Enlace Qualrics

https://pucp.ca1.qualtrics.com/jfe/form/SV_1HymkNZMO9kxkdo

Limpieza de datos

Comenzamos por leer los datos directamente de qualtrics.

Eliminar casos

df <- 
  df |> 
  # Consentimiento
  filter(QID1 == "Sí acepto participar de esta investigación") |> 
  # Respuestas incompletas
  filter(Finished == "True")

Para facilitar el analisis, vamos a crear bases independientes para cada constructo y transformamos todo a numeros.

Algunas de las variables no tienen numeros, así que las estamos transformando de acuerdo a lo siguiente:

read_csv(".recode", col_names = F) |> slice(1:11) |> gt::gt()
X1 X2
Extremadamente 5
Bastante 4
Moderadamente 3
Un poco 2
Levemente o casi nada 1
Totalmente en desacuerdo 1
En desacuerdo 2
Ligeramente en desacuerdo 3
Ni de acuerdo ni en desacuerdo 4
Ligeramente de acuerdo 5
De acuerdo 6
prelims <- df |> select(1:18)
demo <- df |> select(id,A1:A11) |> mutate(A6 = as.numeric(A6))
capacidad <- df |> select(id,B1_1:B1_36)|> mutate_at(2:37,parse_number)
panas <-
  df |> 
  select(id, starts_with("C1_")) |> 
  pivot_longer(starts_with("C1_")) |> 
  recode_with_csv(old_column = value) |> 
  mutate(value = as.numeric(value)) |> 
  pivot_wider(names_from = "name", values_from = "value")

flour <- 
  df |> 
  select(id,starts_with("D1_")) |>
  pivot_longer(starts_with("D1_")) |> 
  recode_with_csv(old_column = value) |> 
  mutate(value = as.numeric(value)) |> 
  pivot_wider(names_from = "name", values_from = "value")
familia <- df |> select(id,E1:E12) |> mutate_at(2:13,parse_number)

Validez

Analisis Factorial Exploratorio

Empecemos por un analisis factorial exploratorio. De acuerdo con la estructura teórica de la prueba deberíamos extraer 5 factores: social, organización y adaptación, estabilidad emocional, liderazgo, evaluación y cognición.

Correlaciones entre items

Muchas veces es útil observar las correlaciones entre los ítems de la prubea.

library(gt)
capacidad |> 
  select(-id) |> 
  Ben::harcor() |> 
  gt::gt() |> 
  Ben::gt_apa()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
1. B1_1
2. B1_2 .35***
3. B1_3 .22*** .28***
4. B1_4 .24*** .28*** .24***
5. B1_5 .16* .27*** .37*** .43***
6. B1_6 .19** .29*** .44*** .23*** .56***
7. B1_7 .48*** .19** .23*** .15* .10 .18**
8. B1_8 .28*** .32*** .12† .22*** .16* .28*** .28***
9. B1_9 .48*** .28*** .35*** .33*** .24*** .32*** .43*** .39***
10. B1_10 .21** .36*** .45*** .17** .37*** .45*** .22*** .34*** .30***
11. B1_11 .12† .25*** .15* .38*** .43*** .34*** .02 .16* .27*** .21***
12. B1_12 .25*** .23*** .17** .24*** .23*** .31*** .28*** .36*** .46*** .27*** .24***
13. B1_13 .20** .32*** .27*** .21** .42*** .41*** .22*** .30*** .34*** .54*** .37*** .26***
14. B1_14 .08 .25*** .25*** .31*** .37*** .36*** .03 .16* .26*** .42*** .46*** .17** .46***
15. B1_15 .41*** .36*** .33*** .37*** .23*** .27*** .33*** .29*** .53*** .24*** .11† .40*** .22*** .15*
16. B1_16 .22*** .26*** .65*** .26*** .38*** .41*** .26*** .13* .42*** .48*** .24*** .24*** .29*** .31*** .36***
17. B1_17 .42*** .37*** .28*** .31*** .30*** .35*** .31*** .27*** .42*** .27*** .28*** .33*** .29*** .17* .46*** .39***
18. B1_18 .14* .31*** .35*** .31*** .42*** .46*** .20** .21** .24*** .53*** .41*** .17** .51*** .61*** .20** .38*** .28***
19. B1_19 .41*** .26*** .44*** .19** .26*** .38*** .39*** .27*** .37*** .48*** .21*** .27*** .35*** .21** .28*** .46*** .31*** .38***
20. B1_20 .37*** .57*** .27*** .29*** .32*** .41*** .34*** .45*** .36*** .40*** .22*** .38*** .35*** .15* .40*** .29*** .42*** .34*** .38***
21. B1_21 .50*** .49*** .21** .27*** .19** .30*** .34*** .38*** .37*** .50*** .19** .28*** .33*** .29*** .41*** .30*** .43*** .36*** .37*** .45***
22. B1_22 .28*** .33*** .52*** .28*** .43*** .52*** .32*** .24*** .46*** .49*** .25*** .30*** .42*** .29*** .40*** .52*** .38*** .35*** .42*** .39*** .32***
23. B1_23 .28*** .35*** .17* .35*** .20** .26*** .19** .32*** .34*** .27*** .45*** .22*** .29*** .47*** .26*** .20** .38*** .48*** .31*** .28*** .42*** .25***
24. B1_24 .57*** .41*** .29*** .39*** .24*** .24*** .32*** .35*** .60*** .34*** .21** .38*** .31*** .16* .53*** .39*** .51*** .26*** .39*** .43*** .51*** .31*** .40***
25. B1_25 .25*** .32*** .29*** .13* .40*** .40*** .28*** .50*** .40*** .49*** .32*** .34*** .45*** .27*** .24*** .26*** .26*** .36*** .40*** .44*** .29*** .48*** .33*** .33***
26. B1_26 .25*** .41*** .15* .29*** .37*** .35*** .25*** .37*** .35*** .40*** .43*** .24*** .67*** .32*** .29*** .22*** .43*** .43*** .27*** .40*** .36*** .35*** .41*** .43*** .50***
27. B1_27 .25*** .46*** .36*** .26*** .44*** .49*** .25*** .31*** .35*** .48*** .26*** .28*** .49*** .37*** .31*** .35*** .36*** .47*** .30*** .46*** .38*** .53*** .31*** .35*** .52*** .50***
28. B1_28 .25*** .40*** .44*** .24*** .39*** .53*** .22*** .27*** .35*** .42*** .29*** .25*** .39*** .28*** .39*** .41*** .44*** .41*** .33*** .46*** .35*** .42*** .34*** .34*** .43*** .39*** .48***
29. B1_29 .46*** .31*** .38*** .28*** .26*** .20** .34*** .28*** .52*** .28*** .10 .30*** .25*** .07 .48*** .44*** .54*** .16* .33*** .36*** .40*** .37*** .28*** .67*** .25*** .30*** .31*** .36***
30. B1_30 .18** .35*** .31*** .43*** .51*** .39*** .08 .12† .30*** .28*** .44*** .18** .29*** .43*** .23*** .40*** .40*** .43*** .28*** .30*** .23*** .33*** .34*** .30*** .26*** .33*** .35*** .41*** .28***
31. B1_31 .35*** .23*** .44*** .23*** .33*** .39*** .50*** .27*** .36*** .47*** .14* .30*** .39*** .24*** .30*** .49*** .24*** .32*** .60*** .36*** .32*** .52*** .19** .34*** .33*** .27*** .36*** .32*** .38*** .34***
32. B1_32 .27*** .43*** .23*** .33*** .27*** .41*** .20** .32*** .39*** .38*** .36*** .25*** .38*** .47*** .34*** .26*** .37*** .55*** .28*** .32*** .48*** .38*** .65*** .40*** .32*** .44*** .42*** .40*** .34*** .40*** .27***
33. B1_33 .30*** .24*** .33*** .16* .29*** .44*** .31*** .32*** .41*** .44*** .31*** .36*** .39*** .40*** .29*** .34*** .35*** .40*** .43*** .32*** .30*** .37*** .45*** .30*** .44*** .34*** .36*** .35*** .21** .32*** .38*** .43***
34. B1_34 .25*** .36*** .17* .38*** .56*** .35*** .04 .24*** .17** .23*** .49*** .18** .32*** .31*** .27*** .17** .36*** .37*** .19** .42*** .25*** .27*** .38*** .29*** .26*** .45*** .39*** .35*** .23*** .39*** .18** .31*** .21***
35. B1_35 .30*** .28*** .48*** .26*** .32*** .39*** .25*** .23*** .41*** .36*** .15* .35*** .32*** .27*** .41*** .44*** .33*** .17** .41*** .35*** .35*** .48*** .20** .36*** .25*** .24*** .32*** .37*** .38*** .27*** .46*** .24*** .40*** .20**
36. B1_36 .12† .22*** .32*** .38*** .47*** .38*** .05 .24*** .25*** .34*** .62*** .19** .45*** .57*** .17** .29*** .27*** .50*** .25*** .20** .18** .34*** .42*** .22*** .33*** .41*** .38*** .26*** .16* .42*** .28*** .43*** .38*** .43*** .25***
M 3.56 4.54 4.60 5.15 4.74 4.44 4.03 4.18 4.51 4.29 4.84 4.70 4.00 4.30 4.69 4.31 4.40 4.47 4.18 4.55 3.91 4.54 4.39 4.26 4.35 4.14 4.59 4.62 3.98 4.68 4.26 4.19 4.65 4.65 4.44 4.66
SD 1.43 1.32 1.28 0.91 1.18 1.26 1.45 1.38 1.27 1.36 1.18 1.27 1.46 1.40 1.18 1.43 1.33 1.33 1.39 1.30 1.50 1.23 1.43 1.38 1.27 1.47 1.25 1.20 1.54 1.30 1.38 1.42 1.22 1.25 1.32 1.25
n 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234 234

