## Mar 2006  -1.15046412  -50.5509377
## Apr 2006   0.67375243 -146.7482371
## May 2006  -8.09319055  -56.6670677
## Jun 2006   6.52936807 -185.6186904
## Jul 2006   4.74512893  -54.4975016
## Aug 2006 -15.97614262  -12.7355589
## Sep 2006  -0.97084161  134.5383856
## Oct 2006  -9.91061556   21.7077693
## Nov 2006 -13.93136398    1.3416024
## Dec 2006 -14.64217889  -22.9279589
## Jan 2007   0.01076949  -18.2724220
## Feb 2007   6.02616268  -15.2480362
## Mar 2007   5.60826876   58.5208418
## Apr 2007  11.52618548 -180.9485352
## May 2007   2.47639791   71.3690677
## Jun 2007  -2.28136481  -57.3865238
## Jul 2007   4.99117242    7.7913414
## Aug 2007  19.79987758  113.1773635
## Sep 2007  -0.79471929 -171.4002964
## Oct 2007  -0.13351668   50.3616449
## Nov 2007  16.92939246 -114.8184315
## Dec 2007  -0.22264661  165.6856490
## Jan 2008 -21.42159660   37.4604093
## Feb 2008  11.11012234   49.0859137
## Mar 2008  -0.96223657   86.9490611
## Apr 2008   2.70058661  -14.9702178
## May 2008   7.97214579 -158.1510102
## Jun 2008   0.12409549   23.0552041
## Jul 2008  -4.68058182  165.6720832
## Aug 2008   9.12240183  -18.7648916
## Sep 2008   3.08880774   66.9563000
## Oct 2008 -15.06248057  -11.9744703
## Nov 2008   0.12945878  128.9871121
## Dec 2008  17.54681797 -223.3197679
## Jan 2009  -7.94640878   54.1372798
## Feb 2009  -4.69668340  -99.5690474
## Mar 2009   1.66848376  -13.9634824
## Apr 2009  -9.09256368  148.0456127
## May 2009   1.26141368 -220.6662985
## Jun 2009   5.11604436   22.0037309
## Jul 2009  10.10238454   -0.4561165
## Aug 2009   2.99053254 -103.8525696
## Sep 2009  14.95579094 -192.7185264
## Oct 2009   3.63646410  -23.0770121
## Nov 2009  25.66722555  -87.6254066
## Dec 2009  11.39881342   39.3475999
## Jan 2010 -13.84607604   27.9875495
## Feb 2010  -3.91894183  158.8561728
## Mar 2010  12.11974233 -136.7529566
## Apr 2010  -7.56715811   33.9097859
## May 2010 -10.95777353  202.6245956
## Jun 2010 -12.21904230  143.2578701
## Jul 2010 -18.33016186   -0.7401003
## Aug 2010  12.65440591 -103.2141356
## Sep 2010 -12.44221290  148.0116898
## Oct 2010  -9.90617942 -116.5461666
## Nov 2010   0.28927591 -101.7301953
## Dec 2010  -1.64797615  -56.4988289
## Jan 2011   5.77216219   32.0122878
## Feb 2011 -13.90457383   94.2515618
## Mar 2011  11.99640467  159.9672409
## Apr 2011 -12.58567294   74.5187231
## May 2011  -4.48827411  -74.2395360
## Jun 2011 -15.23210866   73.4428799
## Jul 2011 -16.22848122   -0.5848419
## Aug 2011  -8.37277950 -188.6069429
## Sep 2011   7.94979694  -12.1385109
## Oct 2011  11.79994323   56.1940649
## Nov 2011  13.33927592  210.7545709
## Dec 2011   7.68689753   12.0189219
## Jan 2012   5.61392155 -106.8627657
## Feb 2012 -22.58104051  136.2678111
## Mar 2012  12.96655407 -122.5296819
## Apr 2012  -0.72452627  105.1879914
## May 2012  -5.23318607   65.0803560
## Jun 2012  -4.84918506   48.3502139
## Jul 2012  -1.60150865    7.9868852
## Aug 2012   8.57456978 -124.5000751
## Sep 2012   7.39088262  223.1891203
## Oct 2012  16.42449156  -73.2335614
## Nov 2012 -10.03524758  -94.0388174
## Dec 2012  -6.62165171  -32.8819208
## Jan 2013  16.47003115  -86.6720370
## Feb 2013 -14.55755855  -16.5331877
## Mar 2013   3.76416463   36.9279492
## Apr 2013  -1.73157874  162.9986292
## May 2013  -4.47200559   24.5434262
## Jun 2013   0.73879733 -122.2996894
## Jul 2013  -1.80795104  -99.9153969
## Aug 2013  -0.72690804  -38.0867661
## Sep 2013  -3.38122324   -5.7274346
## Oct 2013  -1.50824359 -175.4119859
## Nov 2013  12.68125794  178.8992744
## Dec 2013   4.20794700   25.9562404
## Jan 2014  -5.99400984 -106.4377481
## Feb 2014  -7.10047156   71.4996717
## Mar 2014 -17.39718101  -37.6117686
## Apr 2014  12.13900161   49.7204534
## May 2014  11.89854636  -67.2232022
## Jun 2014  -9.71272947  -39.2080408
## Jul 2014  -1.90393853 -144.3713830
## Aug 2014 -11.44862545 -208.4876501
## Sep 2014  12.81750355   90.2357275
## Oct 2014   3.57278252   89.3661231
## Nov 2014  -8.51902980   80.4696200
## Dec 2014   8.77250860  -59.8725129
## Jan 2015  -2.15925059  103.4162878
## Feb 2015   4.15771840   91.0489008
## Mar 2015  14.01124650  138.2988430
## Apr 2015   8.20880188   -1.8408803
## May 2015  12.20005214 -104.8627211
## Jun 2015 -16.78630309 -215.6516411
## Jul 2015 -13.56755821  -55.8818862
## Aug 2015  -7.37217831  -44.1898869
## Sep 2015  12.09620672  -78.1669836
## Oct 2015   2.81401263  123.1672816
## Nov 2015   1.59523824    0.9229724
## Dec 2015 -22.67159557  103.5369356
## Jan 2016  -2.14728428  237.5256589
## Feb 2016   1.75062942   17.1875413
## Mar 2016  -7.34578854 -134.2429885
## Apr 2016  -3.06736220  -70.4930537
## May 2016   1.66908914 -194.6950771
## Jun 2016  -4.06882737   61.3433746
## Jul 2016 -12.34374402  209.0044934
## Aug 2016  -6.12848819  101.2412356
## Sep 2016   3.55655764   30.0622159
## Oct 2016  -3.57128604  -19.9762713
## Nov 2016   9.28436352  -75.8686743
## Dec 2016   5.85554927 -131.3409337
## Jan 2017  15.70917065  -86.4414640
## Feb 2017  -3.39731423  106.8725573
## Mar 2017  -8.98902395 -104.7100536
## Apr 2017   4.78497064 -138.4499960
## May 2017   1.35009311  -80.4749371
## Jun 2017  10.00210392   79.5352674
## Jul 2017  -4.34920331   60.7687149
## Aug 2017   2.25293404  180.2607270
## Sep 2017  -6.73371906  -48.5668690
## Oct 2017 -11.61452749 -137.3532166
## Nov 2017  12.22508539 -114.8305143
## Dec 2017  -1.30758160   79.0780944
## Jan 2018  -0.04374481  -76.0276195
## Feb 2018  18.77681489  136.4954711
## Mar 2018  21.17141331   32.6193179
## Apr 2018   2.43242574   27.4691801
## May 2018   4.86855629   40.7389335
## Jun 2018   9.64102748 -151.7056253
## Jul 2018   5.16497536   94.6747525
## Aug 2018   4.79104029  236.2440503
## Sep 2018  -6.99014902   56.7896684
## Oct 2018   0.65883540  -48.2098551
## Nov 2018 -11.91224987   50.7174494
## Dec 2018  -6.81941575  -20.9219852
## Jan 2019  -1.95820876  119.1709437
## Feb 2019  -5.97871667  -13.0975847
## Mar 2019   2.26040282   79.3044795
## Apr 2019  -3.27315798   63.0683105
## May 2019  -9.90967762  -11.0105264
## Jun 2019  -1.88331092   24.9056464
## Jul 2019   0.57103582 -167.3112041
## Aug 2019  15.31266501   72.5489241
## Sep 2019  -0.31296754   -4.7296332
## Oct 2019  -5.07563267  -56.2048101
## Nov 2019   2.41326540  -22.7108457
## Dec 2019   4.45481511  -46.7923245
## Jan 2020   0.54665837 -256.0332205
## Feb 2020   0.14797681 -195.0811099
## Mar 2020  -7.70528979  -71.0511619
## Apr 2020  15.82348973  -80.1138747
## May 2020  -7.09569593  104.8344387
## Jun 2020 -17.38280294  -49.6650934
## Jul 2020   3.22585883  153.7036407
## Aug 2020   1.42154132  -55.1517337
## Sep 2020 -12.12230323   80.0691458
## Oct 2020   1.34121681  -96.6477330
## Nov 2020 -19.61314644  242.3448036
## Dec 2020  -1.16113761  -37.4301509
## 
## $description
##           type coeff
## var1 Undefined    NA
## var2 Undefined    NA
myreg3 <- regarima(myseries, myspec3)
myreg3
## y = regression model + arima (2, 1, 0, 0, 1, 1)
## Log-transformation: no
## Coefficients:
##           Estimate Std. Error
## Phi(1)      0.3886      0.052
## Phi(2)      0.2844      0.052
## BTheta(1)  -0.6601      0.042
## 
##               Estimate Std. Error
## r.var1        0.000541      0.010
## r.var2       -0.001354      0.001
## Week days     0.698005      0.032
## Leap year     2.381916      0.686
## Easter [6]   -2.532004      0.431
## TC (4-2020) -22.190903      2.214
## TC (3-2020) -20.879503      2.222
## AO (5-2011)  13.435020      1.780
## AO (5-2000)   6.990264      1.789
## 
## 
## Residual standard error: 2.319 on 346 degrees of freedom
## Log likelihood = -814.9, aic =  1656 aicc =  1657, bic(corrected for length) = 1.879
myspec2 <- regarima_spec_x13(spec = "RG5c", 
                             usrdef.varEnabled = TRUE,
                             usrdef.var = var1, usrdef.varCoef = 2,  
                             transform.function = "None")
myreg2 <- regarima(myseries, myspec2)
s_preVar(myreg2)
## $series
##               Jan          Feb          Mar          Apr          May
## 1990  -4.40401719   1.89091774   8.14085757 -24.86976208   5.70360269
## 1991 -11.68303497 -18.21499748   2.99785213  18.26701322   1.65118362
## 1992   2.06863364  -1.11243995 -12.79407733  -5.34643607 -12.72361095
## 1993   5.75380939  21.22260222  -0.23207487  20.20476024  13.82150176
## 1994  -6.41309066  10.77608447  -2.93809463  -1.69735855 -16.92064604
## 1995  23.69090311 -12.03433435  -5.23194528  -0.84763807  11.75867819
## 1996   4.19782646   3.67167796  -6.26077416  -0.25750768   4.44687100
## 1997   2.48907268  -1.15132332   0.21931668   4.97902117  -2.82535193
## 1998   1.29547998  27.75815419  -3.68666165  11.98948330  -8.97869123
## 1999 -24.23395155 -16.74363237  12.60310241  -0.80198720   4.78475520
## 2000   1.64836998  -1.42591944   2.43459340  -3.99478419  -0.08460240
## 2001  -3.00431215  12.34282878  17.34268612  -5.75317742  -3.72689991
## 2002   2.78863367   6.78646733   4.18820745  -3.53952687  -9.54112623
## 2003  15.23041132   8.46237020 -15.08300130   6.31395165  15.78978043
## 2004  23.05966717  -5.39112494   5.81456632  -1.66966870  -7.59635968
## 2005  -6.12030137  -9.24697243 -11.86502145   7.88252089   9.73629869
## 2006   6.15675114   0.36299741  -1.15046412   0.67375243  -8.09319055
## 2007   0.01076949   6.02616268   5.60826876  11.52618548   2.47639791
## 2008 -21.42159660  11.11012234  -0.96223657   2.70058661   7.97214579
## 2009  -7.94640878  -4.69668340   1.66848376  -9.09256368   1.26141368
## 2010 -13.84607604  -3.91894183  12.11974233  -7.56715811 -10.95777353
## 2011   5.77216219 -13.90457383  11.99640467 -12.58567294  -4.48827411
## 2012   5.61392155 -22.58104051  12.96655407  -0.72452627  -5.23318607
## 2013  16.47003115 -14.55755855   3.76416463  -1.73157874  -4.47200559
## 2014  -5.99400984  -7.10047156 -17.39718101  12.13900161  11.89854636
## 2015  -2.15925059   4.15771840  14.01124650   8.20880188  12.20005214
## 2016  -2.14728428   1.75062942  -7.34578854  -3.06736220   1.66908914
## 2017  15.70917065  -3.39731423  -8.98902395   4.78497064   1.35009311
## 2018  -0.04374481  18.77681489  21.17141331   2.43242574   4.86855629
## 2019  -1.95820876  -5.97871667   2.26040282  -3.27315798  -9.90967762
## 2020   0.54665837   0.14797681  -7.70528979  15.82348973  -7.09569593
##               Jun          Jul          Aug          Sep          Oct
## 1990  17.18738621 -19.34324591  14.31820305 -11.40214617  -4.23628235
## 1991   5.63322407  -5.23676101  -7.31563034  22.98892443  -3.58440075
## 1992   9.15293561   7.23165632  -9.09629251  -2.76464223  -3.61356741
## 1993  -3.89882491   9.91761198  -0.61746246   1.52919712   5.15745834
## 1994  -4.20867029   4.62659691 -13.31142247   8.91709763   2.52503735
## 1995 -16.96107232 -11.06736917 -11.05796616   8.07558442  -3.38413126
## 1996   8.06907697  -7.37641965  -7.85211280   9.08400324   1.92731435
## 1997   3.94260970   9.75539933  -5.22275428   0.29010133  20.87611304
## 1998   0.31158605   3.85341925   9.43476762   2.37830218  -8.96175576
## 1999  -2.22085145  -2.36213248  13.58262753   7.61815817 -13.55381770
## 2000 -17.25885603  -6.59397092  16.90131463   8.87461057 -15.73110564
## 2001  -7.17066717   4.78152682  24.12247842   2.01279529  -7.86872806
## 2002  -3.88655479  18.40143225  -5.05846872   3.72768932   2.11354998
## 2003  -7.81678547  -5.42856007  -8.39649488  -2.17120682   6.63211731
## 2004  -7.71037489 -10.82634740  -2.20205972 -14.95130925  -1.71294065
## 2005   5.58780895  -8.66625060   1.77909422  -8.74816764   4.32449568
## 2006   6.52936807   4.74512893 -15.97614262  -0.97084161  -9.91061556
## 2007  -2.28136481   4.99117242  19.79987758  -0.79471929  -0.13351668
## 2008   0.12409549  -4.68058182   9.12240183   3.08880774 -15.06248057
## 2009   5.11604436  10.10238454   2.99053254  14.95579094   3.63646410
## 2010 -12.21904230 -18.33016186  12.65440591 -12.44221290  -9.90617942
## 2011 -15.23210866 -16.22848122  -8.37277950   7.94979694  11.79994323
## 2012  -4.84918506  -1.60150865   8.57456978   7.39088262  16.42449156
## 2013   0.73879733  -1.80795104  -0.72690804  -3.38122324  -1.50824359
## 2014  -9.71272947  -1.90393853 -11.44862545  12.81750355   3.57278252
## 2015 -16.78630309 -13.56755821  -7.37217831  12.09620672   2.81401263
## 2016  -4.06882737 -12.34374402  -6.12848819   3.55655764  -3.57128604
## 2017  10.00210392  -4.34920331   2.25293404  -6.73371906 -11.61452749
## 2018   9.64102748   5.16497536   4.79104029  -6.99014902   0.65883540
## 2019  -1.88331092   0.57103582  15.31266501  -0.31296754  -5.07563267
## 2020 -17.38280294   3.22585883   1.42154132 -12.12230323   1.34121681
##               Nov          Dec
## 1990  -8.46767803 -11.88203333
## 1991   4.91701099  -9.49536754
## 1992  -1.88895946 -22.93380253
## 1993   1.06406045   7.57545872
## 1994  -5.28606716  -8.40031342
## 1995  -3.20600632   0.67420168
## 1996   6.65466453 -10.00785359
## 1997  -0.63329925   7.53088002
## 1998  13.24338303  -9.07445337
## 1999  -6.47032059   3.12313904
## 2000  -9.89301515  -3.79516425
## 2001 -18.42323423   8.45565906
## 2002  -3.43864495   1.99956398
## 2003 -11.22019807   4.56295273
## 2004  -1.15897298  -6.79438386
## 2005 -14.93459180  -5.31957606
## 2006 -13.93136398 -14.64217889
## 2007  16.92939246  -0.22264661
## 2008   0.12945878  17.54681797
## 2009  25.66722555  11.39881342
## 2010   0.28927591  -1.64797615
## 2011  13.33927592   7.68689753
## 2012 -10.03524758  -6.62165171
## 2013  12.68125794   4.20794700
## 2014  -8.51902980   8.77250860
## 2015   1.59523824 -22.67159557
## 2016   9.28436352   5.85554927
## 2017  12.22508539  -1.30758160
## 2018 -11.91224987  -6.81941575
## 2019   2.41326540   4.45481511
## 2020 -19.61314644  -1.16113761
## 
## $description
##              type coeff
## userdef Undefined     2
# Pre-specified ARMA coefficients
myspec1 <- regarima_spec_x13(spec = "RG5c", 
                             automdl.enabled =FALSE,
  arima.p = 1, arima.q = 1,
  arima.bp = 0, arima.bq = 1,
  arima.coefEnabled = TRUE, 
  arima.coef = c(-0.8, -0.6, 0),
  arima.coefType = c(rep("Fixed", 2), "Undefined"))
s_arimaCoef(myspec1)
myreg1 <- regarima(myseries, myspec1)
myreg1
## y = regression model + arima (1, 1, 1, 0, 1, 1)
## Log-transformation: yes
## Coefficients:
##           Estimate Std. Error
## Phi(1)     -0.8000       0.00
## Theta(1)   -0.6000       0.00
## BTheta(1)  -0.6977       0.04
## 
##              Estimate Std. Error
## Monday       0.006317      0.002
## Tuesday      0.007824      0.002
## Wednesday    0.010528      0.002
## Thursday     0.001857      0.002
## Friday       0.010099      0.002
## Saturday    -0.018439      0.002
## Easter [1]  -0.020593      0.004
## TC (4-2020) -0.475720      0.031
## AO (3-2020) -0.213355      0.023
## AO (5-2011)  0.143705      0.016
## 
## 
## Residual standard error: 0.0256 on 347 degrees of freedom
## Log likelihood = 802.3, aic =  1733 aicc =  1734, bic(corrected for length) = -7.15

