This is a pareto-front components calculation for 3 tomatoes experienced IAA and salt treatments on plate. Alpha and distance components data calculated by Arjun from 20220406_RSA_M248M058LA1511_IAA_100mM_Salt experiment done on December 2021.Because Low and High IAA had similar effect on root system architecture, I only traced and included high IAA here for this dataset. Also for d5, there is no LR so this date was omitted from pareto calculation.

getwd()
## [1] "C:/Users/Julkowska Lab/Desktop/R codes by Maryam/20220519_IAA_pareto-front_components_1st_experiment"
setwd("C:/Users/Julkowska Lab/Desktop/R codes by Maryam/20220519_IAA_pareto-front_components_1st_experiment")
list.files(pattern = (".csv"))
## [1] "Iaa pareto-front -modified for R.csv"
pareto_location<- read.csv("Iaa pareto-front -modified for R.csv")
pareto_location
colnames(pareto_location)[1] <- "Accessions"
pareto_location$Accessions <- gsub("58", "M058", pareto_location$Accessions)
pareto_location$Accessions <- gsub("248", "M248", pareto_location$Accessions)
pareto_location$Accessions <- gsub("1511", "LA1511", pareto_location$Accessions)

pareto_location$Condition.all <- paste(pareto_location$Condition, pareto_location$Condition2, sep="_")
pareto_location
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.5
library(ggpubr)
## Warning: package 'ggpubr' was built under R version 4.0.5
library(multcompView)
## Warning: package 'multcompView' was built under R version 4.0.5
pareto_location$All.ID <- paste(pareto_location$Accessions, pareto_location$Condition.all, pareto_location$Day, sep="_")
pareto_location
pareto_location$Day <- as.numeric(as.character(pareto_location$Day))
pareto_loc2 <- subset(pareto_location, pareto_location$Day > 5)
aov(pareto.front.scaling.location ~ All.ID, data = pareto_loc2)
## Call:
##    aov(formula = pareto.front.scaling.location ~ All.ID, data = pareto_loc2)
## 
## Terms:
##                   All.ID Residuals
## Sum of Squares  1.106899  1.629386
## Deg. of Freedom       11       100
## 
## Residual standard error: 0.1276474
## Estimated effects may be unbalanced
Output <- TukeyHSD(aov(pareto.front.scaling.location ~ All.ID, data = pareto_loc2))
Output
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = pareto.front.scaling.location ~ All.ID, data = pareto_loc2)
## 
## $All.ID
##                                            diff          lwr          upr
## LA1511_C_noiaa_9-LA1511_C_iaa_9   -0.0630000000 -0.296993474  0.170993474
## LA1511_S_iaa_9-LA1511_C_iaa_9      0.0058888889 -0.190401332  0.202179110
## LA1511_S_noiaa_9-LA1511_C_iaa_9   -0.0792500000 -0.281894293  0.123394293
## M058_C_iaa_9-LA1511_C_iaa_9        0.0450000000 -0.146054872  0.236054872
## M058_C_noiaa_9-LA1511_C_iaa_9      0.1730000000 -0.018054872  0.364054872
## M058_S_iaa_9-LA1511_C_iaa_9        0.0170000000 -0.174054872  0.208054872
## M058_S_noiaa_9-LA1511_C_iaa_9      0.2430000000  0.051945128  0.434054872