O mejor aún, con un heatmap. Se ven correlaciones altas entre items, pero no se notan factores claramente discernibles.

capacidad |> 
  select(-id) |> 
  corrr::correlate() |> 
  corrr::rearrange(method = "PCA") |> 
  corrr::stretch() |> 
  mutate_at(1:2, fct_inorder) |> 
  ggplot(aes(x,y,fill=r)) +
  geom_tile()+
  theme(axis.text.x= element_text(angle = 90))+
  scale_fill_viridis_c()

Análisis Paralelo

El análisis paralelo nos puede ayudar a determinar el numero optimo de factores. Vamos a hacerlo tanto en base a correlaciones policóricas (más adecuado), como en base a correlaciones pearson (más comun)

set.seed(124)
parallel <- capacidad |> 
  select(-id) |> 
  psych::fa.parallel(plot = F)
## Parallel analysis suggests that the number of factors =  5  and the number of components =  4
parallel |> 
  Ben::plot_parallel()

El análisis paralelo sugiere 5 factores, o 4 componentes.

Veamos si lo replicamos usando correlaciones policóricas.

set.seed(1252)
parallel_poly <- 
  capacidad |> 
  select(-id) |> 
  psych::fa.parallel(cor = 'poly',plot = F)
## Parallel analysis suggests that the number of factors =  6  and the number of components =  4
parallel_poly |> 
  Ben::plot_parallel()

El análisis paralelo, con correlaciones policóricas sugiere 6 factores, o 4 componentes.

Extracción

Un modelo de 5 factores parece acomodarse adecuadamente a los datos. Haga click en los tabs correspondientes.

# Settings

# Usar rotación promax
rotate = 'promax' 
# Usar unweighted least squares
fm = 'uls' 
# Usar correlaciones policóricas
cor = "poly" 

5 factores

Item V1 V2 V3 V4 V5
B1_1 .78 .03 -.02 -.03 -.01
B1_2 .77 -.01 -.00 .10 .10
B1_3 .72 .29 -.17 -.10 .09
B1_4 .71 .14 .01 -.13 .15
B1_5 .62 .22 .02 .09 -.03
B1_6 .58 .06 -.02 .09 .20
B1_7 .53 -.10 .24 .22 -.08
B1_8 .51 .17 .19 -.07 -.28
B1_9 .35 .07 .24 .02 .02
B1_10 .06 .93 -.16 -.12 .12
B1_11 .13 .84 -.24 .08 .07
B1_12 .18 .65 .13 -.00 -.14
B1_13 .12 .62 .23 -.13 .07
B1_14 .29 .53 .02 -.08 .08
B1_15 .23 .52 .05 .17 -.17
B1_16 -.09 .51 .37 .23 -.17
B1_17 -.16 .46 .39 .05 .17
B1_18 -.01 .07 .76 .05 -.10
B1_19 -.03 .18 .64 -.01 .14
B1_20 .33 -.05 .64 -.20 .17
B1_21 .36 -.23 .57 .02 -.07
B1_22 .12 -.16 .56 .22 .16
B1_23 -.14 .17 .53 .28 .02
B1_24 .30 -.09 .41 -.07 .27
B1_25 .11 .27 .33 .06 .15
B1_26 .31 -.27 -.02 .79 .07
B1_27 -.23 .12 -.06 .77 .20
B1_28 .28 -.12 .05 .65 .03
B1_29 -.15 .19 .17 .62 .07
B1_30 -.15 .14 -.00 .51 .39
B1_31 .09 .29 .15 .46 -.15
B1_32 .03 -.16 .29 .01 .70
B1_33 .34 -.00 -.24 .13 .65
B1_34 -.22 .37 .29 -.14 .61
B1_35 -.09 -.13 .10 .45 .55
B1_36 .08 .24 -.19 .27 .52
Summary statistics
Eigenvalues 15.7779849 3.022406 2.1464158 1.7207470 1.29406945
Variance Explained 0.1511684 0.140046 0.1241328 0.1088058 0.09049429

1 factor

Item V1
B1_1 .74
B1_2 .73
B1_3 .73
B1_4 .72
B1_5 .72
B1_6 .71
B1_7 .70
B1_8 .70
B1_9 .70
B1_10 .70
B1_11 .69
B1_12 .68
B1_13 .68
B1_14 .67
B1_15 .67
B1_16 .66
B1_17 .66
B1_18 .66
B1_19 .66
B1_20 .66
B1_21 .65
B1_22 .64
B1_23 .64
B1_24 .63
B1_25 .62
B1_26 .62
B1_27 .62
B1_28 .62
B1_29 .59
B1_30 .58
B1_31 .58
B1_32 .56
B1_33 .55
B1_34 .55
B1_35 .53
B1_36 .46
Summary statistics
Eigenvalues 15.7779849
Variance Explained 0.4226471

2 factores

Item V1 V2
B1_1 .88 -.27
B1_2 .87 -.20
B1_3 .85 -.14
B1_4 .82 -.32
B1_5 .82 -.05
B1_6 .81 -.04
B1_7 .64 .06
B1_8 .61 .12
B1_9 .61 .12
B1_10 .59 .17
B1_11 .59 .12
B1_12 .57 .15
B1_13 .54 .26
B1_14 .53 .04
B1_15 .53 .07
B1_16 .44 .28
B1_17 .44 .25
B1_18 .41 .26
B1_19 .36 .36
B1_20 -.33 .98
B1_21 -.29 .94
B1_22 -.24 .94
B1_23 -.07 .83
B1_24 -.04 .74
B1_25 -.07 .71
B1_26 -.01 .69
B1_27 .13 .64
B1_28 .18 .61
B1_29 .13 .57
B1_30 .23 .53
B1_31 .21 .53
B1_32 .31 .50
B1_33 .13 .47
B1_34 .33 .45
B1_35 .31 .43
B1_36 .36 .43
Summary statistics
Eigenvalues 15.7779849 3.0224061
Variance Explained 0.2539179 0.2417491

3 factores

Item V1 V2 V3
B1_1 .95 -.11 -.16
B1_2 .86 -.28 .10
B1_3 .82 -.22 .13
B1_4 .72 .06 -.11
B1_5 .70 -.12 .24
B1_6 .70 .35 -.30
B1_7 .58 .34 -.13
B1_8 .58 -.04 .17
B1_9 .56 .31 -.05
B1_10 .54 -.22 .43
B1_11 .50 .22 -.09
B1_12 .50 .01 .31
B1_13 .37 .15 .34
B1_14 .27 .24 .26
B1_15 -.18 .86 -.03
B1_16 .05 .85 -.07
B1_17 -.10 .76 .11
B1_18 -.20 .70 .22
B1_19 .15 .69 -.09
B1_20 -.05 .68 .20
B1_21 -.32 .64 .22
B1_22 .16 .61 .00
B1_23 .13 .59 -.11
B1_24 .18 .54 .09
B1_25 .08 .46 .11
B1_26 .30 .44 -.02
B1_27 -.10 -.07 .92
B1_28 -.01 -.00 .80
B1_29 -.13 .19 .73
B1_30 .00 .14 .72
B1_31 .21 -.00 .63
B1_32 .37 -.11 .58
B1_33 -.04 .24 .56
B1_34 -.06 .27 .55
B1_35 .30 .19 .36
B1_36 .31 .15 .34
Summary statistics
Eigenvalues 15.7779849 3.0224061 2.1464158
Variance Explained 0.1958804 0.1872679 0.1629063