regarima_spec_x13

RegARIMA model specification: the pre-adjustment in X13

Function to create (and/or modify) a c(“regarima_spec”,“X13”) class object with the RegARIMA model specification for the X13 method.

RG

Identifier Log/level detection Outliers detection Calendar effects ARIMA
RG0 NA NA NA Airline(+mean)
RG1 automatic AO/LS/TC NA Airline(+mean)
RG2c automatic AO/LS/TC 2 td vars + Easter Airline(+mean)
RG3 automatic AO/LS/TC NA automatic
RG4c automatic AO/LS/TC 2 td vars + Easter automatic
RG5c automatic AO/LS/TC 7 td vars + Easter automatic
myseries <- ipi_c_eu[, "FR"]
myspec1 <- regarima_spec_x13(spec = "RG5c")
myreg1 <- regarima(myseries, spec = myspec1)
# To modify a pre-specified model specification
myspec2 <- regarima_spec_x13(spec = "RG5c",
tradingdays.option = "WorkingDays")
myreg2 <- regarima(myseries, spec = myspec2)
# To modify the model specification of a "regarima" object
myspec3 <- regarima_spec_x13(myreg1, tradingdays.option = "WorkingDays")
myreg3 <- regarima(myseries, myspec3)
# To modify the model specification of a "regarima_spec" object
myspec4 <- regarima_spec_x13(myspec1, tradingdays.option = "WorkingDays")
myreg4 <- regarima(myseries, myspec4)
# Pre-specified outliers
myspec1 <- regarima_spec_x13(spec = "RG5c", usrdef.outliersEnabled = TRUE,
usrdef.outliersType = c("LS", "AO"),
usrdef.outliersDate = c("2008-10-01", "2002-01-01"),
usrdef.outliersCoef = c(36, 14),
transform.function = "None")
myreg1 <- regarima(myseries, myspec1)
myreg1
## y = regression model + arima (2, 1, 1, 0, 1, 1)
## Log-transformation: no
## Coefficients:
##           Estimate Std. Error
## Phi(1)     0.07859      0.114
## Phi(2)     0.19792      0.076
## Theta(1)  -0.48272      0.111
## BTheta(1) -0.65916      0.043
## 
##               Estimate Std. Error
## Monday         0.64094      0.228
## Tuesday        0.81794      0.229
## Wednesday      1.05374      0.229
## Thursday       0.06981      0.228
## Friday         0.93434      0.228
## Saturday      -1.63686      0.226
## Leap year      2.11550      0.697
## Easter [1]    -2.38135      0.451
## AO (9-2008)   31.95554      2.924
## LS (9-2008)  -57.04093      2.657
## TC (4-2020)  -35.62104      2.120
## AO (3-2020)  -21.00931      2.145
## AO (5-2011)   13.21877      1.832
## TC (9-2008)   23.44654      4.001
## TC (12-2001) -20.47521      2.922
## AO (12-2001)  17.13461      2.962
## TC (2-2002)   10.61731      1.937
## 
## Fixed outliers: 
##              Coefficients
## LS (10-2008)           36
## AO (1-2002)            14
## 
## 
## Residual standard error: 2.178 on 337 degrees of freedom
## Log likelihood = -792.6, aic =  1629 aicc =  1632, bic(corrected for length) = 1.901
s_preOut(myreg1)
# User-defined variables
var1 <- ts(rnorm(length(myseries))*10, start = start(myseries),
frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries),
frequency = 12)
var <- ts.union(var1, var2)
myspec1 <- regarima_spec_x13(spec = "RG5c", usrdef.varEnabled = TRUE,
usrdef.var = var)
myreg1 <- regarima(myseries, myspec1)
myreg1
## y = regression model + arima (2, 1, 1, 0, 1, 1)
## Log-transformation: no
## Coefficients:
##            Estimate Std. Error
## Phi(1)     0.005263      0.108
## Phi(2)     0.175303      0.074
## Theta(1)  -0.542329      0.102
## BTheta(1) -0.672062      0.042
## 
##                Estimate Std. Error
## r.var1        -0.004272      0.009
## r.var2         0.001653      0.001
## Monday         0.550707      0.229
## Tuesday        0.904491      0.229
## Wednesday      0.990459      0.231
## Thursday       0.072727      0.230
## Friday         0.943799      0.231
## Saturday      -1.612544      0.229
## Leap year      2.241717      0.707
## Easter [1]    -2.314698      0.455
## TC (4-2020)  -35.860402      2.179
## AO (3-2020)  -20.333868      2.194
## AO (5-2011)   13.581502      1.855
## LS (11-2008) -12.281328      1.642
## 
## 
## Residual standard error: 2.206 on 340 degrees of freedom
## Log likelihood = -797.3, aic =  1633 aicc =  1635, bic(corrected for length) = 1.878

#Seasonal Adjustment

##tramoseats

Seasonal Adjustment with TRAMO-SEATS

Function to estimate the seasonally adjusted series (sa) with the TRAMO-SEATS method. This is achieved by decomposing the time series (y) into the: trend-cycle (t), seasonal component (s) and irregular component (i).

The final seasonally adjusted series shall be free of seasonal and calendarrelated movements.

The first step of a seasonal adjustment consist in pre-adjusting the time series. This is done by removing its deterministic effects, using a regression model with ARIMA noise (RegARIMA, see:regarima).

In the second part, the pre-adjusted series is decomposed into the following components: trend-cycle (t), seasonal component (s) and irregular component (i). The decomposition can be: additive (y = t + s + i) or multiplicative (y = t ∗ s ∗ i). The final seasonally adjusted series (sa) shall be free of seasonal and calendar-related movements.

In the TRAMO-SEATS method, the second step - SEATS (“Signal Extraction in ARIMA Time Series”) - performs an ARIMA-based decomposition of an observed time series into unobserved components.

RSA-TRAMO-SEATS

Identifier Log/level detection Outliers detection Calendar effects ARIMA
RSA0 NA NA NA Airline(+mean)
RSA1 automatic AO/LS/TC NA Airline(+mean)
RSA2 automatic AO/LS/TC 2 td vars + Easter Airline(+mean)
RSA3 automatic AO/LS/TC NA automatic
RSA4 automatic AO/LS/TC 2 td vars + Easter automatic
RSA5 automatic AO/LS/TC 7 td vars + Easter automatic
RSAfull automatic AO/LS/TC automatic automatic
#Example 1
myseries <- ipi_c_eu[, "FR"]