## M248_C_iaa_9-LA1511_C_iaa_9        0.1360000000 -0.055054872  0.327054872
## M248_C_noiaa_9-LA1511_C_iaa_9      0.1900000000 -0.001054872  0.381054872
## M248_S_iaa_9-LA1511_C_iaa_9        0.0050000000 -0.186054872  0.196054872
## M248_S_noiaa_9-LA1511_C_iaa_9      0.1670000000 -0.024054872  0.358054872
## LA1511_S_iaa_9-LA1511_C_noiaa_9    0.0688888889 -0.169398402  0.307176180
## LA1511_S_noiaa_9-LA1511_C_noiaa_9 -0.0162500000 -0.259798130  0.227298130
## M058_C_iaa_9-LA1511_C_noiaa_9      0.1080000000 -0.125993474  0.341993474
## M058_C_noiaa_9-LA1511_C_noiaa_9    0.2360000000  0.002006526  0.469993474
## M058_S_iaa_9-LA1511_C_noiaa_9      0.0800000000 -0.153993474  0.313993474
## M058_S_noiaa_9-LA1511_C_noiaa_9    0.3060000000  0.072006526  0.539993474
## M248_C_iaa_9-LA1511_C_noiaa_9      0.1990000000 -0.034993474  0.432993474
## M248_C_noiaa_9-LA1511_C_noiaa_9    0.2530000000  0.019006526  0.486993474
## M248_S_iaa_9-LA1511_C_noiaa_9      0.0680000000 -0.165993474  0.301993474
## M248_S_noiaa_9-LA1511_C_noiaa_9    0.2300000000 -0.003993474  0.463993474
## LA1511_S_noiaa_9-LA1511_S_iaa_9   -0.0851388889 -0.292726452  0.122448674
## M058_C_iaa_9-LA1511_S_iaa_9        0.0391111111 -0.157179110  0.235401332
## M058_C_noiaa_9-LA1511_S_iaa_9      0.1671111111 -0.029179110  0.363401332
## M058_S_iaa_9-LA1511_S_iaa_9        0.0111111111 -0.185179110  0.207401332
## M058_S_noiaa_9-LA1511_S_iaa_9      0.2371111111  0.040820890  0.433401332
## M248_C_iaa_9-LA1511_S_iaa_9        0.1301111111 -0.066179110  0.326401332
## M248_C_noiaa_9-LA1511_S_iaa_9      0.1841111111 -0.012179110  0.380401332
## M248_S_iaa_9-LA1511_S_iaa_9       -0.0008888889 -0.197179110  0.195401332
## M248_S_noiaa_9-LA1511_S_iaa_9      0.1611111111 -0.035179110  0.357401332
## M058_C_iaa_9-LA1511_S_noiaa_9      0.1242500000 -0.078394293  0.326894293
## M058_C_noiaa_9-LA1511_S_noiaa_9    0.2522500000  0.049605707  0.454894293
## M058_S_iaa_9-LA1511_S_noiaa_9      0.0962500000 -0.106394293  0.298894293
## M058_S_noiaa_9-LA1511_S_noiaa_9    0.3222500000  0.119605707  0.524894293
## M248_C_iaa_9-LA1511_S_noiaa_9      0.2152500000  0.012605707  0.417894293
## M248_C_noiaa_9-LA1511_S_noiaa_9    0.2692500000  0.066605707  0.471894293
## M248_S_iaa_9-LA1511_S_noiaa_9      0.0842500000 -0.118394293  0.286894293
## M248_S_noiaa_9-LA1511_S_noiaa_9    0.2462500000  0.043605707  0.448894293
## M058_C_noiaa_9-M058_C_iaa_9        0.1280000000 -0.063054872  0.319054872
## M058_S_iaa_9-M058_C_iaa_9         -0.0280000000 -0.219054872  0.163054872
## M058_S_noiaa_9-M058_C_iaa_9        0.1980000000  0.006945128  0.389054872
## M248_C_iaa_9-M058_C_iaa_9          0.0910000000 -0.100054872  0.282054872
## M248_C_noiaa_9-M058_C_iaa_9        0.1450000000 -0.046054872  0.336054872
## M248_S_iaa_9-M058_C_iaa_9         -0.0400000000 -0.231054872  0.151054872
## M248_S_noiaa_9-M058_C_iaa_9        0.1220000000 -0.069054872  0.313054872