4 factores

Item V1 V2 V3 V4
B1_1 .81 -.05 -.06 .01
B1_2 .80 -.00 .12 -.02
B1_3 .76 -.13 .06 .16
B1_4 .74 -.22 .01 .27
B1_5 .63 .09 -.02 .18
B1_6 .61 -.04 .23 .05
B1_7 .56 .34 .00 -.13
B1_8 .53 .23 -.36 .14
B1_9 .44 .35 .04 .03
B1_10 .39 .21 .01 .07
B1_11 .38 .20 .21 -.03
B1_12 .06 .74 -.09 .07
B1_13 -.11 .67 .15 .14
B1_14 -.11 .62 -.07 .44
B1_15 -.19 .55 .38 .12
B1_16 .19 .55 .26 -.14
B1_17 .06 .53 .12 .20
B1_18 .06 .50 .07 .21
B1_19 .44 .49 -.10 -.20
B1_20 .25 .41 .35 -.17
B1_21 .15 .31 .17 .28
B1_22 -.07 .17 .80 -.12
B1_23 .37 -.37 .73 .04
B1_24 .11 .03 .69 -.05
B1_25 .07 -.14 .68 .24
B1_26 -.18 .22 .67 .11
B1_27 -.29 .39 .60 .04
B1_28 -.13 .05 .53 .41
B1_29 .26 .39 .45 -.31
B1_30 .03 -.12 .06 .89
B1_31 .08 -.06 .11 .76
B1_32 .15 .19 -.01 .61
B1_33 .16 .26 -.16 .59
B1_34 .30 .02 .03 .51
B1_35 -.12 .39 .20 .45
B1_36 .20 .28 -.10 .44
Summary statistics
Eigenvalues 15.7779849 3.0224061 2.1464158 1.7207470
Variance Explained 0.1646409 0.1557498 0.1366923 0.1286027

6 factores

Item V1 V2 V3 V4 V5 V6
B1_1 .99 .08 -.12 .07 -.25 .00
B1_2 .90 .14 .08 .03 -.30 -.04
B1_3 .65 .20 -.01 -.12 .18 -.09
B1_4 .62 -.15 .28 -.24 .19 .19
B1_5 .62 .15 -.16 .09 .22 -.00
B1_6 .56 .21 .19 -.18 .04 -.01
B1_7 .52 .30 -.09 .09 .05 -.02
B1_8 .48 -.14 .02 .19 .28 .09
B1_9 .34 .06 .08 .10 .16 .25
B1_10 .03 .69 .02 -.06 -.02 .16
B1_11 .10 .68 .03 .09 .29 -.26
B1_12 -.01 .68 .14 .07 -.01 .17
B1_13 .29 .67 -.06 .05 -.15 .08
B1_14 .12 .66 -.12 .13 .04 .11
B1_15 .07 .51 .11 .18 -.06 .15
B1_16 .12 .50 -.05 -.25 .33 -.07
B1_17 -.26 .23 .78 .12 -.00 .06
B1_18 .12 -.21 .69 .31 -.03 -.13
B1_19 -.08 .20 .66 .05 .01 .11
B1_20 .27 -.20 .62 .07 .04 .11
B1_21 .25 .12 .40 -.03 .31 -.21
B1_22 -.21 -.04 .32 .72 .19 -.11
B1_23 -.03 .35 .06 .68 -.22 .02
B1_24 -.14 .00 -.03 .68 .11 .28
B1_25 .37 -.16 -.23 .63 .18 .09
B1_26 .08 -.08 .38 .55 .12 -.22
B1_27 .27 .08 .22 .53 -.26 .05
B1_28 .03 -.02 .01 -.03 .79 .07
B1_29 -.29 .32 .01 -.03 .63 .12
B1_30 .19 -.15 .25 .06 .45 .10
B1_31 -.15 .07 .22 .18 .44 .24
B1_32 .23 -.07 .01 .09 .44 .31
B1_33 -.02 .37 -.04 .12 .41 -.10
B1_34 .01 .16 -.00 .12 .08 .60
B1_35 .01 .22 -.14 .06 .40 .49
B1_36 -.01 .38 .37 -.23 -.00 .46
Summary statistics
Eigenvalues 15.7779849 3.0224061 2.1464158 1.7207470 1.29406945 1.17384969
Variance Explained 0.1484773 0.1321321 0.1006723 0.1004661 0.09957405 0.05885717

Analisis Factorial Confirmatorio

De acuerdo a los análisis preliminares, podemos realizar un análisis factorial confirmatorio.

