Paso 1

Para la simulación vamos a generar un conjunto de datos basandonos en un modelo con parametros previamente definidos: \(Y_i\)=5 +(3\(X_i\))+\(\epsilon_i\), en donde podemos notar que \(\beta_0\)=5,\(\beta_1\)=3 y \(\epsilon_i \sim{\sf Norm}(0,\delta^2)\), \(i\)=1,2,3,…,\(n\) e independientes

x=runif(30,1,30)  ## Valores iniciales arbitrarios para X

y = 5+(3*x) + rnorm(n = 30,mean = 0,sd = 10 ) ##Valores de Y de acuerdo al modelo

plot(x,y, xlim = c(0,30), ylim = c(0,100), las=1, pch=19, col="#b0394a")

datos=data.frame(x,y)
desv=10

head(datos,10)
##            x         y
## 1   6.997889 17.832103
## 2  14.312444 28.048308
## 3   7.037918 31.477798
## 4   2.164430 13.394175
## 5   2.054613  6.461188
## 6   4.236070 25.889018
## 7  28.864193 88.426265
## 8  15.984191 39.062233
## 9  20.346960 70.132736
## 10 23.941139 83.327567

Paso 2

Ahora vamos a asumir valores para la estimación de \(\beta_0\)=4 y \(\beta_1\)=3.5, posteriormente graficamos la linea y obtenemos el valor de MEL.

b0=4  # intercepto estimado
b1=2.5 # pendiente estimada

x1=1:30
y1 = b0 + b1 * x1

plot(x,y, xlim = c(0,30), ylim = c(0,100), las=1,pch=19 ,col=3)
lines(x1, y1 , col = 2, type = "l")
grid()

Paso 3

Se realiza el Paso 2 para otros posibles valores de los parametros y se guarda el valor de la probabilidad de la ecuación L de verosimilitud, con \(\delta\)=10 constante

Ln(L)=\(\frac{-n}{2}Ln(2\pi)-\frac{n}{2}Ln(\delta^2)-\frac{1}{2\delta^2}\sum_{i=1}^n(y_i-\beta_0-\beta_1x_i)^2\)

beta0_est= seq(3,7,0.2) # rango de valores al rededor de beta0 = 5
beta1_est=seq(1,5,0.2)  # rango de valores al rededor de beta1 = 3 

betas=expand.grid(beta0_est,beta1_est)
names(betas)=c("beta0_est","beta1_est")
L=array(NA,dim(betas)[1])
plot(x,y, ylim = c(0,100))
n=30

parte1=(-n/2)*log(2*pi)-(n/2)*log(desv^2)
parte2=(-1/2*desv^2)
for(i in 1:dim(betas)[1]){
y_est=betas$beta0_est[i] + (betas$beta1_est[i]*x)
lines(x,y_est,col=2)
parte3=(y_est-betas$beta0_est[i]-betas$beta1_est[i]*x)^2
parte3=sum(y_est-y)^2
res=(parte1+parte2*parte3)
L[i]=res
} 

resultados=data.frame(betas,L)

Paso 4

Graficar e interpretar la relación entre los posibles Parametros (betas) y la MEL.

library(plotly)

plot_ly(x=resultados$beta0_est,
        y=resultados$beta1_est,
        z=resultados$L,
        size=.5)

Conclusión

Como observamos en la gráfica anterior el logaritmo natural de la ecuación de verosimilitud da una curva inversa donde los valores de \(\beta_0\) y \(\beta_1\) se encuentran cuando en el valor máximo de la función L