## M058_S_iaa_9-M058_C_noiaa_9       -0.1560000000 -0.347054872  0.035054872
## M058_S_noiaa_9-M058_C_noiaa_9      0.0700000000 -0.121054872  0.261054872
## M248_C_iaa_9-M058_C_noiaa_9       -0.0370000000 -0.228054872  0.154054872
## M248_C_noiaa_9-M058_C_noiaa_9      0.0170000000 -0.174054872  0.208054872
## M248_S_iaa_9-M058_C_noiaa_9       -0.1680000000 -0.359054872  0.023054872
## M248_S_noiaa_9-M058_C_noiaa_9     -0.0060000000 -0.197054872  0.185054872
## M058_S_noiaa_9-M058_S_iaa_9        0.2260000000  0.034945128  0.417054872
## M248_C_iaa_9-M058_S_iaa_9          0.1190000000 -0.072054872  0.310054872
## M248_C_noiaa_9-M058_S_iaa_9        0.1730000000 -0.018054872  0.364054872
## M248_S_iaa_9-M058_S_iaa_9         -0.0120000000 -0.203054872  0.179054872
## M248_S_noiaa_9-M058_S_iaa_9        0.1500000000 -0.041054872  0.341054872
## M248_C_iaa_9-M058_S_noiaa_9       -0.1070000000 -0.298054872  0.084054872
## M248_C_noiaa_9-M058_S_noiaa_9     -0.0530000000 -0.244054872  0.138054872
## M248_S_iaa_9-M058_S_noiaa_9       -0.2380000000 -0.429054872 -0.046945128
## M248_S_noiaa_9-M058_S_noiaa_9     -0.0760000000 -0.267054872  0.115054872
## M248_C_noiaa_9-M248_C_iaa_9        0.0540000000 -0.137054872  0.245054872
## M248_S_iaa_9-M248_C_iaa_9         -0.1310000000 -0.322054872  0.060054872
## M248_S_noiaa_9-M248_C_iaa_9        0.0310000000 -0.160054872  0.222054872
## M248_S_iaa_9-M248_C_noiaa_9       -0.1850000000 -0.376054872  0.006054872
## M248_S_noiaa_9-M248_C_noiaa_9     -0.0230000000 -0.214054872  0.168054872
## M248_S_noiaa_9-M248_S_iaa_9        0.1620000000 -0.029054872  0.353054872
##                                       p adj
## LA1511_C_noiaa_9-LA1511_C_iaa_9   0.9989802
## LA1511_S_iaa_9-LA1511_C_iaa_9     1.0000000
## LA1511_S_noiaa_9-LA1511_C_iaa_9   0.9761303
## M058_C_iaa_9-LA1511_C_iaa_9       0.9997105
## M058_C_noiaa_9-LA1511_C_iaa_9     0.1151877
## M058_S_iaa_9-LA1511_C_iaa_9       1.0000000
## M058_S_noiaa_9-LA1511_C_iaa_9     0.0026252
## M248_C_iaa_9-LA1511_C_iaa_9       0.4275528
## M248_C_noiaa_9-LA1511_C_iaa_9     0.0526596
## M248_S_iaa_9-LA1511_C_iaa_9       1.0000000
## M248_S_noiaa_9-LA1511_C_iaa_9     0.1480756
## LA1511_S_iaa_9-LA1511_C_noiaa_9   0.9980525
## LA1511_S_noiaa_9-LA1511_C_noiaa_9 1.0000000
## M058_C_iaa_9-LA1511_C_noiaa_9     0.9239744
## M058_C_noiaa_9-LA1511_C_noiaa_9   0.0461002
## M058_S_iaa_9-LA1511_C_noiaa_9     0.9917371
## M058_S_noiaa_9-LA1511_C_noiaa_9   0.0016939
## M248_C_iaa_9-LA1511_C_noiaa_9     0.1772508
## M248_C_noiaa_9-LA1511_C_noiaa_9   0.0224046
## M248_S_iaa_9-LA1511_C_noiaa_9     0.9979598
## M248_S_noiaa_9-LA1511_C_noiaa_9   0.0586175
## LA1511_S_noiaa_9-LA1511_S_iaa_9   0.9660980
## M058_C_iaa_9-LA1511_S_iaa_9       0.9999439
## M058_C_noiaa_9-LA1511_S_iaa_9     0.1760730
## M058_S_iaa_9-LA1511_S_iaa_9       1.0000000
## M058_S_noiaa_9-LA1511_S_iaa_9     0.0055884
## M248_C_iaa_9-LA1511_S_iaa_9       