myspec <- tramoseats_spec("RSAfull")
mysa <- tramoseats(myseries, myspec)
mysa
## RegARIMA
## y = regression model + arima (2, 1, 0, 0, 1, 1)
## Log-transformation: no
## Coefficients:
##           Estimate Std. Error
## Phi(1)      0.4032      0.051
## Phi(2)      0.2883      0.051
## BTheta(1)  -0.6641      0.042
## 
##             Estimate Std. Error
## Week days     0.6994      0.032
## Leap year     2.3231      0.690
## Easter [6]   -2.5154      0.436
## AO (5-2011)  13.4679      1.787
## TC (4-2020) -22.2128      2.205
## TC (3-2020) -21.0391      2.217
## AO (5-2000)   6.7386      1.794
## 
## 
## Residual standard error: 2.326 on 348 degrees of freedom
## Log likelihood = -816.1, aic =  1654 aicc =  1655, bic(corrected for length) = 1.852
## 
## 
## 
## Decomposition
## Model
## AR :  1 + 0.403230 B + 0.288342 B^2 
## D :  1 - B - B^12 + B^13 
## MA :  1 - 0.664088 B^12 
## 
## 
## SA
## AR :  1 + 0.403230 B + 0.288342 B^2 
## D :  1 - 2.000000 B + B^2 
## MA :  1 - 0.970348 B + 0.005940 B^2 - 0.005813 B^3 + 0.003576 B^4 
## Innovation variance:  0.7043507 
## 
## Trend
## D :  1 - 2.000000 B + B^2 
## MA :  1 + 0.033519 B - 0.966481 B^2 
## Innovation variance:  0.06093642 
## 
## Seasonal
## D :  1 + B + B^2 + B^3 + B^4 + B^5 + B^6 + B^7 + B^8 + B^9 + B^10 + B^11 
## MA :  1 + 1.328957 B + 1.105787 B^2 + 1.185470 B^3 + 1.067845 B^4 + 0.820748 B^5 + 0.632456 B^6 + 0.404457 B^7 + 0.245256 B^8 + 0.001615 B^9 - 0.055617 B^10 - 0.203557 B^11 
## Innovation variance:  0.04290744 
## 
## Transitory
## AR :  1 + 0.403230 B + 0.288342 B^2 
## MA :  1 - 0.260079 B - 0.739921 B^2 
## Innovation variance:  0.05287028 
## 
## Irregular
## Innovation variance:  0.2032994 
## 
## 
## 
## Final
## Last observed values
##              y        sa        t           s            i
## Jan 2020 101.0 102.93775 103.0182  -1.9377453  -0.08043801
## Feb 2020 100.1 103.53944 103.2312  -3.4394383   0.30818847
## Mar 2020  91.8  82.47698 103.4998   9.3230241 -21.02286361
## Apr 2020  66.7  65.77310 103.9608   0.9268969 -38.18766871
## May 2020  73.7  79.43342 104.7269  -5.7334221 -25.29345247
## Jun 2020  98.2  88.07766 105.3319  10.1223443 -17.25422206
## Jul 2020  97.4  92.71048 105.4216   4.6895154 -12.71111705
## Aug 2020  71.7  97.32129 104.9801 -25.6212858  -7.65880696
## Sep 2020 104.7  97.44274 104.0807   7.2572622  -6.63793072
## Oct 2020 106.7  98.20925 103.1711   8.4907485  -4.96183772
## Nov 2020 101.6  99.98044 102.4813   1.6195550  -2.50088282
## Dec 2020  96.6  98.99458 101.9735  -2.3945790  -2.97892307
## 
## Forecasts:
##                y_f     sa_f      t_f        s_f         i_f
## Jan 2021  93.22264 100.1984 101.7578  -6.975740 -1.55946363
## Feb 2021  96.81455 100.8845 101.7113  -4.069924 -0.82679910
## Mar 2021 111.72198 100.8668 101.6647  10.855228 -0.79795880
## Apr 2021 102.76178 101.0716 101.6181   1.690178 -0.54654378
## May 2021  95.52744 101.2474 101.5716  -5.719910 -0.32422597
## Jun 2021 111.44221 101.2711 101.5250  10.171157 -0.25395653
## Jul 2021 103.57813 101.2947 101.4784   2.283395 -0.18370915
## Aug 2021  78.21363 101.3135 101.4319 -23.099833 -0.11841662
## Sep 2021 108.57631 101.3000 101.3853   7.276282 -0.08528380
## Oct 2021 107.32040 101.2771 101.3387   6.043321 -0.06166933
## Nov 2021 105.33458 101.2505 101.2922   4.084088 -0.04168414
## Dec 2021  98.79675 101.2164 101.2456  -2.419656 -0.02920922
## 
## 
## Diagnostics
##  Relative contribution of the components to the stationary
##  portion of the variance in the original series,
##  after the removal of the long term trend 
##  Trend computed by Hodrick-Prescott filter (cycle length = 8.0 years)
##            Component
##  Cycle         6.087
##  Seasonal     80.528
##  Irregular     0.965
##  TD & Hol.     3.590
##  Others        8.102
##  Total        99.271
## 
##  Combined test in the entire series 
##  Non parametric tests for stable seasonality
##                                                           P.value
##    Kruskall-Wallis test                                       0.00
##    Test for the presence of seasonality assuming stability    0.00
##    Evolutive seasonality test                                 0.01
##  
##  Identifiable seasonality present
## 
##  Residual seasonality tests 
##                                       P.value
##  qs test on sa                          1.000
##  qs test on i                           1.000
##  f-test on sa (seasonal dummies)        1.000
##  f-test on i (seasonal dummies)         1.000
##  Residual seasonality (entire series)   1.000
##  Residual seasonality (last 3 years)    0.974
##  f-test on sa (td)                      0.152
##  f-test on i (td)                       0.224
## 
## 
## Additional output variables
# Equivalent to:
mysa1 <- tramoseats(myseries, spec = "RSAfull")
mysa1
## RegARIMA
## y = regression model + arima (2, 1, 0, 0, 1, 1)
## Log-transformation: no
## Coefficients:
##           Estimate Std. Error
## Phi(1)      0.4032      0.051
## Phi(2)      0.2883      0.051
## BTheta(1)  -0.6641      0.042
## 
##             Estimate Std. Error
## Week days     0.6994      0.032
## Leap year     2.3231      0.690
## Easter [6]   -2.5154      0.436
## AO (5-2011)  13.4679      1.787
## TC (4-2020) -22.2128      2.205
## TC (3-2020) -21.0391      2.217
## AO (5-2000)   6.7386      1.794
## 
## 
## Residual standard error: 2.326 on 348 degrees of freedom
## Log likelihood = -816.1, aic =  1654 aicc =  1655, bic(corrected for length) = 1.852
## 
## 
## 
## Decomposition
## Model
## AR :  1 + 0.403230 B + 0.288342 B^2 
## D :  1 - B - B^12 + B^13 
## MA :  1 - 0.664088 B^12 
## 
## 
## SA
## AR :  1 + 0.403230 B + 0.288342 B^2 
## D :  1 - 2.000000 B + B^2 
## MA :  1 - 0.970348 B + 0.005940 B^2 - 0.005813 B^3 + 0.003576 B^4 
## Innovation variance:  0.7043507 
## 
## Trend
## D :  1 - 2.000000 B + B^2 
## MA :  1 + 0.033519 B - 0.966481 B^2 
## Innovation variance:  0.06093642 
## 
## Seasonal
## D :  1 + B + B^2 + B^3 + B^4 + B^5 + B^6 + B^7 + B^8 + B^9 + B^10 + B^11 
## MA :  1 + 1.328957 B + 1.105787 B^2 + 1.185470 B^3 + 1.067845 B^4 + 0.820748 B^5 + 0.632456 B^6 + 0.404457 B^7 + 0.245256 B^8 + 0.001615 B^9 - 0.055617 B^10 - 0.203557 B^11 
## Innovation variance:  0.04290744 
## 
## Transitory
## AR :  1 + 0.403230 B + 0.288342 B^2 
## MA :  1 - 0.260079 B - 0.739921 B^2 
## Innovation variance:  0.05287028 
## 
## Irregular
## Innovation variance:  0.2032994 
## 
## 
## 
## Final
## Last observed values
##              y        sa        t           s            i
## Jan 2020 101.0 102.93775 103.0182  -1.9377453  -0.08043801
## Feb 2020 100.1 103.53944 103.2312  -3.4394383   0.30818847
## Mar 2020  91.8  82.47698 103.4998   9.3230241 -21.02286361
## Apr 2020  66.7  65.77310 103.9608   0.9268969 -38.18766871
## May 2020  73.7  79.43342 104.7269  -5.7334221 -25.29345247
## Jun 2020  98.2  88.07766 105.3319  10.1223443 -17.25422206
## Jul 2020  97.4  92.71048 105.4216   4.6895154 -12.71111705
## Aug 2020  71.7  97.32129 104.9801 -25.6212858  -7.65880696
## Sep 2020 104.7  97.44274 104.0807   7.2572622  -6.63793072
## Oct 2020 106.7  98.20925 103.1711   8.4907485  -4.96183772
## Nov 2020 101.6  99.98044 102.4813   1.6195550  -2.50088282
## Dec 2020  96.6  98.99458 101.9735  -2.3945790  -2.97892307
## 
## Forecasts:
##                y_f     sa_f      t_f        s_f         i_f
## Jan 2021  93.22264 100.1984 101.7578  -6.975740 -1.55946363
## Feb 2021  96.81455 100.8845 101.7113  -4.069924 -0.82679910
## Mar 2021 111.72198 100.8668 101.6647  10.855228 -0.79795880
## Apr 2021 102.76178 101.0716 101.6181   1.690178 -0.54654378
## May 2021  95.52744 101.2474 101.5716  -5.719910 -0.32422597
## Jun 2021 111.44221 101.2711 101.5250  10.171157 -0.25395653
## Jul 2021 103.57813 101.2947 101.4784   2.283395 -0.18370915
## Aug 2021  78.21363 101.3135 101.4319 -23.099833 -0.11841662
## Sep 2021 108.57631 101.3000 101.3853   7.276282 -0.08528380
## Oct 2021 107.32040 101.2771 101.3387   6.043321 -0.06166933
## Nov 2021 105.33458 101.2505 101.2922   4.084088 -0.04168414
## Dec 2021  98.79675 101.2164 101.2456  -2.419656 -0.02920922
## 
## 
## Diagnostics
##  Relative contribution of the components to the stationary
##  portion of the variance in the original series,
##  after the removal of the long term trend 
##  Trend computed by Hodrick-Prescott filter (cycle length = 8.0 years)
##            Component
##  Cycle         6.087
##  Seasonal     80.528
##  Irregular     0.965
##  TD & Hol.     3.590
##  Others        8.102
##  Total        99.271
## 
##  Combined test in the entire series 
##  Non parametric tests for stable seasonality
##                                                           P.value
##    Kruskall-Wallis test                                       0.00
##    Test for the presence of seasonality assuming stability    0.00
##    Evolutive seasonality test                                 0.01
##  
##  Identifiable seasonality present
## 
##  Residual seasonality tests 
##                                       P.value
##  qs test on sa                          1.000
##  qs test on i                           1.000
##  f-test on sa (seasonal dummies)        1.000
##  f-test on i (seasonal dummies)         1.000
##  Residual seasonality (entire series)   1.000
##  Residual seasonality (last 3 years)    0.974
##  f-test on sa (td)                      0.152
##  f-test on i (td)                       0.224
## 
## 
## Additional output variables
#Example 2
var1 <- ts(rnorm(length(myseries))*10, start = start(myseries), frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries), frequency = 12)
var <- ts.union(var1, var2)
myspec2 <- tramoseats_spec(myspec, 
                           tradingdays.mauto = "Unused",
                           tradingdays.option = "WorkingDays",
                           easter.type = "Standard",
                           automdl.enabled = FALSE, arima.mu = TRUE,
                           usrdef.varEnabled = TRUE, usrdef.var = var)
s_preVar(myspec2)
## $series
##                  var1          var2
## Jan 1990   7.69755750 -6.117184e+01
## Feb 1990  -8.76814509 -9.478869e+01
## Mar 1990  -7.88404622 -4.935547e+01
## Apr 1990  -9.10099660 -6.000433e+01
## May 1990 -21.04871256  1.394980e+02
## Jun 1990   6.03282533  2.353540e+01
## Jul 1990  -2.68378955  8.995677e+01
## Aug 1990   4.89292509  1.408521e+02
## Sep 1990  21.24866511  4.881147e+01
## Oct 1990  -2.50298321 -6.701156e+01
## Nov 1990   0.82760782  8.972396e+01
## Dec 1990   4.02189744  5.664696e+01
## Jan 1991  -5.53565656 -1.737790e+02
## Feb 1991   0.93930288 -1.324783e+02
## Mar 1991 -15.53812057 -4.232983e+01
## Apr 1991  18.99607896  2.994741e+01
## May 1991  -7.46791437  2.578350e+02
## Jun 1991 -11.25671773 -8.743504e+01
## Jul 1991  10.69210720  1.239860e+01
## Aug 1991   1.14756965  7.286703e+01
## Sep 1991  -4.98595955  7.315771e+01
## Oct 1991  -6.68017775 -1.784723e+01
## Nov 1991   9.15602573 -8.361290e+01
## Dec 1991  -9.01353929 -1.831584e+01
## Jan 1992  27.05288901  1.840223e+02
## Feb 1992   2.03456853  2.304018e+00
## Mar 1992 -17.11922428 -1.622534e+02
## Apr 1992 -16.33270940  1.275697e+02
## May 1992  -5.44906162 -1.031585e+01
## Jun 1992  -4.33900839  3.313665e+01
## Jul 1992  -3.27589198  1.040285e+02
## Aug 1992   5.57356948  9.218541e+01
## Sep 1992  23.76477447 -1.003007e+02
## Oct 1992  -9.65104528  1.696971e+02
## Nov 1992   2.37557657  3.774172e+01
## Dec 1992  15.18542995  2.636018e+01
## Jan 1993  -8.61629643 -1.102749e+02
## Feb 1993  19.42199724  1.103385e+02
## Mar 1993  26.90308871  1.551787e+02
## Apr 1993  -5.80285640 -1.236520e+02
## May 1993 -11.42278663 -1.091432e+02
## Jun 1993   3.66602023  1.089892e+02
## Jul 1993  13.74942240 -1.633175e+01
## Aug 1993 -19.72685708  1.574108e+02
## Sep 1993   7.79982680  1.704966e+01
## Oct 1993  15.17530486  1.153810e+02
## Nov 1993 -16.49455886 -4.053327e+01
## Dec 1993  10.19453005  5.799309e+01
## Jan 1994  -3.22701751  3.426837e+01
## Feb 1994  -2.30565754 -3.934820e+01
## Mar 1994 -17.81257156  8.675341e+01
## Apr 1994  -7.45040577  9.008047e+01
## May 1994 -15.81047385 -9.927983e+01
## Jun 1994  -0.41137035 -6.993947e+01
## Jul 1994   7.73727341 -6.091266e+01
## Aug 1994  11.77969891  1.139724e+00
## Sep 1994  -1.21663167 -6.620164e+01
## Oct 1994  -1.80814869  7.212988e+01
## Nov 1994  -5.05582603  8.393527e+01
## Dec 1994  17.94876801 -4.412385e+01
## Jan 1995   3.90119645 -2.341100e+00
## Feb 1995  11.93310734  1.305334e+02
## Mar 1995  -6.11610551 -6.112176e+01
## Apr 1995 -11.30809147 -5.641323e+01
## May 1995  -7.28688877  1.739624e+02
## Jun 1995   6.09957125 -5.411676e+01
## Jul 1995  -4.82963770  1.154269e+02
## Aug 1995   7.90678719 -8.224782e+01
## Sep 1995 -16.33196879  6.519331e+01
## Oct 1995  -8.78259933 -3.716833e+01
## Nov 1995  -0.74832309 -1.074953e+00
## Dec 1995   4.53346797  5.421018e+01
## Jan 1996   4.38155966  3.850160e+01
## Feb 1996   7.30459779  1.001075e+02
## Mar 1996 -11.17699622 -6.260546e+01
## Apr 1996 -13.21774056 -1.410117e+02
## May 1996 -13.09872183 -1.271254e+02
## Jun 1996   0.41847394 -1.545068e+02
## Jul 1996  -9.69500834 -1.438641e+01
## Aug 1996 -18.11442115  1.267209e+02
## Sep 1996  -4.63465887  5.653171e+01
## Oct 1996   3.27938354  1.448169e+02
## Nov 1996   0.77369805 -9.135503e+01
## Dec 1996  -3.24000248  4.615369e+01
## Jan 1997 -12.15089180  1.380083e+00
## Feb 1997  -7.47749491  1.131403e+02
## Mar 1997  -3.83908421  3.546732e+01
## Apr 1997 -11.73866975 -7.640918e+00
## May 1997  -3.51281250 -7.701738e+01
## Jun 1997  -2.33741858 -1.230936e+02
## Jul 1997  -6.43580965  1.798254e+02
## Aug 1997  -5.87360933  6.154715e+01
## Sep 1997   1.63462245  5.617205e+01
## Oct 1997 -10.23675357 -1.017753e+02
## Nov 1997 -14.91446617  1.483798e+02
## Dec 1997  16.72838811  1.236882e+02
## Jan 1998   1.45447617  1.170365e+01
## Feb 1998 -15.31290229  1.635749e+02
## Mar 1998  13.00049510  1.171268e+01
## Apr 1998 -10.75619269  4.244706e+01
## May 1998  15.39861307  2.261293e+01
## Jun 1998   6.35672706  2.079812e+02
## Jul 1998  -5.65373740 -1.966096e+01
## Aug 1998  -4.41548492 -1.257577e+02
## Sep 1998   2.46621070 -1.885083e+02
## Oct 1998  -2.61011753 -1.723266e+02
## Nov 1998  -6.45690877  1.293431e+02
## Dec 1998   5.87141888 -1.638152e+00
## Jan 1999   7.06615701 -6.511092e+01
## Feb 1999  -2.92370246  7.122216e+01
## Mar 1999   2.79699889  1.220707e+02
## Apr 1999 -13.49736731  1.486424e+02
## May 1999  17.86594463  9.349965e+01
## Jun 1999   3.66386193  1.552281e+01
## Jul 1999 -16.40898108  2.314159e+02
## Aug 1999  -8.10147384 -1.897316e+02
## Sep 1999  -7.99117248  1.477720e+02
## Oct 1999   3.80915177 -6.740272e+01
## Nov 1999   1.39918793  7.317285e+01
## Dec 1999  -6.24697198  2.851466e+01
## Jan 2000   0.68197675  3.612068e+01
## Feb 2000   3.98486021 -3.150900e+01