library(lavaan)
model <- c(paste("f1 =~ ",paste0("B1_",1:9, collapse = '+')),
paste("f2 =~ ",paste0("B1_",10:17, collapse = '+')),
paste("f3 =~ ",paste0("B1_",18:25, collapse = '+')),
paste("f4 =~ ",paste0("B1_",26:31, collapse = '+')),
paste("f5 =~ ",paste0("B1_",32:36, collapse = '+')))
fit <- cfa(model,data = capacidad, ordered = T)
summary(fit, rsquare = T, fit.measures = T, standardized = T)
## lavaan 0.6-11 ended normally after 65 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                       190
##                                                       
##   Number of observations                           234
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                              2948.412    2092.883
##   Degrees of freedom                               584         584
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.746
##   Shift parameter                                          404.141
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                             52315.775    8426.271
##   Degrees of freedom                               630         630
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  6.630
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.954       0.806
##   Tucker-Lewis Index (TLI)                       0.951       0.791
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.132       0.105
##   90 Percent confidence interval - lower         0.127       0.100
##   90 Percent confidence interval - upper         0.137       0.110
##   P-value RMSEA <= 0.05                          0.000       0.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.105       0.105
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   f1 =~                                                                 
##     B1_1              1.000                               0.599    0.599
##     B1_2              1.051    0.072   14.508    0.000    0.629    0.629
##     B1_3              1.140    0.070   16.338    0.000    0.683    0.683
##     B1_4              0.948    0.086   11.084    0.000    0.568    0.568
##     B1_5              1.129    0.083   13.666    0.000    0.676    0.676
##     B1_6              1.235    0.081   15.240    0.000    0.739    0.739
##     B1_7              0.806    0.069   11.735    0.000    0.482    0.482
##     B1_8              0.911    0.082   11.151    0.000    0.545    0.545
##     B1_9              1.205    0.080   15.024    0.000    0.722    0.722
##   f2 =~                                                                 
##     B1_10             1.000                               0.727    0.727
##     B1_11             0.853    0.053   16.108    0.000    0.620    0.620
##     B1_12             0.747    0.061   12.214    0.000    0.543    0.543
##     B1_13             0.994    0.041   23.968    0.000    0.723    0.723
##     B1_14             0.855    0.045   19.034    0.000    0.622    0.622
##     B1_15             0.913    0.051   18.048    0.000    0.664    0.664
##     B1_16             0.947    0.038   25.109    0.000    0.688    0.688
##     B1_17             0.916    0.052   17.598    0.000    0.666    0.666
##   f3 =~                                                                 
##     B1_18             1.000                               0.716    0.716
##     B1_19             0.931    0.049   18.891    0.000    0.667    0.667
##     B1_20             0.966    0.044   21.728    0.000    0.692    0.692
##     B1_21             0.911    0.050   18.357    0.000    0.652    0.652
##     B1_22             1.029    0.052   19.896    0.000    0.737    0.737
##     B1_23             0.924    0.044   21.009    0.000    0.661    0.661
##     B1_24             1.033    0.048   21.328    0.000    0.740    0.740
##     B1_25             0.929    0.048   19.473    0.000    0.665    0.665
##   f4 =~                                                                 
##     B1_26             1.000                               0.717    0.717
##     B1_27             1.023    0.047   21.710    0.000    0.734    0.734
##     B1_28             0.981    0.050   19.440    0.000    0.704    0.704
##     B1_29             0.921    0.053   17.402    0.000    0.661    0.661
##     B1_30             0.862    0.053   16.416    0.000    0.619    0.619
##     B1_31             0.956    0.045   21.266    0.000    0.686    0.686
##   f5 =~                                                                 
##     B1_32             1.000                               0.700    0.700
##     B1_33             0.971    0.051   18.970    0.000    0.680    0.680
##     B1_34             0.866    0.057   15.120    0.000    0.606    0.606
##     B1_35             0.947    0.053   17.771    0.000    0.663    0.663
##     B1_36             0.946    0.053   17.806    0.000    0.662    0.662
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   f1 ~~                                                                 
##     f2                0.425    0.036   11.745    0.000    0.977    0.977
##     f3                0.429    0.034   12.665    0.000    1.001    1.001
##     f4                0.430    0.035   12.157    0.000    1.002    1.002
##     f5                0.406    0.035   11.612    0.000    0.969    0.969
##   f2 ~~                                                                 
##     f3                0.533    0.034   15.773    0.000    1.024    1.024
##     f4                0.541    0.034   15.883    0.000    1.038    1.038
##     f5                0.532    0.034   15.632    0.000    1.045    1.045
##   f3 ~~                                                                 
##     f4                0.539    0.033   16.259    0.000    1.049    1.049
##     f5                0.502    0.034   14.954    0.000    1.001    1.001
##   f4 ~~                                                                 
##     f5                0.496    0.033   14.906    0.000    0.987    0.987
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B1_1              0.000                               0.000    0.000
##    .B1_2              0.000                               0.000    0.000
##    .B1_3              0.000                               0.000    0.000
##    .B1_4              0.000                               0.000    0.000
##    .B1_5              0.000                               0.000    0.000
##    .B1_6              0.000                               0.000    0.000
##    .B1_7              0.000                               0.000    0.000
##    .B1_8              0.000                               0.000    0.000
##    .B1_9              0.000                               0.000    0.000
##    .B1_10             0.000                               0.000    0.000
##    .B1_11             0.000                               0.000    0.000
##    .B1_12             0.000                               0.000    0.000
##    .B1_13             0.000                               0.000    0.000
##    .B1_14             0.000                               0.000    0.000
##    .B1_15             0.000                               0.000    0.000
##    .B1_16             0.000                               0.000    0.000
##    .B1_17             0.000                               0.000    0.000
##    .B1_18             0.000                               0.000    0.000
##    .B1_19             0.000                               0.000    0.000
##    .B1_20             0.000                               0.000    0.000
##    .B1_21             0.000                               0.000    0.000
##    .B1_22             0.000                               0.000    0.000
##    .B1_23             0.000                               0.000    0.000
##    .B1_24             0.000                               0.000    0.000
##    .B1_25             0.000                               0.000    0.000
##    .B1_26             0.000                               0.000    0.000
##    .B1_27             0.000                               0.000    0.000
##    .B1_28             0.000                               0.000    0.000
##    .B1_29             0.000                               0.000    0.000
##    .B1_30             0.000                               0.000    0.000
##    .B1_31             0.000                               0.000    0.000
##    .B1_32             0.000                               0.000    0.000
##    .B1_33             0.000                               0.000    0.000
##    .B1_34             0.000                               0.000    0.000
##    .B1_35             0.000                               0.000    0.000
##    .B1_36             0.000                               0.000    0.000
##     f1                0.000                               0.000    0.000
##     f2                0.000                               0.000    0.000
##     f3                0.000                               0.000    0.000
##     f4                0.000                               0.000    0.000
##     f5                0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     B1_1|t1          -1.882    0.164  -11.448    0.000   -1.882   -1.882
##     B1_1|t2          -0.577    0.087   -6.609    0.000   -0.577   -0.577
##     B1_1|t3           0.260    0.083    3.128    0.002    0.260    0.260
##     B1_1|t4           1.397    0.119   11.738    0.000    1.397    1.397
##     B1_2|t1          -2.026    0.185  -10.953    0.000   -2.026   -2.026
##     B1_2|t2          -1.267    0.111  -11.396    0.000   -1.267   -1.267
##     B1_2|t3          -0.615    0.088   -6.989    0.000   -0.615   -0.615
##     B1_2|t4           0.839    0.094    8.968    0.000    0.839    0.839
##     B1_3|t1          -2.232    0.223  -10.015    0.000   -2.232   -2.232
##     B1_3|t2          -1.221    0.109  -11.229    0.000   -1.221   -1.221
##     B1_3|t3          -0.709    0.090   -7.868    0.000   -0.709   -0.709
##     B1_3|t4           0.839    0.094    8.968    0.000    0.839    0.839
##     B1_4|t1          -2.630    0.340   -7.734    0.000   -2.630   -2.630
##     B1_4|t2          -2.118    0.200  -10.564    0.000   -2.118   -2.118
##     B1_4|t3          -1.316    0.114  -11.548    0.000   -1.316   -1.316
##     B1_4|t4           0.350    0.084    4.166    0.000    0.350    0.350
##     B1_5|t1          -2.232    0.223  -10.015    0.000   -2.232   -2.232
##     B1_5|t2          -1.882    0.164  -11.448    0.000   -1.882   -1.882
##     B1_5|t3          -0.709    0.090   -7.868    0.000   -0.709   -0.709
##     B1_5|t4           0.641    0.089    7.242    0.000    0.641    0.641
##     B1_6|t1          -2.118    0.200  -10.564    0.000   -2.118   -2.118
##     B1_6|t2          -1.675    0.141  -11.856    0.000   -1.675   -1.675
##     B1_6|t3          -0.419    0.085   -4.942    0.000   -0.419   -0.419
##     B1_6|t4           0.917    0.096    9.557    0.000    0.917    0.917
##     B1_7|t1          -1.823    0.157  -11.604    0.000   -1.823   -1.823
##     B1_7|t2          -0.901    0.095   -9.441    0.000   -0.901   -0.901
##     B1_7|t3          -0.161    0.082   -1.956    0.050   -0.161   -0.161
##     B1_7|t4           1.156    0.105   10.954    0.000    1.156    1.156
##     B1_8|t1          -1.949    0.173  -11.237    0.000   -1.949   -1.949
##     B1_8|t2          -1.057    0.101  -10.448    0.000   -1.057   -1.057
##     B1_8|t3          -0.282    0.083   -3.388    0.001   -0.282   -0.282
##     B1_8|t4           1.156    0.105   10.954    0.000    1.156    1.156
##     B1_9|t1          -2.118    0.200  -10.564    0.000   -2.118   -2.118
##     B1_9|t2          -1.397    0.119  -11.738    0.000   -1.397   -1.397
##     B1_9|t3          -0.564    0.087   -6.482    0.000   -0.564   -0.564
##     B1_9|t4           0.917    0.096    9.557    0.000    0.917    0.917
##     B1_10|t1         -2.232    0.223  -10.015    0.000   -2.232   -2.232
##     B1_10|t2         -1.291    0.113  -11.474    0.000   -1.291   -1.291
##     B1_10|t3         -0.271    0.083   -3.258    0.001   -0.271   -0.271
##     B1_10|t4          0.885    0.095    9.324    0.000    0.885    0.885
##     B1_11|t1         -2.385    0.260   -9.186    0.000   -2.385   -2.385
##     B1_11|t2         -1.769    0.151  -11.719    0.000   -1.769   -1.769
##     B1_11|t3         -0.794    0.092   -8.606    0.000   -0.794   -0.794
##     B1_11|t4          0.490    0.086    5.715    0.000    0.490    0.490
##     B1_12|t1         -2.232    0.223  -10.015    0.000   -2.232   -2.232
##     B1_12|t2         -1.369    0.117  -11.681    0.000   -1.369   -1.369
##     B1_12|t3         -0.736    0.091   -8.115    0.000   -0.736   -0.736
##     B1_12|t4          0.654    0.089    7.368    0.000    0.654    0.654
##     B1_13|t1         -1.823    0.157  -11.604    0.000   -1.823   -1.823
##     B1_13|t2         -1.038    0.100  -10.341    0.000   -1.038   -1.038
##     B1_13|t3         -0.021    0.082   -0.261    0.794   -0.021   -0.021
##     B1_13|t4          0.950    0.097    9.787    0.000    0.950    0.950
##     B1_14|t1         -1.949    0.173  -11.237    0.000   -1.949   -1.949
##     B1_14|t2         -1.244    0.110  -11.314    0.000   -1.244   -1.244
##     B1_14|t3         -0.293    0.083   -3.518    0.000   -0.293   -0.293
##     B1_14|t4          0.839    0.094    8.968    0.000    0.839    0.839
##     B1_15|t1         -2.385    0.260   -9.186    0.000   -2.385   -2.385
##     B1_15|t2         -1.426    0.121  -11.789    0.000   -1.426   -1.426
##     B1_15|t3         -0.808    