df_ordenado=resultados[rev(order(resultados$L)),]
df_ordenado
##     beta0_est beta1_est             L
## 220       4.8       3.0 -1.408195e+02
## 221       5.0       3.0 -1.376859e+03
## 219       4.6       3.0 -2.504780e+03
## 222       5.2       3.0 -6.212899e+03
## 218       4.4       3.0 -8.468741e+03
## 223       5.4       3.0 -1.464894e+04
## 217       4.2       3.0 -1.803270e+04
## 224       5.6       3.0 -2.668498e+04
## 210       7.0       2.8 -3.013462e+04
## 216       4.0       3.0 -3.119666e+04
## 225       5.8       3.0 -4.232102e+04
## 209       6.8       2.8 -4.664086e+04
## 215       3.8       3.0 -4.796062e+04
## 232       3.0       3.2 -6.006032e+04
## 226       6.0       3.0 -6.155706e+04
## 208       6.6       2.8 -6.674710e+04
## 214       3.6       3.0 -6.832458e+04
## 233       3.2       3.2 -8.263864e+04
## 227       6.2       3.0 -8.439310e+04
## 207       6.4       2.8 -9.045334e+04
## 213       3.4       3.0 -9.228854e+04
## 234       3.4       3.2 -1.088170e+05
## 228       6.4       3.0 -1.108291e+05
## 206       6.2       2.8 -1.177596e+05
## 212       3.2       3.0 -1.198525e+05
## 235       3.6       3.2 -1.385953e+05
## 229       6.6       3.0 -1.408652e+05
## 205       6.0       2.8 -1.486658e+05
## 211       3.0       3.0 -1.510165e+05
## 236       3.8       3.2 -1.719736e+05
## 230       6.8       3.0 -1.745012e+05
## 204       5.8       2.8 -1.831721e+05
## 237       4.0       3.2 -2.089519e+05
## 231       7.0       3.0 -2.117373e+05
## 203       5.6       2.8 -2.212783e+05
## 238       4.2       3.2 -2.495302e+05
## 202       5.4       2.8 -2.629845e+05
## 239       4.4       3.2 -2.937085e+05
## 201       5.2       2.8 -3.082908e+05
## 240       4.6       3.2 -3.414869e+05
## 200       5.0       2.8 -3.571970e+05
## 241       4.8       3.2 -3.928652e+05
## 199       4.8       2.8 -4.097032e+05
## 242       5.0       3.2 -4.478435e+05
## 198       4.6       2.8 -4.658095e+05
## 243       5.2       3.2 -5.064218e+05
## 197       4.4       2.8 -5.255157e+05
## 244       5.4       3.2 -5.686001e+05
## 196       4.2       2.8 -5.888220e+05
## 245       5.6       3.2 -6.343784e+05
## 189       7.0       2.6 -6.508188e+05
## 195       4.0       2.8 -6.557282e+05
## 246       5.8       3.2 -7.037568e+05
## 188       6.8       2.6 -7.210673e+05
## 194       3.8       2.8 -7.262344e+05
## 253       3.0       3.4 -7.713910e+05
## 247       6.0       3.2 -7.767351e+05
## 187       6.6       2.6 -7.949158e+05
## 193       3.6       2.8 -8.003407e+05
## 254       3.2       3.4 -8.477116e+05
## 248       6.2       3.2 -8.533134e+05
## 186       6.4       2.6 -8.723643e+05
## 192       3.4       2.8 -8.780469e+05
## 255       3.4       3.4 -9.276322e+05
## 249       6.4       3.2 -9.334917e+05
## 185       6.2       2.6 -9.534128e+05
## 191       3.2       2.8 -9.593532e+05
## 256       3.6       3.4 -1.011153e+06
## 250       6.6       3.2 -1.017270e+06
## 184       6.0       2.6 -1.038061e+06
## 190       3.0       2.8 -1.044259e+06
## 257       3.8       3.4 -1.098273e+06
## 251       6.8       3.2 -1.104648e+06
## 183       5.8       2.6 -1.126310e+06
## 258       4.0       3.4 -1.188994e+06
## 252       7.0       3.2 -1.195627e+06
## 182       5.6       2.6 -1.218158e+06
## 259       4.2       3.4 -1.283315e+06
## 181       5.4       2.6 -1.313607e+06
## 260       4.4       3.4 -1.381235e+06
## 180       5.2       2.6 -1.412655e+06
## 261       4.6       3.4 -1.482756e+06
## 179       5.0       2.6 -1.515304e+06
## 262       4.8       3.4 -1.587876e+06
## 178       4.8       2.6 -1.621552e+06
## 263       5.0       3.4 -1.696597e+06
## 