library(tidyverse)
# library(plyr)
library(lubridate)
library(janitor)
library(lme4)
library(sjPlot)
library(brms)
esm <- read_csv("spring_2022.csv") %>% clean_names()
pre_survey <- read_csv("data/surveys/spring 2022 intro bio week 1 survey_July 19, 2022_14.45.csv") %>%
clean_names()
pre_survey_brewton <- read_csv("data/surveys/spring 2022 intro bio pre-survey_BREWTON.csv") %>%
clean_names()
pre_survey
## # A tibble: 922 × 56
## start_date end_d…¹ status ip_ad…² progr…³ durat…⁴ finis…⁵ recor…⁶ respo…⁷
## <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 "Start Date" "End D… "Resp… "IP Ad… "Progr… "Durat… "Finis… "Recor… "Respo…
## 2 "{\"ImportId\… "{\"Im… "{\"I… "{\"Im… "{\"Im… "{\"Im… "{\"Im… "{\"Im… "{\"Im…
## 3 "2022-01-26 1… "2022-… "1" <NA> "100" "27" "1" "2022-… "R_2xz…
## 4 "2022-01-27 1… "2022-… "1" <NA> "100" "33" "1" "2022-… "R_Qd1…
## 5 "2022-01-27 1… "2022-… "1" <NA> "100" "61" "1" "2022-… "R_2zr…
## 6 "2022-01-27 1… "2022-… "1" <NA> "100" "23" "1" "2022-… "R_3J4…
## 7 "2022-01-27 1… "2022-… "0" "192.2… "100" "53" "1" "2022-… "R_2Tz…
## 8 "2022-01-27 1… "2022-… "0" "216.9… "100" "196" "1" "2022-… "R_28U…
## 9 "2022-01-27 1… "2022-… "0" "75.12… "100" "250" "1" "2022-… "R_2dK…
## 10 "2022-01-27 1… "2022-… "0" "192.2… "100" "143" "1" "2022-… "R_2uP…
## # … with 912 more rows, 47 more variables: recipient_last_name <chr>,
## # recipient_first_name <chr>, recipient_email <chr>,
## # external_reference <chr>, location_latitude <chr>,
## # location_longitude <chr>, distribution_channel <chr>, user_language <chr>,
## # q_recaptcha_score <chr>, q2 <chr>, q3 <chr>, q4 <chr>, q5_1 <chr>,
## # q5_2 <chr>, q5_3 <chr>, q5_4 <chr>, q5_5 <chr>, q5_6 <chr>, q5_7 <chr>,
## # q6 <chr>, q7_1 <chr>, q8 <chr>, q9 <chr>, q10_1 <chr>, q10_2 <chr>, …
## # ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
pre_survey_brewton # missing the q10 questions and one other
## # A tibble: 193 × 47
## start_date end_d…¹ status ip_ad…² progr…³ durat…⁴ finis…⁵ recor…⁶ respo…⁷
## <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 "Start Date" "End D… "Resp… "IP Ad… "Progr… "Durat… "Finis… "Recor… "Respo…
## 2 "{\"ImportId\… "{\"Im… "{\"I… "{\"Im… "{\"Im… "{\"Im… "{\"Im… "{\"Im… "{\"Im…
## 3 "2022-01-20 1… "2022-… "0" "68.57… "100" "105" "1" "2022-… "R_3rZ…
## 4 "2022-01-20 1… "2022-… "1" <NA> "100" "38" "1" "2022-… "R_1Ns…
## 5 "2022-01-20 1… "2022-… "0" "68.57… "100" "24" "1" "2022-… "R_A1G…
## 6 "2022-01-23 1… "2022-… "0" "174.1… "100" "162" "1" "2022-… "R_d0w…
## 7 "2022-01-23 1… "2022-… "0" "192.2… "100" "264" "1" "2022-… "R_1la…
## 8 "2022-01-23 1… "2022-… "0" "174.2… "100" "221" "1" "2022-… "R_3Jl…
## 9 "2022-01-23 1… "2022-… "0" "153.3… "100" "247" "1" "2022-… "R_1mV…
## 10 "2022-01-23 1… "2022-… "0" "216.9… "100" "262" "1" "2022-… "R_3Rg…
## # … with 183 more rows, 38 more variables: recipient_last_name <chr>,
## # recipient_first_name <chr>, recipient_email <chr>,
## # external_reference <chr>, location_latitude <chr>,
## # location_longitude <chr>, distribution_channel <chr>, user_language <chr>,
## # q_recaptcha_score <chr>, q2 <chr>, q3 <chr>, q4 <chr>, q5_1 <chr>,
## # q5_2 <chr>, q5_3 <chr>, q5_4 <chr>, q5_5 <chr>, q5_6 <chr>, q5_7 <chr>,
## # q6 <chr>, q7_1 <chr>, q8 <chr>, q74 <chr>, q11_1 <chr>, q12 <chr>, …
## # ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
post_survey <- read_csv("data/surveys/spring 2022 intro bio week 14 survey_July 19, 2022_14.49.csv") %>%
clean_names()
pre_survey_all <- pre_survey %>%
bind_rows(pre_survey_brewton)
pre_survey_all <- pre_survey_all %>%
rename(netid = net_id)
esm_joined <- esm %>%
left_join(pre_survey_all, by = "netid")
esm_joined <- esm_joined %>%
mutate(q7_1 = as.numeric(q7_1))
Specific course (dummy code for course)?