## Mar 2000   6.09491738  1.235700e+01
## Apr 2000  -9.32125748  6.635702e+01
## May 2000  -0.95209901 -6.422054e+01
## Jun 2000 -19.68605834  2.290808e+02
## Jul 2000   4.91632404  5.607762e+01
## Aug 2000  -6.91833302  3.150965e+02
## Sep 2000   3.42103663  1.263056e+01
## Oct 2000   8.86248550  2.543792e+00
## Nov 2000 -17.66931806  3.628495e+01
## Dec 2000  -0.54140353  1.875220e+02
## Jan 2001  22.99871961  4.408241e+01
## Feb 2001 -11.26643672  1.794610e+02
## Mar 2001 -11.74564605  5.083581e+01
## Apr 2001   2.38507120 -6.970882e+01
## May 2001 -24.80647834 -1.742413e+01
## Jun 2001   4.38795495 -2.524204e+02
## Jul 2001  20.31667887  2.349607e+01
## Aug 2001  -2.71970094  4.499701e+00
## Sep 2001  -9.82773387 -5.945454e+01
## Oct 2001   0.58108902  1.085002e+02
## Nov 2001  11.57341837 -8.203475e+01
## Dec 2001 -10.73923045 -1.139479e+02
## Jan 2002  11.73009709 -8.814105e+00
## Feb 2002   7.77763754  2.024793e+01
## Mar 2002   3.59452909  3.480105e+01
## Apr 2002   8.53834422  1.501895e+02
## May 2002 -10.24101143  7.623339e+01
## Jun 2002  17.76122611 -8.983932e+01
## Jul 2002   6.25383858 -1.629129e+02
## Aug 2002   7.56281617 -3.991999e+01
## Sep 2002   1.24156675  1.151387e+02
## Oct 2002   0.42806713 -1.089278e+02
## Nov 2002   4.88677760  3.631937e+01
## Dec 2002   2.44061691  2.585679e+01
## Jan 2003  10.70223119 -1.051993e+02
## Feb 2003  11.44046408 -2.780926e+00
## Mar 2003  -4.13134116  1.068513e+02
## Apr 2003  10.38935365 -1.142134e+02
## May 2003  -8.95895929  3.193102e+01
## Jun 2003  15.06942132 -3.496720e+01
## Jul 2003   4.67460727  1.985163e+00
## Aug 2003  -9.99996016  8.321591e+01
## Sep 2003   0.59716271  4.508182e+01
## Oct 2003  -5.44907056 -2.017367e+01
## Nov 2003  -2.65068618 -3.061819e+00
## Dec 2003   9.03624381 -1.759762e+02
## Jan 2004  15.60013987  9.126506e+01
## Feb 2004  -7.17675732  1.908845e+02
## Mar 2004  -3.16260420  6.337922e+00
## Apr 2004  -0.35325988  7.795115e+01
## May 2004   6.07043577  1.527528e+02
## Jun 2004 -12.33481951 -6.461135e+01
## Jul 2004   0.85468864  8.417124e+01
## Aug 2004  -5.24434164  7.937273e+01
## Sep 2004  10.13295811 -2.528577e+02
## Oct 2004  -3.33336428  1.304324e+02
## Nov 2004  -5.26926654 -6.868965e+01
## Dec 2004   3.47508129  4.280419e+01
## Jan 2005  -8.98258056  1.153560e+02
## Feb 2005   7.22468898  4.509297e+01
## Mar 2005  18.43717958  6.908706e+01
## Apr 2005  -5.29582908 -1.362294e+02
## May 2005   0.88958320  4.644507e+01
## Jun 2005  -7.86250540 -6.850550e+01
## Jul 2005  -6.51932771 -6.518370e+01
## Aug 2005 -10.07646041  9.929281e+00
## Sep 2005  13.94901389  6.107843e+01
## Oct 2005  -2.49176919 -5.223367e+01
## Nov 2005  -8.19211317  4.562504e+01
## Dec 2005   1.38301701 -1.790791e+01
## Jan 2006  -5.41231327 -6.658423e+00
## Feb 2006  -7.08881294 -5.332551e+00
## Mar 2006   1.03185027 -4.294932e+01
## Apr 2006  26.10380678  7.074497e+01
## May 2006 -15.20572391  1.378830e+02
## Jun 2006 -14.52590662 -1.181023e+02
## Jul 2006   6.91118053 -9.698924e+01
## Aug 2006  13.56022610 -3.583571e+01
## Sep 2006  -2.25651818 -7.628338e+01
## Oct 2006   8.30142010  2.427731e+00
## Nov 2006  -2.51631303  6.058405e+01
## Dec 2006  -4.02995029  1.210040e+01
## Jan 2007  -5.90047529  7.012192e+01
## Feb 2007  -5.34757082 -2.951237e+02
## Mar 2007   0.85796438 -6.107377e+01
## Apr 2007  11.01603770 -1.581236e+02
## May 2007   3.83347544  8.767034e+01
## Jun 2007  -6.18547298  1.212380e+02
## Jul 2007   4.27922062  1.537420e+02
## Aug 2007  -6.39963444 -2.100368e+02
## Sep 2007   5.96477396  4.617224e+00
## Oct 2007  -8.39399298 -2.028333e+01
## Nov 2007   9.98275799  1.814987e+01
## Dec 2007  12.11094217 -9.584198e+01
## Jan 2008   3.71657564 -1.913476e+02
## Feb 2008   2.36425191  4.153787e+01
## Mar 2008  -9.20807322 -6.736838e+01
## Apr 2008   1.17141397  5.649969e+01
## May 2008   9.86629095  1.256673e+02
## Jun 2008  20.17671342  6.943351e+01
## Jul 2008  16.84676784 -6.799677e+01
## Aug 2008  -3.34421306 -5.374667e+01
## Sep 2008  -0.62220700 -6.798191e+00
## Oct 2008  -8.20946909 -2.252120e+02
## Nov 2008 -12.08521967 -2.227996e+01
## Dec 2008   3.86271201 -4.530943e+01
## Jan 2009 -11.77092992 -2.371678e+02
## Feb 2009 -15.12584860 -4.915371e+01
## Mar 2009 -15.98841503  1.022592e+02
## Apr 2009  -1.62984242 -1.609276e+02
## May 2009   2.87381061  1.460266e+02
## Jun 2009  -5.92098291 -7.402011e+01
## Jul 2009   3.48625362  7.960895e+01
## Aug 2009  -0.51920336 -1.469571e+01
## Sep 2009  -9.80652997 -7.357061e+01
## Oct 2009  -0.24731977  2.049825e+02
## Nov 2009   3.33570653  6.267776e+01
## Dec 2009   5.60601165  1.473491e+02
## Jan 2010  -5.08519548  8.438488e+01
## Feb 2010   2.95061749  6.197845e+01
## Mar 2010   3.62697266  7.787595e+01
## Apr 2010   4.83797796  1.849958e+01
## May 2010  -1.79534397 -1.193970e+01
## Jun 2010   3.84841036  1.751710e+01
## Jul 2010 -13.14968507 -1.875257e+01
## Aug 2010  18.05482685 -7.696341e+01
## Sep 2010  -5.67368359 -6.006321e+00
## Oct 2010  -2.01900848  1.145784e+02
## Nov 2010  -6.14383236 -8.579173e+00
## Dec 2010  -0.40994730  8.109350e+00
## Jan 2011  -5.21080707  1.952896e+02
## Feb 2011  -6.19300218  8.544977e+01
## Mar 2011   9.46738473 -1.691839e+01
## Apr 2011   0.91945800 -1.253285e+01
## May 2011  -7.37219831 -1.590330e+01
## Jun 2011  16.44727562  1.554015e+01
## Jul 2011   6.93354882  3.708831e+01
## Aug 2011  16.86572571  8.666766e+01
## Sep 2011  -4.57745629  6.718038e+00
## Oct 2011  -3.15171785 -1.381566e+02
## Nov 2011  -1.80352176  6.473956e+01
## Dec 2011   1.03107026  2.829499e+01
## Jan 2012   5.00689660 -6.394017e+01
## Feb 2012  14.11781332  9.249040e+01
## Mar 2012  -1.75504064 -1.572740e+02
## Apr 2012  -7.94499656  1.616675e+00
## May 2012   5.31014093 -2.081181e+01
## Jun 2012   2.64372509 -5.869860e+01
## Jul 2012  25.47113134  2.401041e+01
## Aug 2012  -2.97586621 -6.296879e+01
## Sep 2012  -7.67046775 -1.042549e+02
## Oct 2012   0.59106393  4.262855e+01
## Nov 2012  28.46860602 -3.887581e+01
## Dec 2012   0.49133737  5.876302e+01
## Jan 2013  -4.83927837  4.231937e+01
## Feb 2013 -16.49333553 -9.330088e+01
## Mar 2013  -9.95136372  8.876058e+01
## Apr 2013   7.46468887  2.251565e+01
## May 2013 -23.19237961 -6.010982e+00
## Jun 2013   3.34151183 -8.993900e-01
## Jul 2013  14.18681022  7.672624e+00
## Aug 2013  -5.37777417  1.263374e+02
## Sep 2013   3.38352617 -4.732324e+01
## Oct 2013 -20.69093288  9.970284e+01
## Nov 2013   5.63141272  4.305784e+00
## Dec 2013  13.36041067  1.020564e+02
## Jan 2014  12.48553114  7.745574e+00
## Feb 2014 -11.91445049  4.956615e+01
## Mar 2014 -14.38825447  5.102942e+01
## Apr 2014  16.69462130  2.288205e+00
## May 2014   2.50111905 -9.674965e+01
## Jun 2014 -13.20923393 -1.021459e+02
## Jul 2014  -9.66615780  2.502920e+01
## Aug 2014   2.30830093  7.273911e+01
## Sep 2014 -11.73418395 -1.866498e+00
## Oct 2014  -1.61380397 -5.987378e+01
## Nov 2014   4.92385941 -1.925933e+02
## Dec 2014   8.99675503 -1.645246e+02
## Jan 2015  14.36563631  8.874164e+01
## Feb 2015   3.10854095  7.031450e+00
## Mar 2015   9.37330604  1.327471e+01
## Apr 2015  -0.08174478  6.333804e+01
## May 2015 -10.67822183 -1.225719e+01
## Jun 2015   0.37765862 -1.280325e+02
## Jul 2015   0.90047906 -1.108708e+00
## Aug 2015  26.53751039 -1.216277e+02
## Sep 2015  -3.57038681  3.011200e+02
## Oct 2015   8.13057385 -2.760172e+01
## Nov 2015 -11.32133498 -1.810071e+01
## Dec 2015   0.65506200 -1.261408e+02
## Jan 2016  -4.23454118 -1.127585e+02
## Feb 2016  -2.67085090  3.163212e+01
## Mar 2016 -11.24123564  8.451747e+01
## Apr 2016   0.75501796  1.445487e+02
## May 2016  -7.42450341  5.825727e+01
## Jun 2016  -1.88509772 -2.205444e+02
## Jul 2016 -24.41518735  8.875916e+01
## Aug 2016  11.05542992  1.496582e+02
## Sep 2016  11.65946198 -3.661553e+01
## Oct 2016   8.00545223  5.982152e+01
## Nov 2016 -36.50949324 -7.138575e+01
## Dec 2016  13.59461324 -1.020020e+02
## Jan 2017  -1.97446765 -1.418467e+02
## Feb 2017   6.60003717  1.275735e+02
## Mar 2017 -15.13482186  4.297874e+01
## Apr 2017   6.75029792 -7.122593e-03
## May 2017   6.83285767  1.133312e+02
## Jun 2017  13.85250424 -8.454449e+01
## Jul 2017  -2.13087645 -6.499844e+01
## Aug 2017   6.45481173 -7.077042e+00
## Sep 2017  -4.48165991 -9.158163e+01
## Oct 2017   2.68676037  4.905732e+00
## Nov 2017  -4.77068676 -1.372080e+02
## Dec 2017  -4.23723718  5.590481e+01
## Jan 2018   8.43140092  1.108820e+01
## Feb 2018  -9.42949389  1.232511e+02
## Mar 2018  -5.60431545  1.074962e+02
## Apr 2018   8.79702406 -5.484571e+01
## May 2018  -2.22376279 -2.860896e+01
## Jun 2018   6.00763680 -8.161407e+01
## Jul 2018  -8.96516403  9.839624e+01
## Aug 2018  -0.84102663  2.660832e+00
## Sep 2018  11.15494009  9.268938e+01
## Oct 2018   0.73921597  1.929664e+01
## Nov 2018   2.05017910  7.382390e+01
## Dec 2018   3.33099570  6.655840e+01
## Jan 2019   0.87912296 -6.087581e+01
## Feb 2019   6.12604126 -2.184289e+02
## Mar 2019 -15.34957108  4.224552e+01
## Apr 2019  -9.07673559  1.481240e+02
## May 2019  -2.31785006 -1.320106e+01
## Jun 2019 -14.76196828 -3.581356e+01
## Jul 2019   1.34203619 -1.221866e+02
## Aug 2019   5.63593963  1.781609e+02
## Sep 2019 -10.70075583 -2.916401e+01
## Oct 2019   9.61445568 -1.151497e+02
## Nov 2019  10.85835421  1.327556e+02
## Dec 2019  14.85343798 -2.602837e+02
## Jan 2020  12.42957317 -1.090972e+01
## Feb 2020  -8.44701502 -2.571147e+02
## Mar 2020  -4.81670643  2.328622e+01
## Apr 2020  -2.37399876  9.100171e+01
## May 2020   4.91041337  2.838789e+01
## Jun 2020   6.24148499 -2.796864e+01
## Jul 2020  -5.44323297  1.023880e+01
## Aug 2020 -14.48134785 -2.330489e+01
## Sep 2020   2.55832130 -1.275781e+02
## Oct 2020  16.71282078 -2.235519e+02
## Nov 2020  22.09710745  2.668214e+01
## Dec 2020   6.52103946 -8.850549e+01
## 
## $description
##           type coeff
## var1 Undefined    NA
## var2 Undefined    NA
mysa2 <- tramoseats(myseries, myspec2,  
                    userdefined = c("decomposition.sa_lin_f", "decomposition.sa_lin_e"))
mysa2
## RegARIMA
## y = regression model + arima (0, 1, 1, 0, 1, 1)
## Log-transformation: no
## Coefficients:
##           Estimate Std. Error
## Theta(1)   -0.6182      0.043
## BTheta(1)  -0.6651      0.042
## 
##                Estimate Std. Error
## Mean          1.288e-03      0.017
## r.var1       -2.479e-03      0.010
## r.var2       -7.886e-04      0.001
## Monday        5.802e-01      0.239
## Tuesday       8.531e-01      0.238
## Wednesday     1.068e+00      0.239
## Thursday      2.389e-02      0.239
## Friday        8.809e-01      0.241
## Saturday     -1.560e+00      0.237
## Leap year     2.172e+00      0.726
## Easter [6]   -2.169e+00      0.482
## TC (4-2020)  -2.110e+01      2.230
## TC (3-2020)  -2.117e+01      2.222
## AO (5-2011)   1.283e+01      1.910
## LS (11-2008) -1.240e+01      1.657
## 
## 
## Residual standard error: 2.241 on 341 degrees of freedom
## Log likelihood = -802.8, aic =  1642 aicc =  1644, bic(corrected for length) = 1.892
## 
## 
## 
## Decomposition
## Model
## D :  1 - B - B^12 + B^13 
## MA :  1 - 0.618177 B - 0.665118 B^12 + 0.411161 B^13 
## 
## 
## SA
## D :  1 - 2.000000 B + B^2 
## MA :  1 - 1.588165 B + 0.600809 B^2 
## Innovation variance:  0.7102212 
## 
## Trend
## D :  1 - 2.000000 B + B^2 
## MA :  1 + 0.033325 B - 0.966675 B^2 
## Innovation variance:  0.02555918 
## 
## Seasonal
## D :  1 + B + B^2 + B^3 + B^4 + B^5 + B^6 + B^7 + B^8 + B^9 + B^10 + B^11 
## MA :  1 + 0.852070 B + 0.614974 B^2 + 0.347649 B^3 + 0.089792 B^4 - 0.133411 B^5 - 0.307987 B^6 - 0.428720 B^7 - 0.497363 B^8 - 0.521604 B^9 - 0.515186 B^10 - 0.500213 B^11 
## Innovation variance:  0.03107939 
## 
## Irregular
## Innovation variance:  0.4514145 
## 
## 
## 
## Final
## Last observed values
##              y        sa        t           s            i
## Jan 2020 101.0 102.80574 103.2663  -1.8057389  -0.46058826
## Feb 2020 100.1 103.39224 103.3580  -3.2922409   0.03427508
## Mar 2020  91.8  82.28866 103.4711   9.5113382 -21.18243733
## Apr 2020  66.7  66.14372 103.6707   0.5562849 -37.52701486
## May 2020  73.7  79.36670 104.0185  -5.6667047 -24.65180977
## Jun 2020  98.2  88.15399 104.3199  10.0460072 -16.16589847
## Jul 2020  97.4  92.95850 104.3863   4.4414966 -11.42774980
## Aug 2020  71.7  97.34564 104.1761 -25.6456433  -6.83040987
## Sep 2020 104.7  97.12883 103.7508   7.5711731  -6.62200793
## Oct 2020 106.7  98.49301 103.3233   8.2069895  -4.83027377
## Nov 2020 101.6 100.21036 102.9830   1.3896353  -2.77265649
## Dec 2020  96.6  99.16046 102.7377  -2.5604563  -3.57720825
## 
## Forecasts:
##                y_f     sa_f      t_f        s_f         i_f
## Jan 2021  94.79147 101.1974 102.6470  -6.374640 -1.44963913
## Feb 2021  97.57263 101.6242 102.6390  -3.944525 -1.01474739
## Mar 2021 113.22669 101.9207 102.6310  11.312253 -0.71032317
## Apr 2021 103.54072 102.1260 102.6232   1.383623 -0.49722622
## May 2021  96.31037 102.2674 102.6155  -5.947324 -0.34805836
## Jun 2021 112.89644 102.3642 102.6079  10.600519 -0.24364085
## Jul 2021 104.26039 102.4298 102.6004   1.869623 -0.17054859
## Aug 2021  79.33460 102.4736 102.5930 -23.145397 -0.11938402
## Sep 2021 109.19025 102.5021 102.5857   6.739725 -0.08356881
## Oct 2021 108.77166 102.5200 102.5785   6.327370 -0.05849817
## Nov 2021 106.64706 102.5305 102.5715   4.101246 -0.04094872
## Dec 2021  99.87823 102.5359 102.5645  -2.584463 -0.02866410
## 
## 
## Diagnostics
##  Relative contribution of the components to the stationary
##  portion of the variance in the original series,
##  after the removal of the long term trend 
##  Trend computed by Hodrick-Prescott filter (cycle length = 8.0 years)
##            Component
##  Cycle         1.850
##  Seasonal     59.076
##  Irregular     0.993
##  TD & Hol.     2.546
##  Others       33.488
##  Total        97.953
## 
##  Combined test in the entire series 
##  Non parametric tests for stable seasonality
##                                                           P.value
##    Kruskall-Wallis test                                      0.000
##    Test for the presence of seasonality assuming stability   0.000
##    Evolutive seasonality test                                0.067
##  
##  Identifiable seasonality present
## 
##  Residual seasonality tests 
##                                       P.value
##  qs test on sa                          1.000
##  qs test on i                           1.000
##  f-test on sa (seasonal dummies)        1.000
##  f-test on i (seasonal dummies)         1.000
##  Residual seasonality (entire series)   1.000
##  Residual seasonality (last 3 years)    0.962
##  f-test on sa (td)                      0.946
##  f-test on i (td)                       1.000
## 
## 
## Additional output variables
## Names of additional variables (2):
## decomposition.sa_lin_f, decomposition.sa_lin_e
plot(mysa2)