177       4.6       2.6 -1.731401e+06
## 264       5.2       3.4 -1.808918e+06
## 176       4.4       2.6 -1.844849e+06
## 265       5.4       3.4 -1.924838e+06
## 175       4.2       2.6 -1.961898e+06
## 266       5.6       3.4 -2.044359e+06
## 168       7.0       2.4 -2.073790e+06
## 174       4.0       2.6 -2.082547e+06
## 267       5.8       3.4 -2.167479e+06
## 167       6.8       2.4 -2.197781e+06
## 173       3.8       2.6 -2.206795e+06
## 274       3.0       3.6 -2.285008e+06
## 268       6.0       3.4 -2.294200e+06
## 166       6.6       2.4 -2.325371e+06
## 172       3.6       2.6 -2.334644e+06
## 275       3.2       3.6 -2.415071e+06
## 269       6.2       3.4 -2.424520e+06
## 165       6.4       2.4 -2.456562e+06
## 171       3.4       2.6 -2.466092e+06
## 276       3.4       3.6 -2.548734e+06
## 270       6.4       3.4 -2.558441e+06
## 164       6.2       2.4 -2.591353e+06
## 170       3.2       2.6 -2.601141e+06
## 277       3.6       3.6 -2.685997e+06
## 271       6.6       3.4 -2.695962e+06
## 163       6.0       2.4 -2.729744e+06
## 169       3.0       2.6 -2.739789e+06
## 278       3.8       3.6 -2.826860e+06
## 272       6.8       3.4 -2.837082e+06
## 162       5.8       2.4 -2.871734e+06
## 279       4.0       3.6 -2.971323e+06
## 273       7.0       3.4 -2.981803e+06
## 161       5.6       2.4 -3.017325e+06
## 280       4.2       3.6 -3.119386e+06
## 160       5.4       2.4 -3.166516e+06
## 281       4.4       3.6 -3.271048e+06
## 159       5.2       2.4 -3.319307e+06
## 282       4.6       3.6 -3.426311e+06
## 158       5.0       2.4 -3.475698e+06
## 283       4.8       3.6 -3.585174e+06
## 157       4.8       2.4 -3.635688e+06
## 284       5.0       3.6 -3.747637e+06
## 156       4.6       2.4 -3.799279e+06
## 285       5.2       3.6 -3.913700e+06
## 155       4.4       2.4 -3.966470e+06
## 286       5.4       3.6 -4.083363e+06
## 154       4.2       2.4 -4.137261e+06
## 287       5.6       3.6 -4.256626e+06
## 147       7.0       2.2 -4.299047e+06
## 153       4.0       2.4 -4.311652e+06
## 288       5.8       3.6 -4.433489e+06
## 146       6.8       2.2 -4.476781e+06
## 152       3.8       2.4 -4.489642e+06
## 295       3.0       3.8 -4.600913e+06
## 289       6.0       3.6 -4.613951e+06
## 145       6.6       2.2 -4.658114e+06
## 151       3.6       2.4 -4.671233e+06
## 296       3.2       3.8 -4.784718e+06
## 290       6.2       3.6 -4.798014e+06
## 144       6.4       2.2 -4.843047e+06
## 150       3.4       2.4 -4.856424e+06
## 297       3.4       3.8 -4.972123e+06
## 291       6.4       3.6 -4.985677e+06
## 143       6.2       2.2 -5.031580e+06
## 149       3.2       2.4 -5.045215e+06
## 298       3.6       3.8 -5.163128e+06
## 292       6.6       3.6 -5.176940e+06
## 142       6.0       2.2 -5.223713e+06
## 148       3.0       2.4 -5.237606e+06
## 299       3.8       3.8 -5.357733e+06
## 293       6.8       3.6 -5.371803e+06
## 141       5.8       2.2 -5.419446e+06
## 300       4.0       3.8 -5.555938e+06
## 294       7.0       3.6 -5.570266e+06
## 140       5.6       2.2 -5.618779e+06
## 301       4.2       3.8 -5.757744e+06
## 139       5.4       2.2 -5.821712e+06
## 302       4.4       3.8 -5.963149e+06
## 138       5.2       2.2 -6.028245e+06
## 303       4.6       3.8 -6.172154e+06
## 137       5.0       2.2 -6.238378e+06
## 304       4.8       3.8 -6.384759e+06
## 136       4.8       2.2 -6.452111e+06
## 305       5.0       3.8 -6.600964e+06
## 135       4.6       2.2 -6.669444e+06
## 306       5.2       3.8 -6.820769e+06
## 134       4.4       2.2 -6.890377e+06
## 307       5.4       3.8 -7.044174e+06
## 133       4.2       2.2 -7.114910e+06