0.5406140
## M248_C_noiaa_9-LA1511_S_iaa_9     0.0876084
## M248_S_iaa_9-LA1511_S_iaa_9       1.0000000
## M248_S_noiaa_9-LA1511_S_iaa_9     0.2195493
## M058_C_iaa_9-LA1511_S_noiaa_9     0.6570900
## M058_C_noiaa_9-LA1511_S_noiaa_9   0.0036312
## M058_S_iaa_9-LA1511_S_noiaa_9     0.9088687
## M058_S_noiaa_9-LA1511_S_noiaa_9   0.0000394
## M248_C_iaa_9-LA1511_S_noiaa_9     0.0272157
## M248_C_noiaa_9-LA1511_S_noiaa_9   0.0013051
## M248_S_iaa_9-LA1511_S_noiaa_9     0.9626164
## M248_S_noiaa_9-LA1511_S_noiaa_9   0.0051401
## M058_C_noiaa_9-M058_C_iaa_9       0.5238627
## M058_S_iaa_9-M058_C_iaa_9         0.9999976
## M058_S_noiaa_9-M058_C_iaa_9       0.0352304
## M248_C_iaa_9-M058_C_iaa_9         0.9072698
## M248_C_noiaa_9-M058_C_iaa_9       0.3282233
## M248_S_iaa_9-M058_C_iaa_9         0.9999082
## M248_S_noiaa_9-M058_C_iaa_9       0.5979333
## M058_S_iaa_9-M058_C_noiaa_9       0.2261535
## M058_S_noiaa_9-M058_C_noiaa_9     0.9855593
## M248_C_iaa_9-M058_C_noiaa_9       0.9999578
## M248_C_noiaa_9-M058_C_noiaa_9     1.0000000
## M248_S_iaa_9-M058_C_noiaa_9       0.1421415
## M248_S_noiaa_9-M058_C_noiaa_9     1.0000000
## M058_S_noiaa_9-M058_S_iaa_9       0.0074427
## M248_C_iaa_9-M058_S_iaa_9         0.6346673
## M248_C_noiaa_9-M058_S_iaa_9       0.1151877
## M248_S_iaa_9-M058_S_iaa_9         1.0000000
## M248_S_noiaa_9-M058_S_iaa_9       0.2789244
## M248_C_iaa_9-M058_S_noiaa_9       0.7718399
## M248_C_noiaa_9-M058_S_noiaa_9     0.9986589
## M248_S_iaa_9-M058_S_noiaa_9       0.0035916
## M248_S_noiaa_9-M058_S_noiaa_9     0.9728957
## M248_C_noiaa_9-M248_C_iaa_9       0.9984110
## M248_S_iaa_9-M248_C_iaa_9         0.4871724
## M248_S_noiaa_9-M248_C_iaa_9       0.9999930
## M248_S_iaa_9-M248_C_noiaa_9       0.0669856
## M248_S_noiaa_9-M248_C_noiaa_9     0.9999997
## M248_S_noiaa_9-M248_S_iaa_9       0.1806039
P6 = Output$All.ID[,'p adj']
stat.test<- multcompLetters(P6)
stat.test
## LA1511_C_noiaa_9   LA1511_S_iaa_9 LA1511_S_noiaa_9     M058_C_iaa_9 
##             "ab"            "abc"              "a"            "abc" 
##   M058_C_noiaa_9     M058_S_iaa_9   M058_S_noiaa_9     M248_C_iaa_9 
##             "cd"            "abc"              "d"            "bcd" 
##   M248_C_noiaa_9     M248_S_iaa_9   M248_S_noiaa_9   LA1511_C_iaa_9 
##             "cd"            "abc"            "bcd"            "abc"
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
pareto_loc2$Condition.all <- factor(pareto_loc2$Condition.all, levels = c("C_noiaa", "C_iaa", "S_noiaa", "S_iaa"))

pareto_location_graph <- ggplot(data = pareto_loc2, mapping = aes(x = All.ID, y = pareto.front.scaling.location
, colour = Condition.all)) 
pareto_location_graph <- pareto_location_graph + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
pareto_location_graph <- pareto_location_graph + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
pareto_location_graph <- pareto_location_graph + scale_color_manual(values = c("blue","blueviolet", "red", "deeppink"))