plot(mysa2$regarima)

plot(mysa2$decomposition)

tramoseats_spec

TRAMO-SEATS model specification, SA/TRAMO-SEATS

myseries <- ipi_c_eu[, "FR"]
myspec1 <- tramoseats_spec(spec = c("RSAfull"))
mysa1 <- tramoseats(myseries, spec = myspec1)

# To modify a pre-specified model specification
myspec2 <- tramoseats_spec(spec = "RSAfull", 
                           tradingdays.mauto = "Unused",
                           tradingdays.option = "WorkingDays",
                           easter.type = "Standard",
                           automdl.enabled = FALSE, arima.mu = TRUE)
mysa2 <- tramoseats(myseries, spec = myspec2)

# To modify the model specification of a "SA" object
myspec3 <- tramoseats_spec(mysa1, 
                           tradingdays.mauto = "Unused",
                           tradingdays.option = "WorkingDays",
                           easter.type = "Standard", 
                           automdl.enabled = FALSE, arima.mu = TRUE)
mysa3 <- tramoseats(myseries, myspec3)


# To modify the model specification of a "SA_spec" object
myspec4 <- tramoseats_spec(myspec1, tradingdays.mauto = "Unused",
  tradingdays.option = "WorkingDays",
  easter.type = "Standard", automdl.enabled = FALSE, arima.mu = TRUE)
mysa4 <- tramoseats(myseries, myspec4)


