Para la simulación vamos a generar un conjunto de datos basandonos en un modelo con parametros previamente definidos: \(Y_i\)=5 +(3\(X_i\))+\(\epsilon_i\), en donde podemos notar que \(\beta_0\)=5,\(\beta_1\)=3 y \(\epsilon_i \sim{\sf Norm}(0,\delta^2)\), \(i\)=1,2,3,…,\(n\) e independientes
x=runif(30,1,30) ## Valores iniciales arbitrarios para X
y = 5+(3*x) + rnorm(n = 30,mean = 0,sd = 10 ) ##Valores de Y de acuerdo al modelo
plot(x,y, xlim = c(0,30), ylim = c(0,100), las=1, pch=19, col="#b0394a")
datos=data.frame(x,y)
desv=10
head(datos,10)
## x y
## 1 6.997889 17.832103
## 2 14.312444 28.048308
## 3 7.037918 31.477798
## 4 2.164430 13.394175
## 5 2.054613 6.461188
## 6 4.236070 25.889018
## 7 28.864193 88.426265
## 8 15.984191 39.062233
## 9 20.346960 70.132736
## 10 23.941139 83.327567
Ahora vamos a asumir valores para la estimación de \(\beta_0\)=4 y \(\beta_1\)=3.5, posteriormente graficamos la linea y obtenemos el valor de MEL.
b0=4 # intercepto estimado
b1=2.5 # pendiente estimada
x1=1:30
y1 = b0 + b1 * x1
plot(x,y, xlim = c(0,30), ylim = c(0,100), las=1,pch=19 ,col=3)
lines(x1, y1 , col = 2, type = "l")
grid()
Se realiza el Paso 2 para otros posibles valores de los parametros y se guarda el valor de la probabilidad de la ecuación L de verosimilitud, con \(\delta\)=10 constante
Ln(L)=\(\frac{-n}{2}Ln(2\pi)-\frac{n}{2}Ln(\delta^2)-\frac{1}{2\delta^2}\sum_{i=1}^n(y_i-\beta_0-\beta_1x_i)^2\)
beta0_est= seq(3,7,0.2) # rango de valores al rededor de beta0 = 5
beta1_est=seq(1,5,0.2) # rango de valores al rededor de beta1 = 3
betas=expand.grid(beta0_est,beta1_est)
names(betas)=c("beta0_est","beta1_est")
L=array(NA,dim(betas)[1])
plot(x,y, ylim = c(0,100))
n=30
parte1=(-n/2)*log(2*pi)-(n/2)*log(desv^2)
parte2=(-1/2*desv^2)
for(i in 1:dim(betas)[1]){
y_est=betas$beta0_est[i] + (betas$beta1_est[i]*x)
lines(x,y_est,col=2)
parte3=(y_est-betas$beta0_est[i]-betas$beta1_est[i]*x)^2
parte3=sum(y_est-y)^2
res=(parte1+parte2*parte3)
L[i]=res
}
resultados=data.frame(betas,L)
Graficar e interpretar la relación entre los posibles Parametros (betas) y la MEL.
library(plotly)
plot_ly(x=resultados$beta0_est,
y=resultados$beta1_est,
z=resultados$L,
size=.5)
Como observamos en la gráfica anterior el logaritmo natural de la ecuación de verosimilitud da una curva inversa donde los valores de \(\beta_0\) y \(\beta_1\) se encuentran cuando en el valor máximo de la función L
df_ordenado=resultados[rev(order(resultados$L)),]
df_ordenado