pareto_location_graph <- pareto_location_graph + ylab("Pareto front location") + xlab("") #+ ggtitle("")
pareto_location_graph <- pareto_location_graph + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
pareto_location_graph <- pareto_location_graph + stat_pvalue_manual(test, label = "Tukey", y.position = 1.5)
pareto_location_graph

pareto_location_graph2 <- ggplot(data=pareto_loc2, aes(x= Condition.all, y=pareto.front.scaling.location, color = Condition.all)) 
pareto_location_graph2 <- pareto_location_graph2 +  geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
pareto_location_graph2 <- pareto_location_graph2 + facet_grid(~ Accessions ) 
pareto_location_graph2 <- pareto_location_graph2 + ylab("Pareto front scaling location") + xlab("") + theme(legend.position='none')
pareto_location_graph2

aov(pareto.front.scaling.distance ~ All.ID, data = pareto_loc2)
## Call:
##    aov(formula = pareto.front.scaling.distance ~ All.ID, data = pareto_loc2)
## 
## Terms:
##                    All.ID Residuals
## Sum of Squares  0.1201402 0.1997090
## Deg. of Freedom        11       100
## 
## Residual standard error: 0.04468881
## Estimated effects may be unbalanced
Output <- TukeyHSD(aov(pareto.front.scaling.distance ~ All.ID, data = pareto_loc2))
Output
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = pareto.front.scaling.distance ~ All.ID, data = pareto_loc2)
## 
## $All.ID
##                                           diff           lwr          upr
## LA1511_C_noiaa_9-LA1511_C_iaa_9   -0.042031900 -0.1239520043  0.039888204
## LA1511_S_iaa_9-LA1511_C_iaa_9     -0.038459433 -0.1071797916  0.030260925
## LA1511_S_noiaa_9-LA1511_C_iaa_9   -0.023318225 -0.0942631164  0.047626666
## M058_C_iaa_9-LA1511_C_iaa_9        0.040551200 -0.0263362851  0.107438685
## M058_C_noiaa_9-LA1511_C_iaa_9     -0.046517700 -0.1134051851  0.020369785
## M058_S_iaa_9-LA1511_C_iaa_9       -0.019514100 -0.0864015851  0.047373385
## M058_S_noiaa_9-LA1511_C_iaa_9     -0.075962000 -0.1428494851 -0.009074515
## M248_C_iaa_9-LA1511_C_iaa_9        0.032429900 -0.0344575851  0.099317385
## M248_C_noiaa_9-LA1511_C_iaa_9     -0.008330600 -0.0752180851  0.058556885
## M248_S_iaa_9-LA1511_C_iaa_9        0.008791100 -0.0580963851  0.075678585
## M248_S_noiaa_9-LA1511_C_iaa_9     -0.029079200 -0.0959666851  0.037808285
## LA1511_S_iaa_9-LA1511_C_noiaa_9    0.003572467 -0.0798508842  0.086995818
## LA1511_S_noiaa_9-LA1511_C_noiaa_9  0.018713675 -0.0665514729  0.103978823
## M058_C_iaa_9-LA1511_C_noiaa_9      0.082583100  0.0006629957  0.164503204
## M058_C_noiaa_9-LA1511_C_noiaa_9   -0.004485800 -0.0864059043  0.077434304
## M058_S_iaa_9-LA1511_C_noiaa_9      0.022517800 -0.0594023043  0.104437904
## M058_S_noiaa_9-LA1511_C_noiaa_9   -0.033930100 -0.1158502043  0.047990004
## M248_C_iaa_9-LA1511_C_noiaa_9      0.074461800 -0.0074583043  0.156381904