0.093   -8.727    0.000   -0.808   -0.808
##     B1_15|t4          0.854    0.094    9.087    0.000    0.854    0.854
##     B1_16|t1         -2.232    0.223  -10.015    0.000   -2.232   -2.232
##     B1_16|t2         -1.002    0.099  -10.123    0.000   -1.002   -1.002
##     B1_16|t3         -0.361    0.084   -4.296    0.000   -0.361   -0.361
##     B1_16|t4          0.854    0.094    9.087    0.000    0.854    0.854
##     B1_17|t1         -2.026    0.185  -10.953    0.000   -2.026   -2.026
##     B1_17|t2         -1.291    0.113  -11.474    0.000   -1.291   -1.291
##     B1_17|t3         -0.443    0.085   -5.200    0.000   -0.443   -0.443
##     B1_17|t4          0.934    0.097    9.672    0.000    0.934    0.934
##     B1_18|t1         -1.949    0.173  -11.237    0.000   -1.949   -1.949
##     B1_18|t2         -1.316    0.114  -11.548    0.000   -1.316   -1.316
##     B1_18|t3         -0.515    0.086   -5.971    0.000   -0.515   -0.515
##     B1_18|t4          0.869    0.094    9.206    0.000    0.869    0.869
##     B1_19|t1         -1.949    0.173  -11.237    0.000   -1.949   -1.949
##     B1_19|t2         -1.076    0.102  -10.553    0.000   -1.076   -1.076
##     B1_19|t3         -0.271    0.083   -3.258    0.001   -0.271   -0.271
##     B1_19|t4          1.115    0.104   10.757    0.000    1.115    1.115
##     B1_20|t1         -2.385    0.260   -9.186    0.000   -2.385   -2.385
##     B1_20|t2         -1.342    0.116  -11.617    0.000   -1.342   -1.342
##     B1_20|t3         -0.564    0.087   -6.482    0.000   -0.564   -0.564
##     B1_20|t4          0.765    0.091    8.361    0.000    0.765    0.765
##     B1_21|t1         -1.675    0.141  -11.856    0.000   -1.675   -1.675
##     B1_21|t2         -0.823    0.093   -8.848    0.000   -0.823   -0.823
##     B1_21|t3         -0.032    0.082   -0.391    0.696   -0.032   -0.032
##     B1_21|t4          1.095    0.103   10.656    0.000    1.095    1.095
##     B1_22|t1         -2.385    0.260   -9.186    0.000   -2.385   -2.385
##     B1_22|t2         -1.556    0.131  -11.905    0.000   -1.556   -1.556
##     B1_22|t3         -0.552    0.087   -6.354    0.000   -0.552   -0.552
##     B1_22|t4          0.869    0.094    9.206    0.000    0.869    0.869
##     B1_23|t1         -1.720    0.146  -11.801    0.000   -1.720   -1.720
##     B1_23|t2         -1.135    0.105  -10.857    0.000   -1.135   -1.135
##     B1_23|t3         -0.478    0.086   -5.586    0.000   -0.478   -0.478
##     B1_23|t4          0.869    0.094    9.206    0.000    0.869    0.869
##     B1_24|t1         -2.118    0.200  -10.564    0.000   -2.118   -2.118
##     B1_24|t2         -1.076    0.102  -10.553    0.000   -1.076   -1.076
##     B1_24|t3         -0.350    0.084   -4.166    0.000   -0.350   -0.350
##     B1_24|t4          1.038    0.100   10.341    0.000    1.038    1.038
##     B1_25|t1         -2.232    0.223  -10.015    0.000   -2.232   -2.232
##     B1_25|t2         -1.521    0.128  -11.891    0.000   -1.521   -1.521
##     B1_25|t3         -0.350    0.084   -4.166    0.000   -0.350   -0.350
##     B1_25|t4          1.002    0.099   10.123    0.000    1.002    1.002
##     B1_26|t1         -1.882    0.164  -11.448    0.000   -1.882   -1.882
##     B1_26|t2         -1.002    0.099  -10.123    0.000   -1.002   -1.002
##     B1_26|t3         -0.183    0.083   -2.217    0.027   -0.183   -0.183
##     B1_26|t4          0.901    0.095    9.441    0.000    0.901    0.901
##     B1_27|t1         -2.232    0.223  -10.015    0.000   -2.232   -2.232
##     B1_27|t2         -1.593    0.134  -11.905    0.000   -1.593   -1.593
##     B1_27|t3         -0.577    0.087   -6.609    0.000   -0.577   -0.577
##     B1_27|t4          0.765    0.091    8.361    0.000    0.765    0.765
##     B1_28|t1         -2.232    0.223  -10.015    0.000   -2.232   -2.232
##     B1_28|t2         -1.633    0.137  -11.889    0.000   -1.633   -1.633
##     B1_28|t3         -0.654    0.089   -7.368    0.000   -0.654   -0.654
##     B1_28|t4          0.839    0.094    8.968    0.000    0.839    0.839
##     B1_29|t1         -1.675    0.141  -11.856    0.000   -1.675   -1.675
##     B1_29|t2         -0.750    0.091   -8.239    0.000   -0.750   -0.750
##     B1_29|t3         -0.129    0.082   -1.565    0.118   -0.129   -0.129
##     B1_29|t4          1.038    0.100   10.341    0.000    1.038    1.038
##     B1_30|t1         -2.118    0.200  -10.564    0.000   -2.118   -2.118
##     B1_30|t2         -1.593    0.134  -11.905    0.000   -1.593   -1.593
##     B1_30|t3         -0.602    0.088   -6.863    0.000   -0.602   -0.602
##     B1_30|t4          0.539    0.087    6.227    0.000    0.539    0.539
##     B1_31|t1         -2.118    0.200  -10.564    0.000   -2.118   -2.118
##     B1_31|t2         -1.342    0.116  -11.617    0.000   -1.342   -1.342
##     B1_31|t3         -0.205    0.083   -2.477    0.013   -0.205   -0.205
##     B1_31|t4          0.823    0.093    8.848    0.000    0.823    0.823
##     B1_32|t1         -1.823    0.157  -11.604    0.000   -1.823   -1.823
##     B1_32|t2         -1.038    0.100  -10.341    0.000   -1.038   -1.038
##     B1_32|t3         -0.293    0.083   -3.518    0.000   -0.293   -0.293
##     B1_32|t4          1.076    0.102   10.553    0.000    1.076    1.076
##     B1_33|t1         -2.232    0.223  -10.015    0.000   -2.232   -2.232
##     B1_33|t2         -1.633    0.137  -11.889    0.000   -1.633   -1.633
##     B1_33|t3         -0.641    0.089   -7.242    0.000   -0.641   -0.641
##     B1_33|t4          0.736    0.091    8.115    0.000    0.736    0.736
##     B1_34|t1         -2.118    0.200  -10.564    0.000   -2.118   -2.118
##     B1_34|t2         -1.521    0.128  -11.891    0.000   -1.521   -1.521
##     B1_34|t3         -0.668    0.089   -7.493    0.000   -0.668   -0.668
##     B1_34|t4          0.736    0.091    8.115    0.000    0.736    0.736
##     B1_35|t1         -2.385    0.260   -9.186    0.000   -2.385   -2.385
##     B1_35|t2         -1.556    0.131  -11.905    0.000   -1.556   -1.556
##     B1_35|t3         -0.350    0.084   -4.166    0.000   -0.350   -0.350
##     B1_35|t4          0.709    0.090    7.868    0.000    0.709    0.709
##     B1_36|t1         -2.232    0.223  -10.015    0.000   -2.232   -2.232
##     B1_36|t2         -1.633    0.137  -11.889    0.000   -1.633   -1.633
##     B1_36|t3         -0.615    0.088   -6.989    0.000   -0.615   -0.615
##     B1_36|t4          0.641    0.089    7.242    0.000    0.641    0.641
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B1_1              0.642                               0.642    0.642
##    .B1_2              0.604                               0.604    0.604
##    .B1_3              0.534                               0.534    0.534
##    .B1_4              0.678                               0.678    0.678
##    .B1_5              0.543                               0.543    0.543
##    .B1_6              0.453                               0.453    0.453
##    .B1_7              0.767                               0.767    0.767
##    .B1_8              0.702                               0.702    0.702
##    .B1_9              0.479                               0.479    0.479
##    .B1_10             0.472                               0.472    0.472
##    .B1_11             0.615                               0.615    0.615
##    .B1_12             0.705                               0.705    0.705
##    .B1_13             0.478                               0.478    0.478
##    .B1_14             0.614                               0.614    0.614
##    .B1_15             0.560                               0.560    0.560
##    .B1_16             0.527                               0.527    0.527
##    .B1_17             0.557                               0.557    0.557
##    .B1_18             0.487                               0.487    0.487
##    .B1_19             0.555                               0.555    0.555
##    .B1_20             0.521                               0.521    0.521
##    .B1_21             0.574                               0.574    0.574
##    .B1_22             0.457                               0.457    0.457
##    .B1_23             0.563                               0.563    0.563
##    .B1_24             0.453                               0.453    0.453
##    .B1_25             0.558                               0.558    0.558
##    .B1_26             0.486                               0.486    0.486
##    .B1_27             0.462                               0.462    0.462
##    .B1_28             0.505                               0.505    0.505
##    .B1_29             0.563                               0.563    0.563
##    .B1_30             0.617                               0.617    0.617
##    .B1_31             0.530                               0.530    0.530
##    .B1_32             0.510                               0.510    0.510
##    .B1_33             0.537                               0.537    0.537
##    .B1_34             0.632                               0.632    0.632
##    .B1_35             0.560                               0.560    0.560
##    .B1_36             0.562                               0.562    0.562
##     f1                0.358    0.046    7.844    0.000    1.000    1.000
##     f2                0.528    0.043   12.202    0.000    1.000    1.000
##     f3                0.513    0.040   12.719    0.000    1.000    1.000
##     f4                0.514    0.042   12.289    0.000    1.000    1.000
##     f5                0.490    0.044   11.084    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     B1_1              1.000                               1.000    1.000
##     B1_2              1.000                               1.000    1.000
##     B1_3              1.000                               1.000    1.000
##     B1_4              1.000                               1.000    1.000
##     B1_5              1.000                               1.000    1.000
##     B1_6              1.000                               1.000    1.000
##     B1_7              1.000                               1.000    1.000
##     B1_8              1.000                               1.000    1.000
##     B1_9              1.000                               1.000    1.000
##     B1_10             1.000                               1.000    1.000
##     B1_11             1.000                               1.000    1.000
##     B1_12             1.000                               1.000    1.000
##     B1_13             1.000                               1.000    1.000
##     B1_14             1.000                               1.000    1.000
##     B1_15             1.000                               1.000    1.000
##     B1_16             1.000                               1.000    1.000
##     B1_17             1.000                               1.000    1.000
##     B1_18             1.000                               1.000    1.000
##     B1_19             1.000                               1.000    1.000
##     B1_20             1.000                               1.000    1.000
##     B1_21             1.000                               1.000    1.000
##     B1_22             1.000                               1.000    1.000
##     B1_23             1.000                               1.000    1.000
##     B1_24             1.000                               1.000    1.000
##     B1_25             1.000                               1.000    1.000
##     B1_26             1.000                               1.000    1.000
##     B1_27             1.000                               1.000    1.000
##     B1_28             1.000                               1.000    1.000
##     B1_29             1.000                               1.000    1.000
##     B1_30             1.000                               1.000    1.000
##     B1_31             1.000                               1.000    1.000
##     B1_32             1.000                               1.000    1.000
##     B1_33             1.000                               1.000    1.000
##     B1_34             1.000                               1.000    1.000
##     B1_35             1.000                               1.000    1.000
##     B1_36             1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     B1_1              0.358
##     B1_2              0.396
##     B1_3              0.466
##     B1_4              0.322
##     B1_5              0.457
##     B1_6              0.547
##     B1_7              0.233
##     B1_8              0.298
##     B1_9              0.521
##     B1_10             0.528
##     B1_11             0.385
##     B1_12             0.295
##     B1_13             0.522
##     B1_14             0.386
##     B1_15             0.440
##     B1_16             0.473
##     B1_17             0.443
##     B1_18             0.513
##     B1_19             0.445
##     B1_20             0.479
##     B1_21             0.426
##     B1_22             0.543
##     B1_23             0.437
##     B1_24             0.547
##     B1_25             0.442
##     B1_26             0.514
##     B1_27             0.538
##     B1_28             0.495
##     B1_29             0.437
##     B1_30             0.383
##     B1_31             0.470
##     B1_32             0.490
##     B1_33             0.463
##     B1_34             0.368
##     B1_35             0.440
##     B1_36             0.438