## beta0_est beta1_est L
## 220 4.8 3.0 -1.408195e+02
## 221 5.0 3.0 -1.376859e+03
## 219 4.6 3.0 -2.504780e+03
## 222 5.2 3.0 -6.212899e+03
## 218 4.4 3.0 -8.468741e+03
## 223 5.4 3.0 -1.464894e+04
## 217 4.2 3.0 -1.803270e+04
## 224 5.6 3.0 -2.668498e+04
## 210 7.0 2.8 -3.013462e+04
## 216 4.0 3.0 -3.119666e+04
## 225 5.8 3.0 -4.232102e+04
## 209 6.8 2.8 -4.664086e+04
## 215 3.8 3.0 -4.796062e+04
## 232 3.0 3.2 -6.006032e+04
## 226 6.0 3.0 -6.155706e+04
## 208 6.6 2.8 -6.674710e+04
## 214 3.6 3.0 -6.832458e+04
## 233 3.2 3.2 -8.263864e+04
## 227 6.2 3.0 -8.439310e+04
## 207 6.4 2.8 -9.045334e+04
## 213 3.4 3.0 -9.228854e+04
## 234 3.4 3.2 -1.088170e+05
## 228 6.4 3.0 -1.108291e+05
## 206 6.2 2.8 -1.177596e+05
## 212 3.2 3.0 -1.198525e+05
## 235 3.6 3.2 -1.385953e+05
## 229 6.6 3.0 -1.408652e+05
## 205 6.0 2.8 -1.486658e+05
## 211 3.0 3.0 -1.510165e+05
## 236 3.8 3.2 -1.719736e+05
## 230 6.8 3.0 -1.745012e+05
## 204 5.8 2.8 -1.831721e+05
## 237 4.0 3.2 -2.089519e+05
## 231 7.0 3.0 -2.117373e+05
## 203 5.6 2.8 -2.212783e+05
## 238 4.2 3.2 -2.495302e+05
## 202 5.4 2.8 -2.629845e+05
## 239 4.4 3.2 -2.937085e+05
## 201 5.2 2.8 -3.082908e+05
## 240 4.6 3.2 -3.414869e+05
## 200 5.0 2.8 -3.571970e+05
## 241 4.8 3.2 -3.928652e+05
## 199 4.8 2.8 -4.097032e+05
## 242 5.0 3.2 -4.478435e+05
## 198 4.6 2.8 -4.658095e+05
## 243 5.2 3.2 -5.064218e+05
## 197 4.4 2.8 -5.255157e+05
## 244 5.4 3.2 -5.686001e+05
## 196 4.2 2.8 -5.888220e+05
## 245 5.6 3.2 -6.343784e+05
## 189 7.0 2.6 -6.508188e+05
## 195 4.0 2.8 -6.557282e+05
## 246 5.8 3.2 -7.037568e+05
## 188 6.8 2.6 -7.210673e+05
## 194 3.8 2.8 -7.262344e+05
## 253 3.0 3.4 -7.713910e+05
## 247 6.0 3.2 -7.767351e+05
## 187 6.6 2.6 -7.949158e+05
## 193 3.6 2.8 -8.003407e+05
## 254 3.2 3.4 -8.477116e+05
## 248 6.2 3.2 -8.533134e+05
## 186 6.4 2.6 -8.723643e+05
## 192 3.4 2.8 -8.780469e+05
## 255 3.4 3.4 -9.276322e+05
## 249 6.4 3.2 -9.334917e+05
## 185 6.2 2.6 -9.534128e+05
## 191 3.2 2.8 -9.593532e+05
## 256 3.6 3.4 -1.011153e+06
## 250 6.6 3.2 -1.017270e+06
## 184 6.0 2.6 -1.038061e+06
## 190 3.0 2.8 -1.044259e+06
## 257 3.8 3.4 -1.098273e+06
## 251 6.8 3.2 -1.104648e+06
## 183 5.8 2.6 -1.126310e+06
## 258 4.0 3.4 -1.188994e+06
## 252 7.0 3.2 -1.195627e+06
## 182 5.6 2.6 -1.218158e+06
## 259 4.2 3.4 -1.283315e+06
## 181 5.4 2.6 -1.313607e+06
## 260 4.4 3.4 -1.381235e+06
## 180 5.2 2.6 -1.412655e+06
## 261 4.6 3.4 -1.482756e+06
## 179 5.0 2.6 -1.515304e+06
## 262 4.8 3.4 -1.587876e+06
## 178 4.8 2.6 -1.621552e+06
## 263 5.0 3.4 -1.696597e+06
## 177 4.6 2.6 -1.731401e+06
## 264 5.2 3.4 -1.808918e+06
## 176 4.4 2.6 -1.844849e+06
## 265 5.4 3.4 -1.924838e+06
## 175 4.2 2.6 -1.961898e+06
## 266 5.6 3.4 -2.044359e+06
## 168 7.0 2.4 -2.073790e+06
## 174 4.0 2.6 -2.082547e+06
## 267 5.8 3.4 -2.167479e+06
## 167 6.8 2.4 -2.197781e+06
## 173 3.8 2.6 -2.206795e+06
## 274 3.0 3.6 -2.285008e+06
## 268 6.0 3.4 -2.294200e+06
## 166 6.6 2.4 -2.325371e+06
## 172 3.6 2.6 -2.334644e+06
## 275 3.2 3.6 -2.415071e+06
## 269 6.2 3.4 -2.424520e+06
## 165 6.4 2.4 -2.456562e+06
## 171 3.4 2.6 -2.466092e+06
## 276 3.4 3.6 -2.548734e+06
## 270 6.4 3.4 -2.558441e+06
## 164 6.2 2.4 -2.591353e+06
## 170 3.2 2.6 -2.601141e+06
## 277 3.6 3.6 -2.685997e+06
## 271 6.6 3.4 -2.695962e+06
## 163 6.0 2.4 -2.729744e+06
## 169 3.0 2.6 -2.739789e+06
## 278 3.8 3.6 -2.826860e+06
## 272 6.8 3.4 -2.837082e+06
## 162 5.8 2.4 -2.871734e+06
## 279 4.0 3.6 -2.971323e+06
## 273 7.0 3.4 -2.981803e+06
## 161 5.6 2.4 -3.017325e+06
## 280 4.2 3.6 -3.119386e+06
## 160 5.4 2.4 -3.166516e+06
## 281 4.4 3.6 -3.271048e+06
## 159 5.2 2.4 -3.319307e+06
## 282 4.6 3.6 -3.426311e+06
## 158 5.0 2.4 -3.475698e+06
## 283 4.8 3.6 -3.585174e+06
## 157 4.8 2.4 -3.635688e+06
## 284 5.0 3.6 -3.747637e+06
## 156 4.6 2.4 -3.799279e+06
## 285 5.2 3.6 -3.913700e+06
## 155 4.4 2.4 -3.966470e+06
## 286 5.4 3.6 -4.083363e+06
## 154 4.2 2.4 -4.137261e+06
## 287 5.6 3.6 -4.256626e+06
## 147 7.0 2.2 -4.299047e+06
## 153 4.0 2.4 -4.311652e+06
## 288 5.8 3.6 -4.433489e+06
## 146 6.8 2.2 -4.476781e+06
## 152 3.8 2.4 -4.489642e+06
## 295 3.0 3.8 -4.600913e+06
## 289 6.0 3.6 -4.613951e+06
## 145 6.6 2.2 -4.658114e+06
## 151 3.6 2.4 -4.671233e+06
## 296 3.2 3.8 -4.784718e+06
## 290 6.2 3.6 -4.798014e+06
## 144 6.4 2.2 -4.843047e+06
## 150 3.4 2.4 -4.856424e+06
## 297 3.4 3.8 -4.972123e+06
## 291 6.4 3.6 -4.985677e+06
## 143 6.2 2.2 -5.031580e+06
## 149 3.2 2.4 -5.045215e+06
## 298 3.6 3.8 -5.163128e+06
## 292 6.6 3.6 -5.176940e+06
## 142 6.0 2.2 -5.223713e+06
## 148 3.0 2.4 -5.237606e+06
## 299 3.8 3.8 -5.357733e+06
## 293 6.8 3.6 -5.371803e+06
## 141 5.8 2.2 -5.419446e+06
## 300 4.0 3.8 -5.555938e+06
## 294 7.0 3.6 -5.570266e+06
## 140 5.6 2.2 -5.618779e+06
## 301 4.2 3.8 -5.757744e+06
## 139 5.4 2.2 -5.821712e+06
## 302 4.4 3.8 -5.963149e+06
## 138 5.2 2.2 -6.028245e+06
## 303 4.6 3.8 -6.172154e+06
## 137 5.0 2.2 -6.238378e+06
## 304 4.8 3.8 -6.384759e+06
## 136 4.8 2.2 -6.452111e+06
## 305 5.0 3.8 -6.600964e+06
## 135 4.6 2.2 -6.669444e+06
## 306 5.2 3.8 -6.820769e+06
## 134 4.4 2.2 -6.890377e+06
## 307 5.4 3.8 -7.044174e+06
## 133 4.2 2.2 -7.114910e+06
## 308 5.6 3.8 -7.271180e+06