## M248_C_noiaa_9-LA1511_C_noiaa_9    0.033701300 -0.0482188043  0.115621404
## M248_S_iaa_9-LA1511_C_noiaa_9      0.050823000 -0.0310971043  0.132743104
## M248_S_noiaa_9-LA1511_C_noiaa_9    0.012952700 -0.0689674043  0.094872804
## LA1511_S_noiaa_9-LA1511_S_iaa_9    0.015141208 -0.0575343006  0.087816717
## M058_C_iaa_9-LA1511_S_iaa_9        0.079010633  0.0102902751  0.147730992
## M058_C_noiaa_9-LA1511_S_iaa_9     -0.008058267 -0.0767786249  0.060662092
## M058_S_iaa_9-LA1511_S_iaa_9        0.018945333 -0.0497750249  0.087665692
## M058_S_noiaa_9-LA1511_S_iaa_9     -0.037502567 -0.1062229249  0.031217792
## M248_C_iaa_9-LA1511_S_iaa_9        0.070889333  0.0021689751  0.139609692
## M248_C_noiaa_9-LA1511_S_iaa_9      0.030128833 -0.0385915249  0.098849192
## M248_S_iaa_9-LA1511_S_iaa_9        0.047250533 -0.0214698249  0.115970892
## M248_S_noiaa_9-LA1511_S_iaa_9      0.009380233 -0.0593401249  0.078100592
## M058_C_iaa_9-LA1511_S_noiaa_9      0.063869425 -0.0070754664  0.134814316
## M058_C_noiaa_9-LA1511_S_noiaa_9   -0.023199475 -0.0941443664  0.047745416
## M058_S_iaa_9-LA1511_S_noiaa_9      0.003804125 -0.0671407664  0.074749016
## M058_S_noiaa_9-LA1511_S_noiaa_9   -0.052643775 -0.1235886664  0.018301116
## M248_C_iaa_9-LA1511_S_noiaa_9      0.055748125 -0.0151967664  0.126693016
## M248_C_noiaa_9-LA1511_S_noiaa_9    0.014987625 -0.0559572664  0.085932516
## M248_S_iaa_9-LA1511_S_noiaa_9      0.032109325 -0.0388355664  0.103054216
## M248_S_noiaa_9-LA1511_S_noiaa_9   -0.005760975 -0.0767058664  0.065183916
## M058_C_noiaa_9-M058_C_iaa_9       -0.087068900 -0.1539563851 -0.020181415
## M058_S_iaa_9-M058_C_iaa_9         -0.060065300 -0.1269527851  0.006822185
## M058_S_noiaa_9-M058_C_iaa_9       -0.116513200 -0.1834006851 -0.049625715
## M248_C_iaa_9-M058_C_iaa_9         -0.008121300 -0.0750087851  0.058766185
## M248_C_noiaa_9-M058_C_iaa_9       -0.048881800 -0.1157692851  0.018005685
## M248_S_iaa_9-M058_C_iaa_9         -0.031760100 -0.0986475851  0.035127385
## M248_S_noiaa_9-M058_C_iaa_9       -0.069630400 -0.1365178851 -0.002742915
## M058_S_iaa_9-M058_C_noiaa_9        0.027003600 -0.0398838851  0.093891085
## M058_S_noiaa_9-M058_C_noiaa_9     -0.029444300 -0.0963317851  0.037443185
## M248_C_iaa_9-M058_C_noiaa_9        0.078947600  0.0120601149  0.145835085
## M248_C_noiaa_9-M058_C_noiaa_9      0.038187100 -0.0287003851  0.105074585
## M248_S_iaa_9-M058_C_noiaa_9        0.055308800 -0.0115786851  0.122196285
## M248_S_noiaa_9-M058_C_noiaa_9      0.017438500 -0.0494489851  0.084325985
## M058_S_noiaa_9-M058_S_iaa_9       -0.056447900 -0.1233353851  0.010439585
## M248_C_iaa_9-M058_S_iaa_9          0.051944000 -0.0149434851  0.118831485
## M248_C_noiaa_9-M058_S_iaa_9        0.011183500 -0.0557039851  0.078070985
## M248_S_iaa_9-M058_S_iaa_9          0.028305200 -0.0385822851  0.095192685
## M248_S_noiaa_9-M058_S_iaa_9       -0.009565100 -0.0764525851  0.057322385
## M248_C_iaa_9-M058_S_noiaa_9        