## 308       5.6       3.8 -7.271180e+06
## 126       7.0       2.0 -7.326592e+06
## 132       4.0       2.2 -7.343044e+06
## 309       5.8       3.8 -7.501785e+06
## 125       6.8       2.0 -7.558067e+06
## 131       3.8       2.2 -7.574777e+06
## 316       3.0       4.0 -7.719104e+06
## 310       6.0       3.8 -7.735990e+06
## 124       6.6       2.0 -7.793143e+06
## 130       3.6       2.2 -7.810110e+06
## 317       3.2       4.0 -7.956651e+06
## 311       6.2       3.8 -7.973795e+06
## 123       6.4       2.0 -8.031818e+06
## 129       3.4       2.2 -8.049043e+06
## 318       3.4       4.0 -8.197798e+06
## 312       6.4       3.8 -8.215200e+06
## 122       6.2       2.0 -8.274093e+06
## 128       3.2       2.2 -8.291576e+06
## 319       3.6       4.0 -8.442546e+06
## 313       6.6       3.8 -8.460205e+06
## 121       6.0       2.0 -8.519969e+06
## 127       3.0       2.2 -8.537709e+06
## 320       3.8       4.0 -8.690893e+06
## 314       6.8       3.8 -8.708810e+06
## 120       5.8       2.0 -8.769444e+06
## 321       4.0       4.0 -8.942841e+06
## 315       7.0       3.8 -8.961016e+06
## 119       5.6       2.0 -9.022519e+06
## 322       4.2       4.0 -9.198388e+06
## 118       5.4       2.0 -9.279195e+06
## 323       4.4       4.0 -9.457536e+06
## 117       5.2       2.0 -9.539470e+06
## 324       4.6       4.0 -9.720283e+06
## 116       5.0       2.0 -9.803345e+06
## 325       4.8       4.0 -9.986630e+06
## 115       4.8       2.0 -1.007082e+07
## 326       5.0       4.0 -1.025658e+07
## 114       4.6       2.0 -1.034190e+07
## 327       5.2       4.0 -1.053013e+07
## 113       4.4       2.0 -1.061657e+07
## 328       5.4       4.0 -1.080727e+07
## 112       4.2       2.0 -1.089485e+07
## 329       5.6       4.0 -1.108802e+07
## 105       7.0       1.8 -1.115642e+07
## 111       4.0       2.0 -1.117672e+07
## 330       5.8       4.0 -1.137237e+07
## 104       6.8       1.8 -1.144164e+07
## 110       3.8       2.0 -1.146220e+07
## 337       3.0       4.2 -1.163958e+07
## 331       6.0       4.0 -1.166032e+07
## 103       6.6       1.8 -1.173046e+07
## 109       3.6       2.0 -1.175127e+07
## 338       3.2       4.2 -1.193087e+07
## 332       6.2       4.0 -1.195186e+07
## 102       6.4       1.8 -1.202288e+07
## 108       3.4       2.0 -1.204395e+07
## 339       3.4       4.2 -1.222576e+07
## 333       6.4       4.0 -1.224701e+07
## 101       6.2       1.8 -1.231889e+07
## 107       3.2       2.0 -1.234022e+07
## 340       3.6       4.2 -1.252425e+07
## 334       6.6       4.0 -1.254576e+07
## 100       6.0       1.8 -1.261851e+07
## 106       3.0       2.0 -1.264010e+07
## 341       3.8       4.2 -1.282634e+07
## 335       6.8       4.0 -1.284810e+07
## 99        5.8       1.8 -1.292173e+07
## 342       4.0       4.2 -1.313203e+07
## 336       7.0       4.0 -1.315405e+07
## 98        5.6       1.8 -1.322855e+07
## 343       4.2       4.2 -1.344132e+07
## 97        5.4       1.8 -1.353896e+07
## 344       4.4       4.2 -1.375421e+07
## 96        5.2       1.8 -1.385298e+07
## 345       4.6       4.2 -1.407070e+07
## 95        5.0       1.8 -1.417060e+07
## 346       4.8       4.2 -1.439079e+07
## 94        4.8       1.8 -1.449182e+07
## 347       5.0       4.2 -1.471448e+07
## 93        4.6       1.8 -1.481663e+07
## 348       5.2       4.2 -1.504177e+07
## 92        4.4       1.8 -1.514505e+07
## 349       5.4       4.2 -1.537266e+07
## 91        4.2       1.8 -1.547707e+07
## 350       5.6       4.2 -1.570715e+07
## 84        7.0       1.6 -1.578854e+07
## 90        4.0       1.8 -1.581269e+07
## 351       5.8       4.2 -1.604524e+07
## 83        6.8       