## 126 7.0 2.0 -7.326592e+06
## 132 4.0 2.2 -7.343044e+06
## 309 5.8 3.8 -7.501785e+06
## 125 6.8 2.0 -7.558067e+06
## 131 3.8 2.2 -7.574777e+06
## 316 3.0 4.0 -7.719104e+06
## 310 6.0 3.8 -7.735990e+06
## 124 6.6 2.0 -7.793143e+06
## 130 3.6 2.2 -7.810110e+06
## 317 3.2 4.0 -7.956651e+06
## 311 6.2 3.8 -7.973795e+06
## 123 6.4 2.0 -8.031818e+06
## 129 3.4 2.2 -8.049043e+06
## 318 3.4 4.0 -8.197798e+06
## 312 6.4 3.8 -8.215200e+06
## 122 6.2 2.0 -8.274093e+06
## 128 3.2 2.2 -8.291576e+06
## 319 3.6 4.0 -8.442546e+06
## 313 6.6 3.8 -8.460205e+06
## 121 6.0 2.0 -8.519969e+06
## 127 3.0 2.2 -8.537709e+06
## 320 3.8 4.0 -8.690893e+06
## 314 6.8 3.8 -8.708810e+06
## 120 5.8 2.0 -8.769444e+06
## 321 4.0 4.0 -8.942841e+06
## 315 7.0 3.8 -8.961016e+06
## 119 5.6 2.0 -9.022519e+06
## 322 4.2 4.0 -9.198388e+06
## 118 5.4 2.0 -9.279195e+06
## 323 4.4 4.0 -9.457536e+06
## 117 5.2 2.0 -9.539470e+06
## 324 4.6 4.0 -9.720283e+06
## 116 5.0 2.0 -9.803345e+06
## 325 4.8 4.0 -9.986630e+06
## 115 4.8 2.0 -1.007082e+07
## 326 5.0 4.0 -1.025658e+07
## 114 4.6 2.0 -1.034190e+07
## 327 5.2 4.0 -1.053013e+07
## 113 4.4 2.0 -1.061657e+07
## 328 5.4 4.0 -1.080727e+07
## 112 4.2 2.0 -1.089485e+07
## 329 5.6 4.0 -1.108802e+07
## 105 7.0 1.8 -1.115642e+07
## 111 4.0 2.0 -1.117672e+07
## 330 5.8 4.0 -1.137237e+07
## 104 6.8 1.8 -1.144164e+07
## 110 3.8 2.0 -1.146220e+07
## 337 3.0 4.2 -1.163958e+07
## 331 6.0 4.0 -1.166032e+07
## 103 6.6 1.8 -1.173046e+07
## 109 3.6 2.0 -1.175127e+07
## 338 3.2 4.2 -1.193087e+07
## 332 6.2 4.0 -1.195186e+07
## 102 6.4 1.8 -1.202288e+07
## 108 3.4 2.0 -1.204395e+07
## 339 3.4 4.2 -1.222576e+07
## 333 6.4 4.0 -1.224701e+07
## 101 6.2 1.8 -1.231889e+07
## 107 3.2 2.0 -1.234022e+07
## 340 3.6 4.2 -1.252425e+07
## 334 6.6 4.0 -1.254576e+07
## 100 6.0 1.8 -1.261851e+07
## 106 3.0 2.0 -1.264010e+07
## 341 3.8 4.2 -1.282634e+07
## 335 6.8 4.0 -1.284810e+07
## 99 5.8 1.8 -1.292173e+07
## 342 4.0 4.2 -1.313203e+07
## 336 7.0 4.0 -1.315405e+07
## 98 5.6 1.8 -1.322855e+07
## 343 4.2 4.2 -1.344132e+07
## 97 5.4 1.8 -1.353896e+07
## 344 4.4 4.2 -1.375421e+07
## 96 5.2 1.8 -1.385298e+07
## 345 4.6 4.2 -1.407070e+07
## 95 5.0 1.8 -1.417060e+07
## 346 4.8 4.2 -1.439079e+07
## 94 4.8 1.8 -1.449182e+07
## 347 5.0 4.2 -1.471448e+07
## 93 4.6 1.8 -1.481663e+07
## 348 5.2 4.2 -1.504177e+07
## 92 4.4 1.8 -1.514505e+07
## 349 5.4 4.2 -1.537266e+07
## 91 4.2 1.8 -1.547707e+07
## 350 5.6 4.2 -1.570715e+07
## 84 7.0 1.6 -1.578854e+07
## 90 4.0 1.8 -1.581269e+07
## 351 5.8 4.2 -1.604524e+07
## 83 6.8 