0.108391900  0.0415044149  0.175279385
## M248_C_noiaa_9-M058_S_noiaa_9      0.067631400  0.0007439149  0.134518885
## M248_S_iaa_9-M058_S_noiaa_9        0.084753100  0.0178656149  0.151640585
## M248_S_noiaa_9-M058_S_noiaa_9      0.046882800 -0.0200046851  0.113770285
## M248_C_noiaa_9-M248_C_iaa_9       -0.040760500 -0.1076479851  0.026126985
## M248_S_iaa_9-M248_C_iaa_9         -0.023638800 -0.0905262851  0.043248685
## M248_S_noiaa_9-M248_C_iaa_9       -0.061509100 -0.1283965851  0.005378385
## M248_S_iaa_9-M248_C_noiaa_9        0.017121700 -0.0497657851  0.084009185
## M248_S_noiaa_9-M248_C_noiaa_9     -0.020748600 -0.0876360851  0.046138885
## M248_S_noiaa_9-M248_S_iaa_9       -0.037870300 -0.1047577851  0.029017185
##                                       p adj
## LA1511_C_noiaa_9-LA1511_C_iaa_9   0.8560572
## LA1511_S_iaa_9-LA1511_C_iaa_9     0.7726310
## LA1511_S_noiaa_9-LA1511_C_iaa_9   0.9940504
## M058_C_iaa_9-LA1511_C_iaa_9       0.6727844
## M058_C_noiaa_9-LA1511_C_iaa_9     0.4645862
## M058_S_iaa_9-LA1511_C_iaa_9       0.9978873
## M058_S_noiaa_9-LA1511_C_iaa_9     0.0125758
## M248_C_iaa_9-LA1511_C_iaa_9       0.8965981
## M248_C_noiaa_9-LA1511_C_iaa_9     0.9999996
## M248_S_iaa_9-LA1511_C_iaa_9       0.9999992
## M248_S_noiaa_9-LA1511_C_iaa_9     0.9488999
## LA1511_S_iaa_9-LA1511_C_noiaa_9   1.0000000
## LA1511_S_noiaa_9-LA1511_C_noiaa_9 0.9998540
## M058_C_iaa_9-LA1511_C_noiaa_9     0.0463121
## M058_C_noiaa_9-LA1511_C_noiaa_9   1.0000000
## M058_S_iaa_9-LA1511_C_noiaa_9     0.9987666
## M058_S_noiaa_9-LA1511_C_noiaa_9   0.9636133
## M248_C_iaa_9-LA1511_C_noiaa_9     0.1119530
## M248_C_noiaa_9-LA1511_C_noiaa_9   0.9653405
## M248_S_iaa_9-LA1511_C_noiaa_9     0.6403734
## M248_S_noiaa_9-LA1511_C_noiaa_9   0.9999947
## LA1511_S_noiaa_9-LA1511_S_iaa_9   0.9999126
## M058_C_iaa_9-LA1511_S_iaa_9       0.0107802
## M058_C_noiaa_9-LA1511_S_iaa_9     0.9999998
## M058_S_iaa_9-LA1511_S_iaa_9       0.9987329
## M058_S_noiaa_9-LA1511_S_iaa_9     0.7995680
## M248_C_iaa_9-LA1511_S_iaa_9       0.0369256
## M248_C_noiaa_9-LA1511_S_iaa_9     0.9458778
## M248_S_iaa_9-LA1511_S_iaa_9       0.4827467
## M248_S_noiaa_9-LA1511_S_iaa_9     0.9999989
## M058_C_iaa_9-LA1511_S_noiaa_9     0.1202229
## M058_C_noiaa_9-LA1511_S_noiaa_9   0.9943014
## M058_S_iaa_9-LA1511_S_noiaa_9     1.0000000
## M058_S_noiaa_9-LA1511_S_noiaa_9   0.3624428
## M248_C_iaa_9-LA1511_S_noiaa_9     0.2777064
## M248_C_noiaa_9-LA1511_S_noiaa_9   0.9998997
## M248_S_iaa_9-LA1511_S_noiaa_9     0.9330650
## M248_S_noiaa_9-LA1511_S_noiaa_9   1.0000000
## M058_C_noiaa_9-M058_C_iaa_9       0.0018242
## M058_S_iaa_9-M058_C_iaa_9         0.1224547
## M058_S_noiaa_9-M058_C_iaa_9       0.0000044
## M248_C_iaa_9-M058_C_iaa_9         0.9999997
## M248_C_noiaa_9-M058_C_iaa_9       0.3861053
## M248_S_iaa_9-M058_C_iaa_9         0.9090374
## M248_S_noiaa_9-M058_C_iaa_9       0.0336486