1.6 -1.612750e+07
## 89        3.8       1.8 -1.615191e+07
## 358       3.0       4.4 -1.636235e+07
## 352       6.0       4.2 -1.638693e+07
## 82        6.6       1.6 -1.647006e+07
## 88        3.6       1.8 -1.649472e+07
## 359       3.2       4.4 -1.670738e+07
## 353       6.2       4.2 -1.673222e+07
## 81        6.4       1.6 -1.681622e+07
## 87        3.4       1.8 -1.684114e+07
## 360       3.4       4.4 -1.705601e+07
## 354       6.4       4.2 -1.708111e+07
## 80        6.2       1.6 -1.716598e+07
## 86        3.2       1.8 -1.719116e+07
## 361       3.6       4.4 -1.740824e+07
## 355       6.6       4.2 -1.743360e+07
## 79        6.0       1.6 -1.751934e+07
## 85        3.0       1.8 -1.754478e+07
## 362       3.8       4.4 -1.776407e+07
## 356       6.8       4.2 -1.778969e+07
## 78        5.8       1.6 -1.787630e+07
## 363       4.0       4.4 -1.812351e+07
## 357       7.0       4.2 -1.814938e+07
## 77        5.6       1.6 -1.823686e+07
## 364       4.2       4.4 -1.848654e+07
## 76        5.4       1.6 -1.860102e+07
## 365       4.4       4.4 -1.885317e+07
## 75        5.2       1.6 -1.896878e+07
## 366       4.6       4.4 -1.922340e+07
## 74        5.0       1.6 -1.934014e+07
## 367       4.8       4.4 -1.959723e+07
## 73        4.8       1.6 -1.971510e+07
## 368       5.0       4.4 -1.997467e+07
## 72        4.6       1.6 -2.009366e+07
## 369       5.2       4.4 -2.035570e+07
## 71        4.4       1.6 -2.047582e+07
## 370       5.4       4.4 -2.074033e+07
## 70        4.2       1.6 -2.086158e+07
## 371       5.6       4.4 -2.112856e+07
## 63        7.0       1.4 -2.122295e+07
## 69        4.0       1.6 -2.125094e+07
## 372       5.8       4.4 -2.152039e+07
## 62        6.8       1.4 -2.161565e+07
## 68        3.8       1.6 -2.164390e+07
## 379       3.0       4.6 -2.188740e+07
## 373       6.0       4.4 -2.191583e+07
## 61        6.6       1.4 -2.201195e+07
## 67        3.6       1.6 -2.204046e+07
## 380       3.2       4.6 -2.228617e+07
## 374       6.2       4.4 -2.231486e+07
## 60        6.4       1.4 -2.241185e+07
## 66        3.4       1.6 -2.244062e+07
## 381       3.4       4.6 -2.268855e+07
## 375       6.4       4.4 -2.271749e+07
## 59        6.2       1.4 -2.281535e+07
## 65        3.2       1.6 -2.284438e+07
## 382       3.6       4.6 -2.309452e+07
## 376       6.6       4.4 -2.312372e+07
## 58        6.0       1.4 -2.322246e+07
## 64        3.0       1.6 -2.325174e+07
## 383       3.8       4.6 -2.350409e+07
## 377       6.8       4.4 -2.353355e+07
## 57        5.8       1.4 -2.363316e+07
## 384       4.0       4.6 -2.391727e+07
## 378       7.0       4.4 -2.394699e+07
## 56        5.6       1.4 -2.404746e+07
## 385       4.2       4.6 -2.433404e+07
## 55        5.4       1.4 -2.446536e+07
## 386       4.4       4.6 -2.475442e+07
## 54        5.2       1.4 -2.488687e+07
## 387       4.6       4.6 -2.517839e+07
## 53        5.0       1.4 -2.531197e+07
## 388       4.8       4.6 -2.560597e+07
## 52        4.8       1.4 -2.574067e+07
## 389       5.0       4.6 -2.603714e+07
## 51        4.6       1.4 -2.617297e+07
## 390       5.2       4.6 -2.647191e+07
## 50        4.4       1.4 -2.660887e+07
## 391       5.4       4.6 -2.691029e+07
## 49        4.2       1.4 -2.704838e+07
## 392       5.6       4.6 -2.735226e+07
## 42        7.0       1.2 -2.745964e+07
## 48        4.0       1.4 -2.749148e+07
## 393       5.8       4.6 -2.779784e+07
## 41        6.8       1.2 -2.790608e+07
## 47        3.8       1.4 -2.793818e+07
## 400       3.0       4.8 -2.821474e+07
## 394       6.0       4.6 -2.824701e+07
## 40        6.6       1.2 -2.835613e+07
## 46        