1.6 -1.612750e+07
## 89 3.8 1.8 -1.615191e+07
## 358 3.0 4.4 -1.636235e+07
## 352 6.0 4.2 -1.638693e+07
## 82 6.6 1.6 -1.647006e+07
## 88 3.6 1.8 -1.649472e+07
## 359 3.2 4.4 -1.670738e+07
## 353 6.2 4.2 -1.673222e+07
## 81 6.4 1.6 -1.681622e+07
## 87 3.4 1.8 -1.684114e+07
## 360 3.4 4.4 -1.705601e+07
## 354 6.4 4.2 -1.708111e+07
## 80 6.2 1.6 -1.716598e+07
## 86 3.2 1.8 -1.719116e+07
## 361 3.6 4.4 -1.740824e+07
## 355 6.6 4.2 -1.743360e+07
## 79 6.0 1.6 -1.751934e+07
## 85 3.0 1.8 -1.754478e+07
## 362 3.8 4.4 -1.776407e+07
## 356 6.8 4.2 -1.778969e+07
## 78 5.8 1.6 -1.787630e+07
## 363 4.0 4.4 -1.812351e+07
## 357 7.0 4.2 -1.814938e+07
## 77 5.6 1.6 -1.823686e+07
## 364 4.2 4.4 -1.848654e+07
## 76 5.4 1.6 -1.860102e+07
## 365 4.4 4.4 -1.885317e+07
## 75 5.2 1.6 -1.896878e+07
## 366 4.6 4.4 -1.922340e+07
## 74 5.0 1.6 -1.934014e+07
## 367 4.8 4.4 -1.959723e+07
## 73 4.8 1.6 -1.971510e+07
## 368 5.0 4.4 -1.997467e+07
## 72 4.6 1.6 -2.009366e+07
## 369 5.2 4.4 -2.035570e+07
## 71 4.4 1.6 -2.047582e+07
## 370 5.4 4.4 -2.074033e+07
## 70 4.2 1.6 -2.086158e+07
## 371 5.6 4.4 -2.112856e+07
## 63 7.0 1.4 -2.122295e+07
## 69 4.0 1.6 -2.125094e+07
## 372 5.8 4.4 -2.152039e+07
## 62 6.8 1.4 -2.161565e+07
## 68 3.8 1.6 -2.164390e+07
## 379 3.0 4.6 -2.188740e+07
## 373 6.0 4.4 -2.191583e+07
## 61 6.6 1.4 -2.201195e+07
## 67 3.6 1.6 -2.204046e+07
## 380 3.2 4.6 -2.228617e+07
## 374 6.2 4.4 -2.231486e+07
## 60 6.4 1.4 -2.241185e+07
## 66 3.4 1.6 -2.244062e+07
## 381 3.4 4.6 -2.268855e+07
## 375 6.4 4.4 -2.271749e+07
## 59 6.2 1.4 -2.281535e+07
## 65 3.2 1.6 -2.284438e+07
## 382 3.6 4.6 -2.309452e+07
## 376 6.6 4.4 -2.312372e+07
## 58 6.0 1.4 -2.322246e+07
## 64 3.0 1.6 -2.325174e+07
## 383 3.8 4.6 -2.350409e+07
## 377 6.8 4.4 -2.353355e+07
## 57 5.8 1.4 -2.363316e+07
## 384 4.0 4.6 -2.391727e+07
## 378 7.0 4.4 -2.394699e+07
## 56 5.6 1.4 -2.404746e+07
## 385 4.2 4.6 -2.433404e+07
## 55 5.4 1.4 -2.446536e+07
## 386 4.4 4.6 -2.475442e+07
## 54 5.2 1.4 -2.488687e+07
## 387 4.6 4.6 -2.517839e+07
## 53 5.0 1.4 -2.531197e+07
## 388 4.8 4.6 -2.560597e+07
## 52 4.8 1.4 -2.574067e+07
## 389 5.0 4.6 -2.603714e+07
## 51 4.6 1.4 -2.617297e+07
## 390 5.2 4.6 -2.647191e+07
## 50 4.4 1.4 -2.660887e+07
## 391 5.4 4.6 -2.691029e+07
## 49 4.2 1.4 -2.704838e+07
## 392 5.6 4.6 -2.735226e+07
## 42 7.0 1.2 -2.745964e+07
## 48 4.0 1.4 -2.749148e+07
## 393 5.8 4.6 -2.779784e+07
## 41 6.8 1.2 -2.790608e+07
## 47 3.8 1.4 -2.793818e+07
## 400 3.0 4.8 -2.821474e+07
## 394 6.0 4.6 -2.824701e+07
## 40 6.6 1.2 -2.835613e+07