# Pre-specified outliers
myspec5 <- tramoseats_spec(spec = "RSAfull",
                           usrdef.outliersEnabled = TRUE,
                           usrdef.outliersType = c("LS", "LS"),
                           usrdef.outliersDate = c("2008-10-01", "2003-01-01"),
                           usrdef.outliersCoef = c(10,-8), transform.function = "None")
s_preOut(myspec5)
mysa5 <- tramoseats(myseries, myspec5)
mysa5
## RegARIMA
## y = regression model + arima (2, 1, 0, 1, 1, 1)
## Log-transformation: no
## Coefficients:
##           Estimate Std. Error
## Phi(1)      0.4872      0.051
## Phi(2)      0.2964      0.051
## BPhi(1)    -0.2070      0.071
## BTheta(1)  -0.8048      0.044
## 
##              Estimate Std. Error
## Week days      0.6814      0.039
## Leap year      1.9125      0.726
## Easter [6]    -2.4901      0.461
## TC (4-2020)  -22.4492      2.288
## TC (3-2020)  -21.2013      2.296
## AO (5-2011)   12.6414      1.908
## LS (11-2008) -14.2909      1.954
## 
## Fixed outliers: 
##              Coefficients
## LS (10-2008)           10
## LS (1-2003)            -8
## 
## 
## Residual standard error: 2.421 on 347 degrees of freedom
## Log likelihood = -831.3, aic =  1687 aicc =  1688, bic(corrected for length) = 1.949
## 
## 
## 
## Decomposition
## Model
## AR :  1 + 0.487236 B + 0.296353 B^2 - 0.207019 B^12 - 0.100867 B^13 - 0.061351 B^14 
## D :  1 - B - B^12 + B^13 
## MA :  1 - 0.804783 B^12 
## 
## 
## SA
## AR :  1 - 0.389767 B - 0.130954 B^2 - 0.259902 B^3 
## D :  1 - 2.000000 B + B^2 
## MA :  1 - 1.807789 B + 0.901808 B^2 - 0.269318 B^3 + 0.305238 B^4 - 0.126109 B^5 
## Innovation variance:  0.434195 
## 
## Trend
## AR :  1 - 0.877002 B 
## D :  1 - 2.000000 B + B^2 
## MA :  1 - 0.714788 B - 0.995207 B^2 + 0.719581 B^3 
## Innovation variance:  0.02178125 
## 
## Seasonal
## AR :  1 + 0.877002 B + 0.769133 B^2 + 0.674532 B^3 + 0.591566 B^4 + 0.518805 B^5 + 0.454993 B^6 + 0.399030 B^7 + 0.349950 B^8 + 0.306907 B^9 + 0.269159 B^10 + 0.236053 B^11 
## D :  1 + B + B^2 + B^3 + B^4 + B^5 + B^6 + B^7 + B^8 + B^9 + B^10 + B^11 
## MA :  1 + 2.178999 B + 3.063892 B^2 + 4.121863 B^3 + 5.003640 B^4 + 5.601993 B^5 + 6.042224 B^6 + 6.245708 B^7 + 6.304190 B^8 + 6.112595 B^9 + 5.879629 B^10 + 5.538195 B^11 + 4.649065 B^12 + 3.623707 B^13 + 2.832188 B^14 + 1.903031 B^15 + 1.111724 B^16 + 0.543666 B^17 + 0.100438 B^18 - 0.158107 B^19 - 0.300012 B^20 - 0.253276 B^21 - 0.169309 B^22 
## Innovation variance:  0.2937308 
## 
## Transitory
## AR :  1 + 0.487236 B + 0.296353 B^2 
## MA :  1 + 0.374200 B + B^2 
## Innovation variance:  0.0004441626 
## 
## Irregular
## Innovation variance:  0.2270517 
## 
## 
## 
## Final
## Last observed values
##              y        sa        t           s            i
## Jan 2020 101.0 103.36086 103.6698  -2.3608556  -0.30898902
## Feb 2020 100.1 103.77440 103.7591  -3.6743960   0.01526074
## Mar 2020  91.8  82.68181 103.8823   9.1181885 -21.20051445
## Apr 2020  66.7  66.03104 104.0672   0.6689644 -38.03612893
## May 2020  73.7  78.40145 104.3488  -4.7014498 -25.94737674
## Jun 2020  98.2  87.17684 104.5662  11.0231647 -17.38939710
## Jul 2020  97.4  92.05260 104.5630   5.3474007 -12.51040945
## Aug 2020  71.7  96.37053 104.3138 -24.6705259  -7.94324202
## Sep 2020 104.7  97.23252 103.8686   7.4674839  -6.63612508
## Oct 2020 106.7  98.61143 103.4107   8.0885663  -4.79928434
## Nov 2020 101.6 100.11916 103.0293   1.4808373  -2.91011190
## Dec 2020  96.6  99.92823 102.7128  -3.3282284  -2.78459980
## 
## Forecasts:
##                y_f     sa_f      t_f        s_f         i_f
## Jan 2021  93.59565 100.9960 102.4996  -7.399679 -1.50358792
## Feb 2021  97.28250 101.2996 102.3539  -4.015335 -1.05431433
## Mar 2021 111.80873 101.4867 102.2239  10.324214 -0.73723634
## Apr 2021 103.12191 101.5917 102.1076   1.532091 -0.51591304
## May 2021  95.98703 101.6419 102.0033  -5.653012 -0.36144565
## Jun 2021 112.41967 101.6567 101.9096  10.762935 -0.25290781
## Jul 2021 103.94320 101.6482 101.8251   2.296412 -0.17699539
## Aug 2021  78.58807 101.6248 101.7488 -23.036711 -0.12394718
## Sep 2021 109.12657 101.5928 101.6796   7.534699 -0.08675036
## Oct 2021 107.23292 101.5558 101.6166   5.678242 -0.06071652
## Nov 2021 105.47170 101.5165 101.5590   3.956022 -0.04250960
## Dec 2021  99.15981 101.4766 101.5063  -2.317856 -0.02975541
## 
## 
## Diagnostics
##  Relative contribution of the components to the stationary
##  portion of the variance in the original series,
##  after the removal of the long term trend 
##  Trend computed by Hodrick-Prescott filter (cycle length = 8.0 years)
##            Component
##  Cycle         3.137
##  Seasonal     61.551
##  Irregular     0.352
##  TD & Hol.     2.592
##  Others       30.919
##  Total        98.551
## 
##  Combined test in the entire series 
##  Non parametric tests for stable seasonality
##                                                           P.value
##    Kruskall-Wallis test                                      0.000
##    Test for the presence of seasonality assuming stability   0.000
##    Evolutive seasonality test                                0.243
##  
##  Identifiable seasonality present
## 
##  Residual seasonality tests 
##                                       P.value
##  qs test on sa                          1.000
##  qs test on i                           1.000
##  f-test on sa (seasonal dummies)        1.000
##  f-test on i (seasonal dummies)         1.000
##  Residual seasonality (entire series)   1.000
##  Residual seasonality (last 3 years)    0.990
##  f-test on sa (td)                      0.024
##  f-test on i (td)                       0.089
## 
## 
## Additional output variables
s_preOut(mysa5)
# User-defined calendar regressors
var1 <- ts(rnorm(length(myseries))*10, start = start(myseries), frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries), frequency = 12)
var<- ts.union(var1, var2)
myspec6 <- tramoseats_spec(spec = "RSAfull", tradingdays.option = "UserDefined",
  usrdef.varEnabled = TRUE, usrdef.var = var,
  usrdef.varType = c("Calendar", "Calendar"))
## Warning: With tradingdays.option = "UserDefined", the parameters tradingdays.leapyear and tradingdays.stocktd are ignored.
s_preVar(myspec6)
## $series
##                   var1         var2
## Jan 1990  11.234807626   43.6117770
## Feb 1990   6.155548267  241.4531764
## Mar 1990   0.055691306  -48.6326296
## Apr 1990   4.728702120    7.7603197
## May 1990  -1.574199736 -141.8350122
## Jun 1990 -10.184838876   12.4423099
## Jul 1990   1.739487973   43.0258310
## Aug 1990  11.715538195  194.0977073
## Sep 1990   0.718647582   23.8808027
## Oct 1990   0.576121743   -1.0277507
## Nov 1990  -6.074500475 -120.0488376
## Dec 1990   5.765268083 -132.4614098
## Jan 1991   6.857432304   20.7786161
## Feb 1991  -2.365449402  167.8685311
## Mar 1991  -4.126971884  129.7634413
## Apr 1991  -1.529481579  -45.4953222
## May 1991   2.927648020 -117.8217060
## Jun 1991  23.364132210  160.5386009
## Jul 1991  -4.618307793 -124.1235718
## Aug 1991   2.886227185  110.8317362
## Sep 1991 -12.111800914  -10.5908822
## Oct 1991  -3.808383965   34.9078632
## Nov 1991   2.522180964   48.5293273
## Dec 1991   9.863013375  -99.4292415
## Jan 1992  -5.275371916 -130.0413015
## Feb 1992 -14.240569441  115.6717553
## Mar 1992  22.923206383  -74.1035415
## Apr 1992  10.318737830  -22.6166988
## May 1992  16.474421391  114.2370786
## Jun 1992  11.508897501  -13.5403449
## Jul 1992  -6.816442390   11.6727689
## Aug 1992 -13.184547665    7.8731736
## Sep 1992  15.603113556  -80.2385177
## Oct 1992  23.252281114    4.5016544
## Nov 1992 -11.636430320 -175.1405260
## Dec 1992 -15.766189472   32.6256073
## Jan 1993  -1.580952748   60.4646295
## Feb 1993   2.820184769   70.8368439
## Mar 1993  13.098329364   17.7199759
## Apr 1993  -9.062778883   15.9205977
## May 1993  -6.053123846 -136.6111001
## Jun 1993   2.532178506   37.2508618
## Jul 1993  -2.629423030   87.8370076
## Aug 1993  -5.916965301  114.3284575
## Sep 1993   2.671769660  143.3081166
## Oct 1993  15.771723697  135.7432155
## Nov 1993  -3.097506765  -48.2075314
## Dec 1993  -9.556645551  128.0200049
## Jan 1994  -1.859144001   25.6967099
## Feb 1994  -1.397367834  127.4583267
## Mar 1994  -3.674063092  -22.6820933
## Apr 1994  -6.170818530  -76.0094424
## May 1994   2.413915626 -115.1342568
## Jun 1994   3.325563383  109.7706099
## Jul 1994   1.418301735   -5.7578553
## Aug 1994 -10.018682077   38.1102502
## Sep 1994  -1.215301684   15.7158068
## Oct 1994  12.040429272  -96.2044594
## Nov 1994 -30.162342059 -178.4498443
## Dec 1994   8.646373635  -24.6646742
## Jan 1995  -5.436003022  -53.6416244
## Feb 1995  -2.152556750  118.3308262
## Mar 1995  -2.977573434 -171.2538775
## Apr 1995  -3.163786655   62.3973780
## May 1995   9.183399187  -37.5760694
## Jun 1995 -10.126869911  -24.2824120
## Jul 1995 -20.234008846  -19.1468571
## Aug 1995  20.052110118  -11.5480964
## Sep 1995  21.740195705   83.6052201
## Oct 1995  -4.896841080  -29.8527272
## Nov 1995   2.197424959  126.4018770
## Dec 1995   6.469090510   84.7451332
## Jan 1996   5.360211450 -128.4843489
## Feb 1996  -6.505032820 -109.2726002
## Mar 1996   3.779507865 -115.4717240
## Apr 1996   5.002069531  101.7173870
## May 1996  -1.046977110  -77.1328412
## Jun 1996  14.558418052   75.4845014
## Jul 1996  -7.829178672   24.7091192
## Aug 1996  -4.341482424   55.3327799
## Sep 1996  -1.678633973   82.0609337
## Oct 1996   1.041632678   73.2633026
## Nov 1996   2.963769605  -12.1899044
## Dec 1996  -3.030768366  -81.5265582
## Jan 1997 -12.355094086  -52.0475501
## Feb 1997  -3.272128348  128.7551415
## Mar 1997 -14.637592934 -145.9930514
## Apr 1997  -1.986210837 -130.2789515
## May 1997 -11.808176000  -23.5593755
## Jun 1997   1.605981584   57.1521335
## Jul 1997   3.318518982  231.1588470
## Aug 1997   8.101140756  187.3858580
## Sep 1997   7.270425617   -2.8650956
## Oct 1997 -15.913850078  128.9243361
## Nov 1997  -4.282748341 -129.3264010
## Dec 1997  -6.016399555   42.2418381
## Jan 1998  10.858287578   24.4842685
## Feb 1998   0.076675852  143.4676363
## Mar 1998  -4.802342233    7.4072050
## Apr 1998  -8.290044799   -8.0915263
## May 1998 -10.190330747  242.4498144
## Jun 1998  -3.327404805    4.2256334
## Jul 1998   4.992958169  -56.0061724
## Aug 1998 -25.034040761   17.4261218
## Sep 1998  14.508040547  -55.3224385
## Oct 1998   0.949633955 -128.9847332
## Nov 1998   2.800604070   16.6655395
## Dec 1998   2.432992493  -24.9120457
## Jan 1999 -11.105768535  -90.5603354
## Feb 1999  -1.141306581  213.6045638
## Mar 1999  -4.746882351  -31.5167782
## Apr 1999 -13.684097269  -26.5461470
## May 1999  14.049748736 -101.1250134
## Jun 1999  -3.598050056 -186.9326611
## Jul 1999   1.254654424 -105.1561005
## Aug 1999  16.680241725  125.3757660
## Sep 1999  -5.540657507   41.6393382
## Oct 1999  -5.539000742  132.0062806
## Nov 1999  12.105096216   42.1918679
## Dec 1999  -1.585777314   64.9051374
## Jan 2000  -0.665011245  -50.0544309
## Feb 2000   5.020999609   77.3418826
## Mar 2000  -2.282317442  144.5517187
## Apr 2000   8.523491625   63.5976475
## May 2000   3.292145337   -1.2232484
## Jun 2000  -6.655611512   -6.6138226
## Jul 2000  23.649508488    0.9186052
## Aug 2000  -7.329523266  -71.8824712
## Sep 2000 -10.905306510  185.0638525
## Oct 2000  15.375392118   62.9172599
## Nov 2000 -12.425216944  -66.7364224
## Dec 2000  -7.928351238   33.0121775
## Jan 2001   1.527505638 -148.1411888
## Feb 2001  20.193178304   19.4806292
## Mar 2001   8.477779915  -35.8351023
## Apr 2001   3.271957379  -57.1397861
## May 2001  19.295011633  -62.4689098
## Jun 2001  -5.403058644  -19.9963637
## Jul 2001  14.277287602  -35.1090990
## Aug 2001  17.346477288 -132.8604126
## Sep 2001   6.125320313   39.6257824
## Oct 2001 -10.394691357   93.9274143
## Nov 2001 -12.192067715  -16.0568036
## Dec 2001 -29.822123400 -167.0814056
## Jan 2002   7.202309185  144.5099736
## Feb 2002  -5.563820581  134.2099921
## Mar 2002  -6.332598449   73.3275084
## Apr 2002   5.594526425   38.9482366
## May 2002   6.723717891  -42.8095726
## Jun 2002  -1.887504499  -35.0482332
## Jul 2002 -30.535280594   20.5112498
## Aug 2002  15.778904542 -129.7654078
## Sep 2002   8.782476522   38.7666516
## Oct 2002   4.451493834 -205.5516201
## Nov 2002  15.198679257   -8.2284735
## Dec 2002  -7.456577577   65.2772777
## Jan 2003  17.688261402  194.9443703
## Feb 2003   8.457541471 -174.6650335
## Mar 2003  -6.064682216 -181.7939588
## Apr 2003 -12.679261424  -43.8948802
## May 2003   1.137128364    7.5951254
## Jun 2003  14.430446826   -0.6604290
## Jul 2003  -1.165532124  -26.3328650
## Aug 2003   7.310763240  198.6583508
## Sep 2003 -17.575805112  107.7024613
## Oct 2003   0.157910786   44.6283782
## Nov 2003 -15.513333129  155.6873152
## Dec 2003   4.984927457  -27.7133829
## Jan 2004   1.060115219   24.7037296
## Feb 2004  11.140501802   51.7389588
## Mar 2004 -26.074656167 -195.7885633
## Apr 2004  -0.834601879  -30.9330235
## May 2004   9.943919495  -25.7322066
## Jun 2004   0.973985082   -4.0920322
## Jul 2004   7.565938876 -139.7692209
## Aug 2004   6.025771806  -32.5178929
## Sep 2004 -23.143818118  112.5720896
## Oct 2004  14.856040555  109.6676143
## Nov 2004   4.884692421  -11.3066952
## Dec 2004   0.077337283 -110.5767274
## Jan 2005  10.726038932  103.6583501
## Feb 2005  -7.552226346   90.2836211
## Mar 2005 -10.583560395   47.1933735
## Apr 2005  17.488239663 -107.2281352
## May 2005   6.559794423  107.4902120
## Jun 2005  -0.385241809   38.2041332
## Jul 2005   2.335189888  -85.8946737
## Aug 2005  -8.347241299  -45.3458741
## Sep 2005   2.024058608  106.8110104
## Oct 2005   3.062151573 -137.4960745
## Nov 2005  -5.269803828   -3.4702879
## Dec 2005  -5.658371644   85.8070091
## Jan 2006   1.728853886  -37.3121301
## Feb 2006  10.676148697 -101.5070526
## Mar 2006  -3.288199825    5.6047948
## Apr 2006  -1.597885233 -120.7537838
## May 2006   4.641523749  -44.3201289
## Jun 2006  -7.300623983  108.5168287
## Jul 2006  -9.535529016   62.9518050
## Aug 2006   2.097650752   55.5874481
## Sep 2006  -6.157656714  -14.0754618
## Oct 2006  -8.504228321 -220.5949948
## Nov 2006 -13.564186691   36.1038402
## Dec 2006   1.103514001  -50.6022563
## Jan 2007 -15.711526756  -46.2326766
## Feb 2007   8.256621260 -243.9248745
## Mar 2007 -14.213470997    4.7417407
## Apr 2007  -3.960475365  -11.2618981
## May 2007  -7.591677514   86.8939307
## Jun 2007   2.724016648   53.6299481
## Jul 2007   8.305270339   60.4049196
## Aug 2007   9.093746118  198.6630722
## Sep 2007   5.652710849 -106.6478829
## Oct 2007  -3.061140557  -96.1825588
## Nov 2007  -5.129955408   27.3739603
## Dec 2007  11.384312490  165.7407990
## Jan 2008   6.957235557   27.4849159
## Feb 2008  -2.920576717   77.4997439
## Mar 2008  -6.231155691   46.8634032
## Apr 2008  14.748268309   63.3486630
## May 2008  11.572517345 -107.4677334
## Jun 2008  -0.789923493   54.1952152
## Jul 2008  -5.651844253  -32.3363143
## Aug 2008   2.657484540    6.4837613
## Sep 2008   1.703845889 -115.6983941
## Oct 2008   4.186551754  -40.4069220
## Nov 2008  -1.341028669   33.8432076
## Dec 2008  18.029057568   80.2038736
## Jan 2009   3.347907315 -175.7206211
## Feb 2009  -4.860458616    2.9619396
## Mar 2009  -0.320136211  -25.6459963
## Apr 2009   9.123564990  -72.9732327
## May 2009 -20.060283865   58.4161454
## Jun 2009  20.620234375   12.3589334
## Jul 2009  -7.773773571 -142.6444879
## Aug 2009  14.234679204    2.6286082
## Sep 2009 -13.261166915  -47.6274666
## Oct 2009 -11.135598272   11.7455534
## Nov 2009  10.479581080  -67.2006165
## Dec 2009   7.800976736   85.9890431
## Jan 2010  -3.387123363  -43.7037449
## Feb 2010   5.125327757 -115.7184473
## Mar 2010   1.625854467  -52.6222751
## Apr 2010 -18.353748223  108.2198559
## May 2010  11.221637605   98.0311654
## Jun 2010 -15.302272921  104.0913040
## Jul 2010   7.990990744  105.1904709
## Aug 2010   7.243572010   41.7279790
## Sep 2010  -3.501690583  157.8949037
## Oct 2010   8.154337412  -49.8198166
## Nov 2010  -0.961026669   50.4710207
## Dec 2010  13.895581586   47.5259601
## Jan 2011  -4.632822057 -219.2269790
## Feb 2011   0.541099317  -16.7273725
## Mar 2011  30.477809857 -249.7892940
## Apr 2011  -4.384835228  107.3955911
## May 2011   1.640247981  -54.2164979
## Jun 2011  -2.921833002  -55.7382873
## Jul 2011 -14.656898644   18.3661830
## Aug 2011  -0.169942072   54.0570071
## Sep 2011   5.062161459  -25.4876020
## Oct 2011  -1.266687367 -136.2110973
## Nov 2011  -4.877009671  -72.1897568
## Dec 2011  -4.305451828 -162.2781739
## Jan 2012  -2.043896315   -2.8551048
## Feb 2012  -2.848390714 -127.9557277
## Mar 2012 -14.131972174   44.0741922
## Apr 2012  -9.521882379 -137.7309761
## May 2012  -7.354083274 -106.0828479
## Jun 2012  -6.279338576 -253.1962405
## Jul 2012   6.824609443  -23.8841675
## Aug 2012  -3.998299619   71.6692832
## Sep 2012   5.134261780   85.5081284
## Oct 2012   1.698055272  -43.7331112
## Nov 2012   9.987218965   64.1348354
## Dec 2012   0.266558354 -103.0179556
## Jan 2013  22.034300886  114.1895970
## Feb 2013  20.066816505   -0.8946223
## Mar 2013  -4.170803391   -1.4794926
## Apr 2013  17.185326878   65.5088819
## May 2013 -12.924795014 -128.4663963
## Jun 2013 -12.666714697   91.7723135
## Jul 2013  11.691635851   -1.0859766
## Aug 2013  11.696400561  131.8121367
## Sep 2013 -17.735632511   63.1771531
## Oct 2013  -6.434869448  -99.1479685
## Nov 2013   0.716947318  -42.8961616
## Dec 2013  14.972802577   28.7925118
## Jan 2014 -12.417557201  -22.7077565
## Feb 2014  20.556503859  144.5969112
## Mar 2014 -18.159070655   69.7648195
## Apr 2014  24.090818268   55.4066365
## May 2014 -15.689721832   15.9347864
## Jun 2014  -2.165316157  -16.3189430
## Jul 2014 -11.909334420    5.4885957
## Aug 2014  11.077330669  200.6735495
## Sep 2014  -1.600483077   61.0574567
## Oct 2014   9.036763750  -37.4860046
## Nov 2014   0.782286803  -67.8554326
## Dec 2014  -1.468320472 -157.4058305
## Jan 2015  -6.988097216   14.2919097
## Feb 2015  11.989069290  195.6263746
## Mar 2015  -9.706859680 -161.9399743
## Apr 2015  -1.149433397  -77.4307617
## May 2015   2.813355968  179.9657588
## Jun 2015   2.405232174  118.6968243
## Jul 2015   7.141597762  138.6246306
## Aug 2015 -19.914063875  131.5800711
## Sep 2015  20.498617257  -55.3995812
## Oct 2015   6.843212259  -39.5304416
## Nov 2015  10.550117941   12.9391465
## Dec 2015 -10.334509013  171.0296610
## Jan 2016  12.656742553   -5.9556750
## Feb 2016 -13.303401407 -130.3606612
## Mar 2016   0.269598722  -46.5006950
## Apr 2016  -8.851672682   36.1157038
## May 2016  12.395533897  184.3767344
## Jun 2016 -25.909231875   13.0823678
## Jul 2016  -5.143942160  137.6961776
## Aug 2016   0.236933179  122.1151520
## Sep 2016  -2.516082471  -28.9411557
## Oct 2016 -13.700396692 -185.7560321
## Nov 2016  -2.531945584   13.0753720
## Dec 2016   6.416601661   34.5917662
## Jan 2017  -3.396212375  -33.9502904
## Feb 2017  -0.002108138   37.8270580
## Mar 2017   1.057872552  -88.5302931
## Apr 2017  -4.552074737  173.0041388
## May 2017  -7.832728483   45.0314465
## Jun 2017   0.913232698  119.7699082
## Jul 2017 -10.595446406    0.9300345
## Aug 2017  -0.451119969  165.8137343
## Sep 2017 -10.514388107  184.4209179
## Oct 2017   9.447892378  -13.2835419
## Nov 2017  18.792540121   66.3743856
## Dec 2017  -7.060850997  129.8350037
## Jan 2018  -2.316912984  -20.9998325
## Feb 2018   1.655942175   30.4825898
## Mar 2018   4.970637106 -137.1669677
## Apr 2018  -6.604031167    9.8890768
## May 2018  -6.193192969   57.0841294
## Jun 2018   9.094415148 -121.3925222
## Jul 2018 -10.034175707   42.3537821
## Aug 2018  -4.690884802  -49.1857374
## Sep 2018  -1.869109417   68.3902581
## Oct 2018  16.176740118  -11.4934829
## Nov 2018  26.735912006 -119.5400315
## Dec 2018  14.755450217 -107.3517575
## Jan 2019  -3.237985306  131.2697803
## Feb 2019  -4.791866962   17.5526585
## Mar 2019  -7.966137675   94.6401135
## Apr 2019  13.347948865   15.4598236
## May 2019 -28.821426446   85.6812134
## Jun 2019 -14.526921644   37.9816153
## Jul 2019  -5.395192314  -11.3740450
## Aug 2019   1.469720137  178.3033072
## Sep 2019  16.890078271   66.7086924
## Oct 2019 -10.025343992   35.9620299
## Nov 2019   3.297080277  117.1104367
## Dec 2019   1.105361193  -34.6423806
## Jan 2020   7.405422230  -13.4323388
## Feb 2020   2.625440075   61.7714983
## Mar 2020  13.880799582  -67.8424958
## Apr 2020  -3.086851401  112.8910801
## May 2020   1.918177722    3.3454882
## Jun 2020  -1.659658092 -112.3963655
## Jul 2020   8.667010645  143.1999747
## Aug 2020  -1.564362696  -29.1102644
## Sep 2020  -5.955333637  -43.8024686
## Oct 2020   0.329007119    6.0512652
## Nov 2020  -1.633428436   39.0953103
## Dec 2020 -11.155930235 -111.9258917
## 
## $description
##          type coeff
## var1 Calendar    NA
## var2 Calendar    NA
mysa6 <- tramoseats(myseries, myspec6)
## Warning in tramoseats.SA_spec(myseries, myspec6): [decomposition.Model
## decomposition: Parameters cut off]
myspec7 <- tramoseats_spec(spec = "RSAfull", 
                           usrdef.varEnabled = TRUE,
                           usrdef.var = var, usrdef.varCoef = c(17,-1),
                           transform.function = "None")
mysa7 <- tramoseats(myseries, myspec7)


