## Not assuming equal variances
oneway.test(extra ~ group, data = sleep, var.equal = T)
##
## One-way analysis of means
##
## data: extra and group
## F = 3.4626, num df = 1, denom df = 18, p-value = 0.07919
## Assuming equal variances
oneway.test(extra ~ group, data = sleep, var.equal = T)
##
## One-way analysis of means
##
## data: extra and group
## F = 3.4626, num df = 1, denom df = 18, p-value = 0.07919
## which gives the same result as
str(sleep)
## 'data.frame': 20 obs. of 3 variables:
## $ extra: num 0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0 2 ...
## $ group: Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $ ID : Factor w/ 10 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
anova(lm(extra ~ group, data = sleep))
## Analysis of Variance Table
##
## Response: extra
## Df Sum Sq Mean Sq F value Pr(>F)
## group 1 12.482 12.4820 3.4626 0.07919 .
## Residuals 18 64.886 3.6048
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
data_1 <- summary(aov(extra ~ group, data = sleep))
data_1
## Df Sum Sq Mean Sq F value Pr(>F)
## group 1 12.48 12.482 3.463 0.0792 .
## Residuals 18 64.89 3.605
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
t.test(sleep$extra[sleep$group ==1], sleep$extra[sleep$group ==2], var.equal = T)
##
## Two Sample t-test
##
## data: sleep$extra[sleep$group == 1] and sleep$extra[sleep$group == 2]
## t = -1.8608, df = 18, p-value = 0.07919
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.363874 0.203874
## sample estimates:
## mean of x mean of y
## 0.75 2.33
#####################
class(data_1)
## [1] "summary.aov" "listof"
data_3 <- data_1[[1]]
data_3$`Pr(>F)`
## [1] 0.07918671 NA
data_2 <- unlist(data_1)
class(data_2)
## [1] "numeric"
data_2
## Df1 Df2 Sum Sq1 Sum Sq2 Mean Sq1 Mean Sq2
## 1.00000000 18.00000000 12.48200000 64.88600000 12.48200000 3.60477778
## F value1 F value2 Pr(>F)1 Pr(>F)2
## 3.46262676 NA 0.07918671 NA
data_3 <- data.frame(data_2)
data_3
## data_2
## Df1 1.00000000
## Df2 18.00000000
## Sum Sq1 12.48200000
## Sum Sq2 64.88600000
## Mean Sq1 12.48200000
## Mean Sq2 3.60477778
## F value1 3.46262676
## F value2 NA
## Pr(>F)1 0.07918671
## Pr(>F)2 NA