## 46 3.6 1.4 -2.838848e+07
## 401 3.2 4.8 -2.866725e+07
## 395 6.2 4.6 -2.869979e+07
## 39 6.4 1.2 -2.880977e+07
## 45 3.4 1.4 -2.884239e+07
## 402 3.4 4.8 -2.912337e+07
## 396 6.4 4.6 -2.915616e+07
## 38 6.2 1.2 -2.926702e+07
## 44 3.2 1.4 -2.929989e+07
## 403 3.6 4.8 -2.958309e+07
## 397 6.6 4.6 -2.961613e+07
## 37 6.0 1.2 -2.972786e+07
## 43 3.0 1.4 -2.976099e+07
## 404 3.8 4.8 -3.004640e+07
## 398 6.8 4.6 -3.007971e+07
## 36 5.8 1.2 -3.019230e+07
## 405 4.0 4.8 -3.051332e+07
## 399 7.0 4.6 -3.054688e+07
## 35 5.6 1.2 -3.066035e+07
## 406 4.2 4.8 -3.098383e+07
## 34 5.4 1.2 -3.113199e+07
## 407 4.4 4.8 -3.145795e+07
## 33 5.2 1.2 -3.160724e+07
## 408 4.6 4.8 -3.193567e+07
## 32 5.0 1.2 -3.208608e+07
## 409 4.8 4.8 -3.241698e+07
## 31 4.8 1.2 -3.256853e+07
## 410 5.0 4.8 -3.290190e+07
## 30 4.6 1.2 -3.305457e+07
## 411 5.2 4.8 -3.339042e+07
## 29 4.4 1.2 -3.354422e+07
## 412 5.4 4.8 -3.388253e+07
## 28 4.2 1.2 -3.403746e+07
## 413 5.6 4.8 -3.437825e+07
## 21 7.0 1.0 -3.449862e+07
## 27 4.0 1.2 -3.453430e+07
## 414 5.8 4.8 -3.487757e+07
## 20 6.8 1.0 -3.499880e+07
## 26 3.8 1.2 -3.503475e+07
## 421 3.0 5.0 -3.534436e+07
## 415 6.0 4.8 -3.538048e+07
## 19 6.6 1.0 -3.550259e+07
## 25 3.6 1.2 -3.553879e+07
## 422 3.2 5.0 -3.585062e+07
## 416 6.2 4.8 -3.588700e+07
## 18 6.4 1.0 -3.600998e+07
## 24 3.4 1.2 -3.604644e+07
## 423 3.4 5.0 -3.636048e+07
## 417 6.4 4.8 -3.639712e+07
## 17 6.2 1.0 -3.652096e+07
## 23 3.2 1.2 -3.655768e+07
## 424 3.6 5.0 -3.687394e+07
## 418 6.6 4.8 -3.691083e+07
## 16 6.0 1.0 -3.703555e+07
## 22 3.0 1.2 -3.707253e+07
## 425 3.8 5.0 -3.739100e+07
## 419 6.8 4.8 -3.742815e+07
## 15 5.8 1.0 -3.755374e+07
## 426 4.0 5.0 -3.791165e+07
## 420 7.0 4.8 -3.794907e+07
## 14 5.6 1.0 -3.807552e+07
## 427 4.2 5.0 -3.843591e+07
## 13 5.4 1.0 -3.860091e+07
## 428 4.4 5.0 -3.896377e+07
## 12 5.2 1.0 -3.912990e+07
## 429 4.6 5.0 -3.949523e+07
## 11 5.0 1.0 -3.966248e+07
## 430 4.8 5.0 -4.003029e+07
## 10 4.8 1.0 -4.019867e+07
## 431 5.0 5.0 -4.056895e+07
## 9 4.6 1.0 -4.073846e+07
## 432 5.2 5.0 -4.111121e+07
## 8 4.4 1.0 -4.128184e+07
## 433 5.4 5.0 -4.165707e+07
## 7 4.2 1.0 -4.182883e+07
## 434 5.6 5.0 -4.220652e+07
## 6 4.0 1.0 -4.237942e+07
## 435 5.8 5.0 -4.275958e+07
## 5 3.8 1.0 -4.293360e+07
## 436 6.0 5.0 -4.331624e+07
## 4 3.6 1.0 -4.349139e+07
## 437 6.2 5.0 -4.387650e+07
## 3 3.4 1.0 -4.405278e+07
## 438 6.4 5.0 -4.444036e+07
## 2 3.2 1.0 -4.461776e+07
## 439 6.6 5.0 -4.500782e+07
## 1 3.0 1.0 -4.518635e+07
## 440 6.8 5.0 -4.557888e+07
## 441 7.0 5.0 -4.615354e+07