# Pre-specified ARMA coefficients
myspec8 <- tramoseats_spec(spec = "RSAfull",
                           arima.coefEnabled = TRUE, automdl.enabled = FALSE,
                           arima.p = 2, arima.q = 0,
                           arima.bp = 1, arima.bq = 1,
                           arima.coef = c(-0.12, -0.12, -0.3, -0.99),
                           arima.coefType = rep("Fixed", 4))
mysa8 <- tramoseats(myseries, myspec8)
## Warning in tramoseats.SA_spec(myseries, myspec8): [decomposition.Model
## decomposition: Parameters cut off]
mysa8
## RegARIMA
## y = regression model + arima (2, 1, 0, 1, 1, 1)
## Log-transformation: no
## Coefficients:
##           Estimate Std. Error
## Phi(1)       -0.12          0
## Phi(2)       -0.12          0
## BPhi(1)      -0.30          0
## BTheta(1)    -0.99          0
## 
##                Estimate Std. Error
## Mean          -0.007018      0.029
## Week days      0.704716      0.029
## Leap year      2.163501      0.675
## Easter [6]    -2.360603      0.385
## TC (4-2020)  -25.280857      2.517
## TC (3-2020)  -21.581618      2.569
## AO (5-2011)   14.219490      1.749
## LS (11-2008)  -6.225300      2.608
## 
## 
## Residual standard error: 2.712 on 350 degrees of freedom
## Log likelihood = -882.9, aic =  1784 aicc =  1784, bic(corrected for length) = 2.127
## 
## 
## 
## Decomposition
## Model
## AR :  1 - 0.120000 B - 0.120000 B^2 - 0.300000 B^12 + 0.036000 B^13 + 0.036000 B^14 
## D :  1 - B - B^12 + B^13 
## MA :  1 - 0.950000 B^12 
## 
## 
## SA
## AR :  1 - 1.024538 B - 0.011455 B^2 + 0.108545 B^3 
## D :  1 - 2.000000 B + B^2 
## MA :  1 - 1.941460 B + 0.995458 B^2 + 0.036596 B^3 - 0.098708 B^4 + 0.008921 B^5 
## Innovation variance:  0.4957156 
## 
## Trend
## AR :  1 - 0.904538 B 
## D :  1 - 2.000000 B + B^2 
## MA :  1 - 0.722193 B - 0.998833 B^2 + 0.723360 B^3 
## Innovation variance:  0.1026625 
## 
## Seasonal
## AR :  1 + 0.904538 B + 0.818189 B^2 + 0.740083 B^3 + 0.669433 B^4 + 0.605527 B^5 + 0.547723 B^6 + 0.495436 B^7 + 0.448140 B^8 + 0.405360 B^9 + 0.366664 B^10 + 0.331661 B^11 
## D :  1 + B + B^2 + B^3 + B^4 + B^5 + B^6 + B^7 + B^8 + B^9 + B^10 + B^11 
## MA :  1 + 2.915179 B + 5.617938 B^2 + 8.595374 B^3 + 11.505684 B^4 + 14.135215 B^5 + 16.348945 B^6 + 18.036965 B^7 + 19.197199 B^8 + 19.965176 B^9 + 20.301074 B^10 + 20.149549 B^11 + 19.110304 B^12 + 17.206569 B^13 + 14.558551 B^14 + 11.650924 B^15 + 8.806927 B^16 + 6.228869 B^17 + 4.044510 B^18 + 2.357558 B^19 + 1.170033 B^20 + 0.354583 B^21 - 0.052292 B^22 
## Innovation variance:  0.2584115 
## 
## Transitory
## AR :  1 - 0.120000 B - 0.120000 B^2 
## MA :  1 + 1.287572 B + 0.287572 B^2 
## Innovation variance:  9.66767e-06 
## 
## Irregular
## Innovation variance:  0.1228651 
## 
## 
## 
## Final
## Last observed values
##              y        sa        t          s            i
## Jan 2020 101.0 104.26082 104.1042  -3.260821   0.15661216
## Feb 2020 100.1 104.61371 104.5530  -4.513714   0.06076253
## Mar 2020  91.8  83.22384 104.8133   8.576159 -21.58942879
## Apr 2020  66.7  64.54936 105.1877   2.150645 -40.63830016
## May 2020  73.7  77.68315 105.6408  -3.983146 -27.95763593
## Jun 2020  98.2  85.98531 105.6977  12.214693 -19.71243272
## Jul 2020  97.4  91.30785 105.6878   6.092154 -14.37997103
## Aug 2020  71.7  96.93855 105.3429 -25.238546  -8.40432490
## Sep 2020 104.7  96.44550 104.0342   8.254501  -7.58868184
## Oct 2020 106.7  97.99258 103.1705   8.707420  -5.17788550
## Nov 2020 101.6 100.37821 102.7766   1.221785  -2.39834446
## Dec 2020  96.6  98.88800 101.7659  -2.287995  -2.87795452
## 
## Forecasts:
##                y_f     sa_f       t_f         s_f         i_f
## Jan 2021  90.45630 99.25146 100.88131  -8.3529406 -1.62984885
## Feb 2021  92.96291 99.26414 100.40502  -5.6858753 -1.14087970
## Mar 2021 107.94414 99.16721  99.96582   9.4108234 -0.79860872
## Apr 2021 100.06082 99.00111  99.56013   1.7251675 -0.55902344
## May 2021  92.32683 98.79338  99.18469  -5.8047774 -0.39131514
## Jun 2021 109.76210 98.56264  98.83656  11.5896516 -0.27391913
## Jul 2021  99.28583 98.32134  98.51308   1.7410215 -0.19174293
## Aug 2021  72.73390 98.07763  98.21185 -24.3850120 -0.13421991
## Sep 2021 105.42789 97.83673  97.93068   8.1237153 -0.09395290
## Oct 2021 103.20722 97.60185  97.66762   6.1153709 -0.06576632
## Nov 2021 101.03104 97.37483  97.42087   4.2605212 -0.04603637
## Dec 2021  96.56590 97.15661  97.18883  -0.4705564 -0.03222456
## 
## 
## Diagnostics
##  Relative contribution of the components to the stationary
##  portion of the variance in the original series,
##  after the removal of the long term trend 
##  Trend computed by Hodrick-Prescott filter (cycle length = 8.0 years)
##            Component
##  Cycle         3.408
##  Seasonal     72.835
##  Irregular     0.303
##  TD & Hol.     3.240
##  Others       18.296
##  Total        98.081
## 
##  Combined test in the entire series 
##  Non parametric tests for stable seasonality
##                                                           P.value
##    Kruskall-Wallis test                                      0.000
##    Test for the presence of seasonality assuming stability   0.000
##    Evolutive seasonality test                                0.072
##  
##  Identifiable seasonality present
## 
##  Residual seasonality tests 
##                                       P.value
##  qs test on sa                          1.000
##  qs test on i                           1.000
##  f-test on sa (seasonal dummies)        1.000
##  f-test on i (seasonal dummies)         1.000
##  Residual seasonality (entire series)   1.000
##  Residual seasonality (last 3 years)    0.881
##  f-test on sa (td)                      0.008
##  f-test on i (td)                       0.052
## 
## 
## Additional output variables
s_arimaCoef(myspec8)
s_arimaCoef(mysa8)

x13

Seasonal Adjustment with X13-ARIMA

Functions to estimate the seasonally adjusted series (sa) with the X13-ARIMA method. This is achieved by decomposing the time series (y) into the trend-cycle (t), the seasonal component (s) and the irregular component (i). The final seasonally adjusted series shall be free of seasonal and calendar-related movements.

The first step of a seasonal adjustment consist in pre-adjusting the time series. This is done by removing its deterministic effects, using a regression model with ARIMA noise (RegARIMA, see: regarima).

In the second part, the pre-adjusted series is decomposed into the following components: trend-cycle (t), seasonal component (s) and irregular component (i). The decomposition can be: additive (y = t + s + i) or multiplicative (y = t ∗ s ∗ i).

The final seasonally adjusted series (sa) shall be free of seasonal and calendar-related movements. In the X13 method, the X11 algorithm (second step) decomposes the time series by means of linear filters.

###RSA - X11 |Identifier | Log/level detection | Outliers detection | Calendar effects | ARIMA| |———-|—————-|—————–|—————–|—————| |RSA0 | NA | NA | NA | Airline(+mean)| |RSA1 | automatic | AO/LS/TC | NA | Airline(+mean)| |RSA2c | automatic | AO/LS/TC | 2 td vars + Easter | Airline(+mean)| |RSA3 | automatic | AO/LS/TC | NA | automatic| |RSA4c | automatic | AO/LS/TC | 2 td vars + Easter | automatic| |RSA5c | automatic | AO/LS/TC | 7 td vars + Easter | automatic| |X11 | NA | NA | NA | NA|