## M058_S_iaa_9-M058_C_noiaa_9       0.9697744
## M058_S_noiaa_9-M058_C_noiaa_9     0.9443713
## M248_C_iaa_9-M058_C_noiaa_9       0.0076650
## M248_C_noiaa_9-M058_C_noiaa_9     0.7497478
## M248_S_iaa_9-M058_C_noiaa_9       0.2103075
## M248_S_noiaa_9-M058_C_noiaa_9     0.9992430
## M058_S_noiaa_9-M058_S_iaa_9       0.1860063
## M248_C_iaa_9-M058_S_iaa_9         0.2944733
## M248_C_noiaa_9-M058_S_iaa_9       0.9999905
## M248_S_iaa_9-M058_S_iaa_9         0.9576226
## M248_S_noiaa_9-M058_S_iaa_9       0.9999981
## M248_C_iaa_9-M058_S_noiaa_9       0.0000256
## M248_C_noiaa_9-M058_S_noiaa_9     0.0449941
## M248_S_iaa_9-M058_S_noiaa_9       0.0027813
## M248_S_noiaa_9-M058_S_noiaa_9     0.4521308
## M248_C_noiaa_9-M248_C_iaa_9       0.6656722
## M248_S_iaa_9-M248_C_iaa_9         0.9891711
## M248_S_noiaa_9-M248_C_iaa_9       0.1024583
## M248_S_iaa_9-M248_C_noiaa_9       0.9993622
## M248_S_noiaa_9-M248_C_noiaa_9     0.9963739
## M248_S_noiaa_9-M248_S_iaa_9       0.7594817
P5 = Output$All.ID[,'p adj']
stat.test<- multcompLetters(P5)
stat.test
## LA1511_C_noiaa_9   LA1511_S_iaa_9 LA1511_S_noiaa_9     M058_C_iaa_9 
##            "abc"             "ab"           "abcd"              "d" 
##   M058_C_noiaa_9     M058_S_iaa_9   M058_S_noiaa_9     M248_C_iaa_9 
##             "ab"           "abcd"              "b"             "cd" 
##   M248_C_noiaa_9     M248_S_iaa_9   M248_S_noiaa_9   LA1511_C_iaa_9 
##            "acd"            "acd"            "abc"            "acd"
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
pareto_distance_graph2 <- ggplot(data = pareto_loc2, mapping = aes(x = All.ID, y = pareto.front.scaling.distance, colour = Condition.all)) 
pareto_distance_graph2 <- pareto_distance_graph2 + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
pareto_distance_graph2 <- pareto_distance_graph2 + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
pareto_distance_graph2 <- pareto_distance_graph2 + scale_color_manual(values = c("blue","blueviolet","red", "deeppink"))
pareto_distance_graph2 <- pareto_distance_graph2 + ylab("Pareto front scaling distance") + xlab("") #+ ggtitle("")
pareto_distance_graph2 <- pareto_distance_graph2 + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
pareto_distance_graph2 <- pareto_distance_graph2 + stat_pvalue_manual(test, label = "Tukey", y.position = 1.5)
pareto_distance_graph2

pareto_distance_graph <- ggplot(data=pareto_loc2, aes(x= Condition.all, y=pareto.front.scaling.distance, color = Condition.all)) 
pareto_distance_graph <- pareto_distance_graph +  geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
pareto_distance_graph <- pareto_distance_graph + facet_grid(~ Accessions ) 
pareto_distance_graph <- pareto_distance_graph + ylab("Pareto front scaling distance") + xlab("") + theme(legend.position='none')
pareto_distance_graph

I have not calculated nonscaling components at this point.

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.