El modelo tiene un fit bastante adecuado. \(\chi^2\) = 2092.88 [df = 584,N = 234], p <.001***, CFI = .95, TLI = .95, RMSEA = .13 [95% CI = .13 - .14], SRMR = .10

Confiabilidad

get_alpha <- function(i){capacidad |> 
  select(model[i] |> str_sub(8) |> str_split("\\+",simplify = T) |> as.character()) |> 
  psych::alpha()}

alfas =
  enframe(1:5) |>
  select(1) |>
  mutate(alpha = map(name, get_alpha)) |>
  mutate(
    result = map(alpha, "total"),
    scale_alfa = map_dbl(result, "std.alpha"),
    scale_mean = map_dbl(result, "mean"),
    scale_sd = map_dbl(result, "sd"),
    itemstats = map(alpha, "item.stats"),
    scores = map(alpha, "scores")
  ) |>
  unnest(itemstats) |>
  select(1, scale_alfa:sd,scores)
alfas |> 
  ggplot(aes(name,raw.r))+
  geom_col(aes(y = scale_alfa),data = alfas |> select(name, scale_alfa) |> unique(), alpha = .4)+
  geom_point(position = position_jitter(width = .3))+
  geom_hline(yintercept = .6)+
  labs(title = "Confiabilidad",
       y = "Correlación item total (puntos)\nAlfa (barras)",
       x = "Factor")

capacidad <- 
  alfas |>
  select(name,scores) |> 
  unique() |>
  spread(name,scores) |> 
  unnest(everything()) |>
  rename_all(function(x)paste0("cap",x)) |> 
  cbind(capacidad) |> 
  select(colnames(capacidad), cap1:cap5) |> 
  as_tibble()

Correlaciones con otras variables

Validez y confiabilidad de las otras variables

PANAS

panas |> 
  select(-1) |>
  psych::fa(nfactors = 2, rotate = 'varimax') |> 
  Ben::gt_fatable(sort = F)
Item V1 V2
C1_1 .62 -.06
C1_2 -.12 .60
C1_3 .70 -.11
C1_4 -.13 .64
C1_5 -.12 .68
C1_6 .70 -.03
C1_7 .62 -.14
C1_8 -.09 .74
C1_9 -.09 .61
C1_10 .80 -.11
C1_11 -.00 .70
C1_12 .82 -.05
C1_13 .72 -.21
C1_14 .60 -.21
C1_15 -.08 .72
C1_16 .74 -.22
C1_17 -.12 .75
C1_18 -.16 .60
C1_19 .56 .07
C1_20 -.07 .53
Summary statistics
Eigenvalues 6.6747799 3.8605972
Variance Explained 0.2468101 0.2295664
panas_keys <- panas |> 
  select(-1) |>
  psych::fa(nfactors = 2, rotate = 'varimax') |> 
  Ben::fa_tibble(sort = F) |> 
  arrange(V2) |> 
  mutate(factor=ifelse(V1> .30, "f1",'f2')) |> 
  select(Item,factor)