3.6       1.4 -2.838848e+07
## 401       3.2       4.8 -2.866725e+07
## 395       6.2       4.6 -2.869979e+07
## 39        6.4       1.2 -2.880977e+07
## 45        3.4       1.4 -2.884239e+07
## 402       3.4       4.8 -2.912337e+07
## 396       6.4       4.6 -2.915616e+07
## 38        6.2       1.2 -2.926702e+07
## 44        3.2       1.4 -2.929989e+07
## 403       3.6       4.8 -2.958309e+07
## 397       6.6       4.6 -2.961613e+07
## 37        6.0       1.2 -2.972786e+07
## 43        3.0       1.4 -2.976099e+07
## 404       3.8       4.8 -3.004640e+07
## 398       6.8       4.6 -3.007971e+07
## 36        5.8       1.2 -3.019230e+07
## 405       4.0       4.8 -3.051332e+07
## 399       7.0       4.6 -3.054688e+07
## 35        5.6       1.2 -3.066035e+07
## 406       4.2       4.8 -3.098383e+07
## 34        5.4       1.2 -3.113199e+07
## 407       4.4       4.8 -3.145795e+07
## 33        5.2       1.2 -3.160724e+07
## 408       4.6       4.8 -3.193567e+07
## 32        5.0       1.2 -3.208608e+07
## 409       4.8       4.8 -3.241698e+07
## 31        4.8       1.2 -3.256853e+07
## 410       5.0       4.8 -3.290190e+07
## 30        4.6       1.2 -3.305457e+07
## 411       5.2       4.8 -3.339042e+07
## 29        4.4       1.2 -3.354422e+07
## 412       5.4       4.8 -3.388253e+07
## 28        4.2       1.2 -3.403746e+07
## 413       5.6       4.8 -3.437825e+07
## 21        7.0       1.0 -3.449862e+07
## 27        4.0       1.2 -3.453430e+07
## 414       5.8       4.8 -3.487757e+07
## 20        6.8       1.0 -3.499880e+07
## 26        3.8       1.2 -3.503475e+07
## 421       3.0       5.0 -3.534436e+07
## 415       6.0       4.8 -3.538048e+07
## 19        6.6       1.0 -3.550259e+07
## 25        3.6       1.2 -3.553879e+07
## 422       3.2       5.0 -3.585062e+07
## 416       6.2       4.8 -3.588700e+07
## 18        6.4       1.0 -3.600998e+07
## 24        3.4       1.2 -3.604644e+07
## 423       3.4       5.0 -3.636048e+07
## 417       6.4       4.8 -3.639712e+07
## 17        6.2       1.0 -3.652096e+07
## 23        3.2       1.2 -3.655768e+07
## 424       3.6       5.0 -3.687394e+07
## 418       6.6       4.8 -3.691083e+07
## 16        6.0       1.0 -3.703555e+07
## 22        3.0       1.2 -3.707253e+07
## 425       3.8       5.0 -3.739100e+07
## 419       6.8       4.8 -3.742815e+07
## 15        5.8       1.0 -3.755374e+07
## 426       4.0       5.0 -3.791165e+07
## 420       7.0       4.8 -3.794907e+07
## 14        5.6       1.0 -3.807552e+07
## 427       4.2       5.0 -3.843591e+07
## 13        5.4       1.0 -3.860091e+07
## 428       4.4       5.0 -3.896377e+07
## 12        5.2       1.0 -3.912990e+07
## 429       4.6       5.0 -3.949523e+07
## 11        5.0       1.0 -3.966248e+07
## 430       4.8       5.0 -4.003029e+07
## 10        4.8       1.0 -4.019867e+07
## 431       5.0       5.0 -4.056895e+07
## 9         4.6       1.0 -4.073846e+07
## 432       5.2       5.0 -4.111121e+07
## 8         4.4       1.0 -4.128184e+07
## 433       5.4       5.0 -4.165707e+07
## 7         4.2       1.0 -4.182883e+07
## 434       5.6       5.0 -4.220652e+07
## 6         4.0       1.0 -4.237942e+07
## 435       5.8       5.0 -4.275958e+07
## 5         3.8       1.0 -4.293360e+07
## 436       6.0       5.0 -4.331624e+07
## 4         3.6       1.0 -4.349139e+07
## 437       6.2       5.0 -4.387650e+07
## 3         3.4       1.0 -4.405278e+07
## 438       6.4       5.0 -4.444036e+07
## 2         3.2       1.0 -4.461776e+07
## 439       6.6       5.0 -4.500782e+07
## 1         3.0       1.0 -4.518635e+07
## 440       6.8       5.0 -4.557888e+07
## 441       7.0       5.0 -4.615354e+07