m4 <- lmer(content ~ 1 +
week*mean_survey_anxiety +
q16 + # prof dummy code
(1|number), data = esm_joined)
tab_model(m4)
content | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.48 | 0.91 – 2.04 | <0.001 |
week | 0.02 | 0.00 – 0.03 | 0.040 |
mean survey anxiety | 0.41 | 0.32 – 0.49 | <0.001 |
q16 [11] | 0.27 | -0.29 – 0.84 | 0.343 |
q16 [12] | 0.44 | -0.35 – 1.24 | 0.276 |
q16 [13] | 0.58 | -0.03 – 1.20 | 0.064 |
q16 [2] | 0.09 | -0.29 – 0.47 | 0.646 |
q16 [6] | 0.88 | 0.27 – 1.49 | 0.005 |
week * mean survey anxiety |
-0.01 | -0.01 – -0.00 | <0.001 |
Random Effects | |||
σ2 | 1.00 | ||
τ00 number | 1.96 | ||
ICC | 0.66 | ||
N number | 278 | ||
Observations | 6482 | ||
Marginal R2 / Conditional R2 | 0.146 / 0.712 |
similar story with prof added
m4 <- lmer(content ~ 1 +
week*mean_survey_anxiety +
q16 + # prof dummy code
q7_1 + # instructor supportiveness
(1|number), data = esm_joined)
tab_model(m4)
content | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 2.11 | 1.27 – 2.95 | <0.001 |
week | 0.02 | 0.00 – 0.03 | 0.040 |
mean survey anxiety | 0.39 | 0.30 – 0.48 | <0.001 |
q16 [11] | 0.55 | -0.08 – 1.18 | 0.085 |
q16 [12] | 0.77 | -0.08 – 1.63 | 0.076 |
q16 [13] | 0.85 | 0.18 – 1.51 | 0.013 |
q16 [2] | 0.41 | -0.08 – 0.90 | 0.101 |
q16 [6] | 1.11 | 0.46 – 1.76 | 0.001 |
q7 1 | -0.10 | -0.19 – -0.00 | 0.046 |
week * mean survey anxiety |
-0.01 | -0.01 – -0.00 | <0.001 |
Random Effects | |||
σ2 | 1.00 | ||
τ00 number | 1.94 | ||
ICC | 0.66 | ||
N number | 278 | ||
Observations | 6482 | ||
Marginal R2 / Conditional R2 | 0.153 / 0.711 |
single item measure of instructor supportiveness is negatively related to ESM anxiety; higher support, lower anxiety
m5 <- lmer(content ~ 1 +
week*mean_survey_anxiety +
q16 + # prof dummy code
mean_survey_anxiety*q7_1 + # instructor supportiveness X initial anxiety
(1|number), data = esm_joined)
tab_model(m5)
content | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 3.79 | 1.56 – 6.03 | 0.001 |
week | 0.02 | 0.00 – 0.03 | 0.040 |
mean survey anxiety | 0.09 | -0.29 – 0.47 | 0.648 |
q16 [11] | 0.20 | -0.56 – 0.96 | 0.612 |
q16 [12] | 0.43 | -0.52 – 1.38 | 0.372 |
q16 [13] | 0.50 | -0.29 – 1.29 | 0.213 |
q16 [2] | 0.08 | -0.56 – 0.72 | 0.804 |
q16 [6] | 0.75 | -0.03 – 1.54 | 0.059 |
q7 1 | -0.25 | -0.46 – -0.04 | 0.020 |
week * mean survey anxiety |
-0.01 | -0.01 – -0.00 | <0.001 |
mean survey anxiety * q7 1 |
0.03 | -0.01 – 0.08 | 0.110 |
Random Effects | |||
σ2 | 1.00 | ||
τ00 number | 1.93 | ||
ICC | 0.66 | ||
N number | 278 | ||
Observations | 6482 | ||
Marginal R2 / Conditional R2 | 0.162 / 0.714 |
when we interact initial anxiety and perceptions of support measured at the pre-survey, no interaction; probably need the post-survey measure
holding off on these for now