panas |> 
  select(panas_keys |> filter(factor == "f1") |> pull(Item)) |> 
  psych::alpha()
## 
## Reliability analysis   
## Call: psych::alpha(x = select(panas, pull(filter(panas_keys, factor == 
##     "f1"), Item)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##        0.9       0.9    0.91      0.49 9.4 0.0092    3 0.83     0.49
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.89   0.9  0.92
## Duhachek  0.89   0.9  0.92
## 
##  Reliability if an item is dropped:
##       raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## C1_16      0.89      0.89    0.89      0.47 8.1   0.0106 0.0100  0.48
## C1_14      0.90      0.90    0.90      0.50 8.8   0.0098 0.0101  0.50
## C1_13      0.89      0.89    0.89      0.48 8.2   0.0104 0.0094  0.48
## C1_7       0.90      0.90    0.90      0.50 8.8   0.0098 0.0093  0.50
## C1_10      0.89      0.89    0.89      0.47 7.9   0.0109 0.0088  0.46
## C1_3       0.89      0.89    0.89      0.48 8.4   0.0102 0.0095  0.48
## C1_1       0.90      0.90    0.90      0.50 8.9   0.0098 0.0084  0.50
## C1_12      0.89      0.89    0.89      0.47 7.9   0.0110 0.0089  0.46
## C1_6       0.89      0.89    0.89      0.48 8.5   0.0102 0.0108  0.48
## C1_19      0.90      0.90    0.90      0.51 9.4   0.0093 0.0064  0.52
## 
##  Item statistics 
##         n raw.r std.r r.cor r.drop mean  sd
## C1_16 234  0.79  0.79  0.77   0.73  3.1 1.1
## C1_14 234  0.67  0.68  0.63   0.59  3.3 1.1
## C1_13 234  0.77  0.77  0.75   0.70  3.3 1.1
## C1_7  234  0.69  0.68  0.63   0.60  2.8 1.2
## C1_10 234  0.82  0.82  0.81   0.77  3.0 1.2
## C1_3  234  0.74  0.74  0.71   0.67  3.0 1.1
## C1_1  234  0.68  0.67  0.63   0.59  3.1 1.1
## C1_12 234  0.83  0.82  0.81   0.77  2.9 1.2
## C1_6  234  0.73  0.74  0.70   0.66  2.9 1.0
## C1_19 234  0.60  0.60  0.54   0.50  3.1 1.1
## 
## Non missing response frequency for each item
##          1    2    3    4    5 miss
## C1_16 0.08 0.19 0.35 0.28 0.10    0
## C1_14 0.07 0.11 0.36 0.34 0.12    0
## C1_13 0.07 0.16 0.32 0.30 0.14    0
## C1_7  0.18 0.22 0.27 0.23 0.09    0
## C1_10 0.15 0.17 0.28 0.31 0.09    0
## C1_3  0.14 0.14 0.35 0.30 0.07    0
## C1_1  0.12 0.16 0.35 0.30 0.08    0
## C1_12 0.17 0.20 0.31 0.24 0.09    0
## C1_6  0.10 0.26 0.35 0.23 0.05    0
## C1_19 0.07 0.22 0.37 0.25 0.09    0
panas |> 
  select(panas_keys |> filter(factor == "f2") |> pull(Item)) |> 
  psych::alpha()
## 
## Reliability analysis   
## Call: psych::alpha(x = select(panas, pull(filter(panas_keys, factor == 
##     "f2"), Item)))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.89      0.89    0.91      0.44   8 0.011  2.6 0.87     0.43
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.87  0.89  0.91
## Duhachek  0.87  0.89  0.91
## 
##  Reliability if an item is dropped:
##       raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## C1_20      0.88      0.89    0.90      0.46 7.7    0.011 0.013  0.43
## C1_18      0.88      0.88    0.90      0.45 7.4    0.012 0.017  0.43
## C1_2       0.88      0.88    0.89      0.45 7.4    0.012 0.015  0.43
## C1_9       0.88      0.88    0.90      0.45 7.4    0.012 0.016  0.43
## C1_4       0.88      0.88    0.89      0.45 7.2    0.012 0.016  0.43
## C1_5       0.88      0.88    0.89      0.44 7.0    0.012 0.016  0.41
## C1_11      0.88      0.88    0.89      0.44 7.1    0.012 0.015  0.43
## C1_15      0.87      0.88    0.89      0.44 7.0    0.012 0.011  0.43
## C1_8       0.87      0.87    0.89      0.43 6.9    0.013 0.013  0.43
## C1_17      0.87      0.87    0.89      0.43 6.8    0.013 0.012  0.41
## 
##  Item statistics 
##         n raw.r std.r r.cor r.drop mean  sd
## C1_20 234  0.60  0.62  0.56   0.51  1.9 1.1
## C1_18 234  0.69  0.68  0.62   0.59  2.5 1.4
## C1_2  234  0.67  0.68  0.64   0.58  2.8 1.1
## C1_9  234  0.68  0.67  0.62   0.59  2.2 1.2
## C1_4  234  0.70  0.70  0.66   0.61  3.1 1.2
## C1_5  234  0.73  0.74  0.71   0.66  2.5 1.2
## C1_11 234  0.72  0.72  0.68   0.65  3.1 1.2
## C1_15 234  0.74  0.74  0.72   0.66  2.5 1.2
## C1_8  234  0.76  0.76  0.74   0.69  2.7 1.3
## C1_17 234  0.78  0.77  0.76   0.71  2.4 1.3
## 
## Non missing response frequency for each item
##          1    2    3    4    5 miss
## C1_20 0.53 0.20 0.17 0.07 0.03    0
## C1_18 0.36 0.21 0.14 0.18 0.12    0
## C1_2  0.14 0.28 0.25 0.27 0.05    0
## C1_9  0.37 0.26 0.16 0.16 0.05    0
## C1_4  0.11 0.20 0.26 0.29 0.14    0
## C1_5  0.24 0.27 0.25 0.18 0.06    0
## C1_11 0.12 0.19 0.28 0.27 0.15    0
## C1_15 0.24 0.33 0.18 0.19 0.06    0
## C1_8  0.23 0.26 0.21 0.22 0.08    0
## C1_17 0.30 0.29 0.15 0.19 0.06    0
panas <- panas |>
  Ben::create_composite(selection = c(C1_16, C1_14, C1_13,C1_7,C1_10,C1_3,C1_1,C1_12,C1_6,C1_19), name = positive) |> 
  Ben::create_composite(selection = c(C1_20, C1_18, C1_2,C1_9,C1_4,C1_5,C1_11,C1_15,C1_8,C1_17), name = negative)