myseries <- ipi_c_eu[, "FR"]
mysa <- x13(myseries, spec = "RSA5c")
myspec1 <- x13_spec(mysa, 
                    tradingdays.option = "WorkingDays",
                    usrdef.outliersEnabled = TRUE,
                    usrdef.outliersType = c("LS","AO"),
                    usrdef.outliersDate = c("2008-10-01", "2002-01-01"),
                    usrdef.outliersCoef = c(36, 14),
                    transform.function = "None")
mysa1 <- x13(myseries, myspec1)
mysa1
## RegARIMA
## y = regression model + arima (2, 1, 1, 0, 1, 1)
## Log-transformation: no
## Coefficients:
##           Estimate Std. Error
## Phi(1)     0.07097      0.113
## Phi(2)     0.18458      0.076
## Theta(1)  -0.49960      0.109
## BTheta(1) -0.67159      0.042
## 
##              Estimate Std. Error
## Week days      0.7006      0.032
## Leap year      2.1304      0.706
## Easter [1]    -2.5164      0.449
## AO (9-2008)   31.9754      2.915
## LS (9-2008)  -57.0469      2.643
## TC (4-2020)  -35.7315      2.120
## AO (3-2020)  -21.1268      2.143
## AO (5-2011)   13.1096      1.831
## TC (9-2008)   23.4429      3.992
## TC (12-2001) -20.7847      2.923
## AO (12-2001)  17.4012      2.965
## TC (2-2002)   10.9354      1.947
## 
## Fixed outliers: 
##              Coefficients
## LS (10-2008)           36
## AO (1-2002)            14
## 
## 
## Residual standard error: 2.203 on 342 degrees of freedom
## Log likelihood = -796.8, aic =  1628 aicc =  1629, bic(corrected for length) = 1.842
## 
## 
## 
## Decomposition
##  Monitoring and Quality Assessment Statistics:  
##       M stats
## M(1)    0.123
## M(2)    0.077
## M(3)    1.090
## M(4)    0.462
## M(5)    1.076
## M(6)    0.012
## M(7)    0.084
## M(8)    0.239
## M(9)    0.063
## M(10)   0.261
## M(11)   0.247
## Q       0.343
## Q-M2    0.376
## 
## Final filters: 
## Seasonal filter:  3x5
## Trend filter:  13 terms Henderson moving average
## 
## 
## Final
## Last observed values
##              y        sa        t           s           i
## Jan 2020 101.0 102.87962 103.0467  -1.8796156  -0.1670595
## Feb 2020 100.1 103.69266 103.0695  -3.5926626   0.6231576
## Mar 2020  91.8  82.71191 103.2806   9.0880860 -20.5686997
## Apr 2020  66.7  66.50454 103.7148   0.1954637 -37.2102444
## May 2020  73.7  79.26051 104.1579  -5.5605127 -24.8974169
## Jun 2020  98.2  87.33656 104.4693  10.8634372 -17.1326924
## Jul 2020  97.4  92.25854 104.5607   5.1414577 -12.3021598
## Aug 2020  71.7  97.61259 104.3399 -25.9125935  -6.7273564
## Sep 2020 104.7  97.72915 103.8344   6.9708497  -6.1052450
## Oct 2020 106.7  97.88023 103.1893   8.8197721  -5.3090643
## Nov 2020 101.6 100.02183 102.6450   1.5781686  -2.6231898
## Dec 2020  96.6  99.57395 102.3812  -2.9739462  -2.8072744
## 
## Forecasts:
##                y_f     sa_f      t_f        s_f        i_f
## Jan 2021  94.18436 101.0457 102.3450  -6.861337 -1.2993559
## Feb 2021  97.79239 101.6105 102.3926  -3.818145 -0.7820417
## Mar 2021 113.57431 102.0601 102.3848  11.514239 -0.3247224
## Apr 2021 102.35339 102.1397 102.2602   0.213698 -0.1205157
## May 2021  96.03579 101.5178 102.0894  -5.482029 -0.5715363
## Jun 2021 112.11607 101.1530 101.9455  10.963039 -0.7924771
## Jul 2021 104.27431 101.4573 101.8906   2.817029 -0.4332705
## Aug 2021  78.93779 102.3316 101.9760 -23.393812  0.3556267
## Sep 2021 109.38106 102.3208 102.1412   7.060299  0.1795151
## Oct 2021 108.13045 101.7976 102.3181   6.332810 -0.5205026
## Nov 2021 106.18847 102.3720 102.4888   3.816423 -0.1167707
## Dec 2021  99.71043 102.9386 102.6489  -3.228124  0.2896785
## 
## 
## Diagnostics
##  Relative contribution of the components to the stationary
##  portion of the variance in the original series,
##  after the removal of the long term trend 
##  Trend computed by Hodrick-Prescott filter (cycle length = 8.0 years)
##            Component
##  Cycle         1.672
##  Seasonal     42.185
##  Irregular     0.768
##  TD & Hol.     1.828
##  Others       55.698
##  Total       102.151
## 
##  Combined test in the entire series 
##  Non parametric tests for stable seasonality
##                                                           P.value
##    Kruskall-Wallis test                                      0.000
##    Test for the presence of seasonality assuming stability   0.000
##    Evolutive seasonality test                                0.022
##  
##  Identifiable seasonality present
## 
##  Residual seasonality tests 
##                                       P.value
##  qs test on sa                          1.000
##  qs test on i                           0.835
##  f-test on sa (seasonal dummies)        0.682
##  f-test on i (seasonal dummies)         0.460
##  Residual seasonality (entire series)   0.421
##  Residual seasonality (last 3 years)    0.948
##  f-test on sa (td)                      0.075
##  f-test on i (td)                       0.329
## 
## 
## Additional output variables
summary(mysa1$regarima)
## y = regression model + arima (2, 1, 1, 0, 1, 1)
## 
## Model: RegARIMA - X13
## Estimation span: from 1-1990 to 12-2020
## Log-transformation: no
## Regression model: no mean, trading days effect(2), leap year effect, Easter effect, outliers(9)
## 
## Coefficients:
## ARIMA: 
##           Estimate Std. Error  T-stat Pr(>|t|)    
## Phi(1)     0.07097    0.11299   0.628   0.5303    
## Phi(2)     0.18458    0.07587   2.433   0.0155 *  
## Theta(1)  -0.49960    0.10887  -4.589 6.17e-06 ***
## BTheta(1) -0.67159    0.04206 -15.968  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Regression model: 
##               Estimate Std. Error  T-stat Pr(>|t|)    
## Week days      0.70061    0.03198  21.905  < 2e-16 ***
## Leap year      2.13040    0.70573   3.019  0.00272 ** 
## Easter [1]    -2.51639    0.44884  -5.606 4.13e-08 ***
## AO (9-2008)   31.97543    2.91519  10.969  < 2e-16 ***
## LS (9-2008)  -57.04686    2.64339 -21.581  < 2e-16 ***
## TC (4-2020)  -35.73152    2.11967 -16.857  < 2e-16 ***
## AO (3-2020)  -21.12683    2.14309  -9.858  < 2e-16 ***
## AO (5-2011)   13.10957    1.83067   7.161 4.56e-12 ***
## TC (9-2008)   23.44294    3.99228   5.872 9.81e-09 ***
## TC (12-2001) -20.78475    2.92315  -7.110 6.30e-12 ***
## AO (12-2001)  17.40120    2.96520   5.868 1.00e-08 ***
## TC (2-2002)   10.93541    1.94738   5.615 3.93e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##              Coefficients
## LS (10-2008)           36
## AO (1-2002)            14
## 
## 
## Residual standard error: 2.203 on 342 degrees of freedom
## Log likelihood = -796.8, aic =  1628, aicc =  1629, bic(corrected for length) = 1.842
myspec2 <- x13_spec(mysa, 
                    automdl.enabled =FALSE,
                    arima.coefEnabled = TRUE,
                    arima.p = 1, arima.q = 1, arima.bp = 0, arima.bq = 1,
                    arima.coef = c(-0.8, -0.6, 0),
                    arima.coefType = c(rep("Fixed", 2), "Undefined"))
s_arimaCoef(myspec2)
mysa2 <- x13(myseries, myspec2,
userdefined = c("decomposition.d18", "decomposition.d19"))
mysa2
## RegARIMA
## y = regression model + arima (1, 1, 1, 0, 1, 1)
## Log-transformation: yes
## Coefficients:
##           Estimate Std. Error
## Phi(1)     -0.8000       0.00
## Theta(1)   -0.6000       0.00
## BTheta(1)  -0.6977       0.04
## 
##              Estimate Std. Error
## Monday       0.006317      0.002
## Tuesday      0.007824      0.002
## Wednesday    0.010528      0.002
## Thursday     0.001857      0.002
## Friday       0.010099      0.002
## Saturday    -0.018439      0.002
## Easter [1]  -0.020593      0.004
## TC (4-2020) -0.475720      0.031
## AO (3-2020) -0.213355      0.023
## AO (5-2011)  0.143705      0.016
## 
## 
## Residual standard error: 0.0256 on 347 degrees of freedom
## Log likelihood = 802.3, aic =  1733 aicc =  1734, bic(corrected for length) = -7.15
## 
## 
## 
## Decomposition
##  Monitoring and Quality Assessment Statistics:  
##       M stats
## M(1)    0.097
## M(2)    0.052
## M(3)    0.750
## M(4)    0.749
## M(5)    0.731
## M(6)    0.126
## M(7)    0.075
## M(8)    0.220
## M(9)    0.075
## M(10)   0.293
## M(11)   0.281
## Q       0.300
## Q-M2    0.331
## 
## Final filters: 
## Seasonal filter:  3x5
## Trend filter:  13 terms Henderson moving average
## 
## 
## Final
## Last observed values
##              y        sa        t         s         i
## Jan 2020 101.0 103.50059 103.4716 0.9758398 1.0002804
## Feb 2020 100.1 103.70789 104.1959 0.9652110 0.9953168
## Mar 2020  91.8  85.02419 105.2353 1.0796927 0.8079439
## Apr 2020  66.7  66.06576 106.3700 1.0096002 0.6210940
## May 2020  73.7  77.29646 107.2332 0.9534719 0.7208256
## Jun 2020  98.2  88.21419 107.6348 1.1131996 0.8195693
## Jul 2020  97.4  92.04371 107.5406 1.0581929 0.8558971
## Aug 2020  71.7  95.53300 106.9592 0.7505260 0.8931720
## Sep 2020 104.7  97.32774 105.9849 1.0757467 0.9183169
## Oct 2020 106.7  98.74148 104.7928 1.0805996 0.9422542
## Nov 2020 101.6 100.23569 103.5604 1.0136110 0.9678964
## Dec 2020  96.6  99.45166 102.3889 0.9713262 0.9713127
## 
## Forecasts:
##                y_f     sa_f       t_f       s_f       i_f
## Jan 2021  91.86627 99.03608 101.33234 0.9276040 0.9773393
## Feb 2021  93.73814 98.76312 100.39814 0.9491209 0.9837146
## Mar 2021 109.97904 99.04192  99.55589 1.1104292 0.9948373
## Apr 2021  99.51314 98.51411  98.84092 1.0101410 0.9966935
## May 2021  92.44138 97.26558  98.27297 0.9504018 0.9897491
## Jun 2021 109.51917 97.80126  97.82297 1.1198135 0.9997780
## Jul 2021  99.72232 96.85484  97.49522 1.0296059 0.9934317
## Aug 2021  74.93973 97.28720  97.30419 0.7702938 0.9998254
## Sep 2021 104.15955 97.30940  97.21500 1.0703955 1.0009711
## Oct 2021 102.57254 96.84676  97.16553 1.0591221 0.9967193
## Nov 2021 100.68100 96.97009  97.14932 1.0382686 0.9981552
## Dec 2021  94.63045 97.42206  97.13060 0.9713452 1.0030007
## 
## 
## Diagnostics
##  Relative contribution of the components to the stationary
##  portion of the variance in the original series,
##  after the removal of the long term trend 
##  Trend computed by Hodrick-Prescott filter (cycle length = 8.0 years)
##            Component
##  Cycle         5.183
##  Seasonal     82.105
##  Irregular     1.148
##  TD & Hol.     3.365
##  Others       10.592
##  Total       102.393
## 
##  Combined test in the entire series 
##  Non parametric tests for stable seasonality
##                                                           P.value
##    Kruskall-Wallis test                                      0.000
##    Test for the presence of seasonality assuming stability   0.000
##    Evolutive seasonality test                                0.406
##  
##  Identifiable seasonality present
## 
##  Residual seasonality tests 
##                                       P.value
##  qs test on sa                          1.000
##  qs test on i                           0.939
##  f-test on sa (seasonal dummies)        0.990
##  f-test on i (seasonal dummies)         0.972
##  Residual seasonality (entire series)   0.989
##  Residual seasonality (last 3 years)    0.996
##  f-test on sa (td)                      0.994
##  f-test on i (td)                       0.959
## 
## 
## Additional output variables
## Names of additional variables (2):
## decomposition.d18, decomposition.d19
plot(mysa2)

plot(mysa2$regarima)

plot(mysa2$decomposition)

x13_spec

X-13ARIMA model specification, SA/X13

myseries <- ipi_c_eu[, "FR"]
plot(myseries)

#layout(matrix(1:6,6,1))
myspec1 <- x13_spec(spec = "RSA5c")
myreg1 <- x13(myseries, spec = myspec1)
layout(matrix(1:2,2,1))
plot(myreg1)

# To modify a pre-specified model specification
myspec2 <- x13_spec(spec = "RSA5c", tradingdays.option = "WorkingDays")
myreg2 <- x13(myseries, spec = myspec2)
plot(myreg2)

# To modify the model specification of a "X13" object
myspec3 <- x13_spec(myreg1, tradingdays.option = "WorkingDays")
myreg3 <- x13(myseries, myspec3)
plot(myreg3)

# To modify the model specification of a "X13_spec" object
myspec4 <- x13_spec(myspec1, tradingdays.option = "WorkingDays")
myreg4 <- x13(myseries, myspec4)
plot(myreg4)

# Pre-specified outliers
myspec1 <- x13_spec(spec = "RSA5c", usrdef.outliersEnabled = TRUE,
  usrdef.outliersType = c("LS", "AO"),
  usrdef.outliersDate = c("2008-10-01", "2002-01-01"),
  usrdef.outliersCoef = c(36, 14),
  transform.function = "None")
myreg1 <- x13(myseries, myspec1)
plot(myreg1)

#s_preOut(myreg1)
summary(myreg1)
##               Length Class             Mode
## regarima      9      regarima          list
## decomposition 6      decomposition_X11 list
## final         2      final             list
## diagnostics   3      diagnostics       list
## user_defined  0      user_defined      list
# User-defined calendar regressors
var1 <- ts(rnorm(length(myseries))*10, start = start(myseries), frequency = 12)
var2 <- ts(rnorm(length(myseries))*100, start = start(myseries), frequency = 12)
var <- ts.union(var1, var2)
myspec1 <- x13_spec(spec = "RSA5c", 
                    tradingdays.option = "UserDefined",
                    usrdef.varEnabled = TRUE,
                    usrdef.var = var,
                    usrdef.varType = c("Calendar", "Calendar"))
## Warning: With tradingdays.option = "UserDefined", the parameters tradingdays.autoadjust, tradingdays.leapyear and tradingdays.stocktd are ignored.
myreg1 <- x13(myseries, myspec1)
myreg1
## RegARIMA
## y = regression model + arima (3, 1, 1, 0, 1, 1)
## Log-transformation: no
## Coefficients:
##           Estimate Std. Error
## Phi(1)      0.3595      0.209
## Phi(2)      0.1177      0.210
## Phi(3)     -0.3259      0.155
## Theta(1)   -0.6771      0.192
## BTheta(1)  -0.7343      0.039
## 
##              Estimate Std. Error
## Easter [8]     -2.891      0.686
## TC (4-2020)   -36.231      2.021
## AO (3-2020)   -22.969      2.463
## LS (11-2008)  -12.368      1.610
## AO (5-2011)     9.825      2.265
## TC (2-2009)    -8.128      1.857
## 
## 
## Residual standard error: 2.839 on 347 degrees of freedom
## Log likelihood = -889.4, aic =  1803 aicc =  1804, bic(corrected for length) = 2.267
## 
## 
## 
## Decomposition
##  Monitoring and Quality Assessment Statistics:  
##       M stats
## M(1)    0.376
## M(2)    0.310
## M(3)    3.000
## M(4)    0.733
## M(5)    2.377
## M(6)    0.514
## M(7)    0.116
## M(8)    0.294
## M(9)    0.074
## M(10)   0.369
## M(11)   0.334
## Q       0.818
## Q-M2    0.881
## 
## Final filters: 
## Seasonal filter:  3x5
## Trend filter:  23-Henderson
## 
## 
## Final
## Last observed values
##              y        sa        t          s             i
## Jan 2020 101.0 103.76443 103.7718  -2.764432  -0.007371637
## Feb 2020 100.1 104.34515 103.9252  -4.245147   0.419965250
## Mar 2020  91.8  81.04300 104.1168  10.757002 -23.073821166
## Apr 2020  66.7  68.07471 104.2936  -1.374714 -36.218923904
## May 2020  73.7  77.34542 104.4050  -3.645424 -27.059534745
## Jun 2020  98.2  88.68292 104.4313   9.517080 -15.748342655
## Jul 2020  97.4  93.46921 104.3778   3.930791 -10.908580688
## Aug 2020  71.7  95.43752 104.2570 -23.737519  -8.819459329
## Sep 2020 104.7  99.17267 104.0850   5.527329  -4.912314376
## Oct 2020 106.7  97.12864 103.8669   9.571357  -6.738282414
## Nov 2020 101.6  99.69487 103.6276   1.905134  -3.932784061
## Dec 2020  96.6 102.36060 103.4003  -5.760595  -1.039736263
## 
## Forecasts:
##                y_f     sa_f      t_f         s_f         i_f
## Jan 2021  98.44952 101.2056 103.1901  -2.7560785 -1.98454698
## Feb 2021  98.43821 102.5471 103.0165  -4.1088538 -0.46944312
## Mar 2021 110.75460 101.9734 102.8973   8.7811716 -0.92383422
## Apr 2021 103.71542 102.9016 102.8411   0.8138272  0.06051994
## May 2021  99.53055 103.1863 102.8510  -3.6557369  0.33528360
## Jun 2021 111.31381 101.6749 102.8754   9.6388933 -1.20051449
## Jul 2021 105.69802 101.5389 102.9077   4.1591091 -1.36882965
## Aug 2021  79.42133 103.3872 102.9666 -23.9658420  0.42058783
## Sep 2021 108.59095 102.9687 103.0586   5.6222373 -0.08983556
## Oct 2021 112.00799 102.4761 103.1532   9.5318659 -0.67704911
## Nov 2021 105.36088 103.8747 103.2467   1.4862299  0.62793860
## Dec 2021  98.66941 104.3502 103.4522  -5.6808324  0.89800432
## 
## 
## Diagnostics
##  Relative contribution of the components to the stationary
##  portion of the variance in the original series,
##  after the removal of the long term trend 
##  Trend computed by Hodrick-Prescott filter (cycle length = 8.0 years)
##            Component
##  Cycle         1.963
##  Seasonal     59.842
##  Irregular     3.416
##  TD & Hol.     0.172
##  Others       34.046
##  Total        99.439
## 
##  Combined test in the entire series 
##  Non parametric tests for stable seasonality
##                                                           P.value
##    Kruskall-Wallis test                                      0.000
##    Test for the presence of seasonality assuming stability   0.000
##    Evolutive seasonality test                                0.269
##  
##  Identifiable seasonality present
## 
##  Residual seasonality tests 
##                                       P.value
##  qs test on sa                          0.000
##  qs test on i                           0.002
##  f-test on sa (seasonal dummies)        0.813
##  f-test on i (seasonal dummies)         0.754
##  Residual seasonality (entire series)   0.568
##  Residual seasonality (last 3 years)    1.000
##  f-test on sa (td)                      0.000
##  f-test on i (td)                       0.000
## 
## 
## Additional output variables
myspec2 <- x13_spec(spec = "RSA5c", usrdef.varEnabled = TRUE,
                    usrdef.var = var1, usrdef.varCoef = 2,
                    transform.function = "None")
myreg2 <- x13(myseries, myspec2)
#s_preVar(myreg2)
plot(myreg2)

# Pre-specified ARMA coefficients
myspec1 <- x13_spec(spec = "RSA5c", 
                    automdl.enabled = FALSE,
                    arima.p = 1, arima.q = 1, arima.bp = 0, arima.bq = 1,
                    arima.coefEnabled = TRUE, arima.coef = c(-0.8, -0.6, 0),
                    arima.coefType = c(rep("Fixed", 2), "Undefined"))
#s_arimaCoef(myspec1)
myreg1 <- x13(myseries, myspec1)
plot(myreg1)

# To define a seasonal filter
myspec1 <- x13_spec("RSA5c", x11.seasonalma = rep("S3X1", 12))
mysa1 <- x13(myseries, myspec1)
plot(mysa1)