Familia

familia |> select(-id) |> psych::fa.parallel(plot= F, cor = 'poly')
## Parallel analysis suggests that the number of factors =  4  and the number of components =  1
familia |> select(-id) |> psych::fa()
## Factor Analysis using method =  minres
## Call: psych::fa(r = select(familia, -id))
## Standardized loadings (pattern matrix) based upon correlation matrix
##       MR1     h2   u2 com
## E1  -0.02 0.0006 1.00   1
## E2  -0.69 0.4817 0.52   1
## E3  -0.72 0.5204 0.48   1
## E4   0.45 0.2005 0.80   1
## E5   0.66 0.4368 0.56   1
## E6   0.59 0.3503 0.65   1
## E7   0.67 0.4513 0.55   1
## E8  -0.60 0.3641 0.64   1
## E9   0.81 0.6564 0.34   1
## E10 -0.64 0.4062 0.59   1
## E11  0.64 0.4099 0.59   1
## E12 -0.50 0.2495 0.75   1
## 
##                 MR1
## SS loadings    4.53
## Proportion Var 0.38
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## The degrees of freedom for the null model are  66  and the objective function was  4.39 with Chi Square of  1001.78
## The degrees of freedom for the model are 54  and the objective function was  0.58 
## 
## The root mean square of the residuals (RMSR) is  0.06 
## The df corrected root mean square of the residuals is  0.07 
## 
## The harmonic number of observations is  234 with the empirical chi square  122.32  with prob <  3.3e-07 
## The total number of observations was  234  with Likelihood Chi Square =  131.06  with prob <  2.4e-08 
## 
## Tucker Lewis Index of factoring reliability =  0.899
## RMSEA index =  0.078  and the 90 % confidence intervals are  0.061 0.095
## BIC =  -163.53
## Fit based upon off diagonal values = 0.97
## Measures of factor score adequacy             
##                                                    MR1
## Correlation of (regression) scores with factors   0.95
## Multiple R square of scores with factors          0.90
## Minimum correlation of possible factor scores     0.79
familia |> mutate_at(c(2,3,4,9,11,13),function(x)8-x) |> select(-1) |> psych::alpha()
## 
## Reliability analysis   
## Call: psych::alpha(x = select(mutate_at(familia, c(2, 3, 4, 9, 11, 
##     13), function(x) 8 - x), -1))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.86      0.86    0.87      0.34 6.1 0.013  4.2 1.1     0.38
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.83  0.86  0.89
## Duhachek  0.84  0.86  0.89
## 
##  Reliability if an item is dropped:
##     raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## E1       0.88      0.88    0.88      0.40 7.4    0.012 0.010  0.40
## E2       0.84      0.84    0.85      0.32 5.2    0.015 0.035  0.36
## E3       0.84      0.84    0.85      0.32 5.2    0.015 0.033  0.36
## E4       0.86      0.86    0.87      0.35 6.0    0.013 0.032  0.40
## E5       0.84      0.84    0.86      0.33 5.3    0.014 0.034  0.37
## E6       0.85      0.85    0.86      0.34 5.6    0.014 0.033  0.38
## E7       0.84      0.84    0.86      0.33 5.3    0.014 0.033  0.36
## E8       0.85      0.85    0.86      0.33 5.5    0.014 0.035  0.37
## E9       0.83      0.83    0.85      0.31 5.0    0.015 0.030  0.36
## E10      0.85      0.84    0.86      0.33 5.4    0.014 0.033  0.38
## E11      0.85      0.84    0.86      0.33 5.4    0.014 0.033  0.38
## E12      0.86      0.85    0.87      0.35 5.8    0.013 0.034  0.39
## 
##  Item statistics 
##       n raw.r std.r r.cor r.drop mean  sd
## E1  234  0.12  0.14 0.029 0.0076  5.3 1.5
## E2  234  0.73  0.74 0.716 0.6629  4.7 1.7
## E3  234  0.75  0.75 0.730 0.6783  4.4 1.8
## E4  234  0.51  0.50 0.433 0.3978  4.6 1.9
## E5  234  0.70  0.70 0.667 0.6228  3.9 1.7
## E6  234  0.63  0.63 0.585 0.5360  3.3 1.8
## E7  234  0.70  0.70 0.668 0.6200  3.7 1.9
## E8  234  0.66  0.65 0.610 0.5632  4.4 2.0
## E9  234  0.81  0.80 0.803 0.7499  4.2 1.8
## E10 234  0.66  0.67 0.637 0.5875  4.1 1.4
## E11 234  0.67  0.67 0.634 0.5882  4.0 1.8
## E12 234  0.56  0.56 0.494 0.4570  3.7 1.8
## 
## Non missing response frequency for each item
##        1    2    3    4    5    6    7 miss
## E1  0.02 0.04 0.06 0.17 0.21 0.24 0.27    0
## E2  0.06 0.04 0.10 0.19 0.24 0.21 0.15    0
## E3  0.09 0.07 0.15 0.19 0.21 0.15 0.15    0
## E4  0.07 0.12 0.10 0.15 0.18 0.21 0.18    0
## E5  0.14 0.10 0.16 0.17 0.26 0.13 0.04    0
## E6  0.24 0.14 0.13 0.22 0.16 0.07 0.05    0
## E7  0.23 0.05 0.15 0.16 0.23 0.12 0.06    0
## E8  0.10 0.09 0.15 0.17 0.12 0.17 0.20    0
## E9  0.11 0.09 0.15 0.20 0.20 0.12 0.14    0
## E10 0.06 0.06 0.18 0.31 0.21 0.14 0.04    0
## E11 0.11 0.12 0.19 0.18 0.21 0.09 0.11    0
## E12 0.13 0.15 0.26 0.16 0.10 0.12 0.09    0
familia <- 
  familia |>
  #invert items
  mutate_at(c(2,3,4,9,11,13),function(x)8-x) |> 
  Ben::create_composite(E1:E12,name = familia)

Flourishing

flour |> select(-1) |> psych::fa.parallel(plot = F, cor = 'poly')
## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
flour |> select(-1) |> psych::fa()
## Factor Analysis using method =  minres
## Call: psych::fa(r = select(flour, -1))
## Standardized loadings (pattern matrix) based upon correlation matrix
##       MR1   h2   u2 com
## D1_1 0.78 0.60 0.40   1
## D1_2 0.69 0.48 0.52   1
## D1_3 0.78 0.60 0.40   1
## D1_4 0.61 0.37 0.63   1
## D1_5 0.72 0.51 0.49   1
## D1_6 0.81 0.65 0.35   1
## D1_7 0.74 0.55 0.45   1
## D1_8 0.65 0.42 0.58   1
## 
##                 MR1
## SS loadings    4.20
## Proportion Var 0.52
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## The degrees of freedom for the null model are  28  and the objective function was  4.12 with Chi Square of  946.62
## The degrees of freedom for the model are 20  and the objective function was  0.37 
## 
## The root mean square of the residuals (RMSR) is  0.05 
## The df corrected root mean square of the residuals is  0.06 
## 
## The harmonic number of observations is  234 with the empirical chi square  38.24  with prob <  0.0083 
## The total number of observations was  234  with Likelihood Chi Square =  84.62  with prob <  6.4e-10 
## 
## Tucker Lewis Index of factoring reliability =  0.901
## RMSEA index =  0.117  and the 90 % confidence intervals are  0.093 0.144
## BIC =  -24.49
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                    MR1
## Correlation of (regression) scores with factors   0.95
## Multiple R square of scores with factors          0.90
## Minimum correlation of possible factor scores     0.81
flour |> select(-1) |> psych::alpha()
## 
## Reliability analysis   
## Call: psych::alpha(x = select(flour, -1))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean  sd median_r
##        0.9       0.9     0.9      0.52 8.7 0.01  4.9 1.1     0.53
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.87   0.9  0.92
## Duhachek  0.88   0.9  0.92
## 
##  Reliability if an item is dropped:
##      raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## D1_1      0.88      0.88    0.87      0.51 7.3    0.012 0.0052  0.52
## D1_2      0.88      0.89    0.88      0.53 7.7    0.011 0.0081  0.53
## D1_3      0.88      0.88    0.87      0.51 7.3    0.012 0.0051  0.52
## D1_4      0.89      0.89    0.89      0.54 8.3    0.011 0.0061  0.55
## D1_5      0.88      0.88    0.88      0.52 7.6    0.011 0.0074  0.54
## D1_6      0.88      0.88    0.87      0.50 7.1    0.012 0.0067  0.49
## D1_7      0.88      0.88    0.88      0.52 7.5    0.012 0.0067  0.52
## D1_8      0.89      0.89    0.88      0.53 8.0    0.011 0.0072  0.54
## 
##  Item statistics 
##        n raw.r std.r r.cor r.drop mean  sd
## D1_1 234  0.81  0.80  0.77   0.73  4.6 1.7
## D1_2 234  0.74  0.74  0.69   0.66  4.8 1.5
## D1_3 234  0.81  0.80  0.78   0.73  4.6 1.5
## D1_4 234  0.67  0.69  0.62   0.58  4.9 1.4
## D1_5 234  0.74  0.76  0.71   0.67  5.3 1.3
## D1_6 234  0.83  0.82  0.80   0.76  5.0 1.5
## D1_7 234  0.78  0.77  0.74   0.70  4.8 1.7
## D1_8 234  0.70  0.71  0.66   0.61  5.2 1.3
## 
## Non missing response frequency for each item
##         1    2    3    4    5    6    7 miss
## D1_1 0.06 0.11 0.09 0.13 0.25 0.25 0.11    0
## D1_2 0.03 0.07 0.08 0.14 0.28 0.32 0.08    0
## D1_3 0.03 0.07 0.13 0.16 0.29 0.22 0.09    0
## D1_4 0.03 0.03 0.07 0.18 0.31 0.31 0.07    0
## D1_5 0.01 0.03 0.06 0.10 0.27 0.39 0.14    0
## D1_6 0.03 0.06 0.06 0.17 0.19 0.38 0.12    0
## D1_7 0.04 0.11 0.06 0.14 0.23 0.31 0.11    0
## D1_8 0.01 0.04 0.02 0.17 0.25 0.41 0.09    0
flour <- flour |> Ben::create_composite(D1_1:D1_8,name = flour)

Merge

base_limpia <- left_join(demo,capacidad) |> 
  left_join(panas) |> 
  left_join(flour) |> 
  left_join(familia)
base_totales <- left_join(demo,capacidad |> select(id,cap1:cap5)) |> 
  left_join(panas |> select(id, positive, negative)) |> 
  left_join(flour |> select(id, flour)) |> 
  left_join(familia |> select(id,familia))

Evidencias de validez convergente y discriminante

Entre las variables

base_totales |> 
  select(-id,-A3) |> 
  fastDummies::dummy_cols(remove_selected_columns = T,remove_first_dummy = F) |> 
  select(cap1:familia) |> 
  Ben::harcor() |> 
  gt::gt()
1 2 3 4 5 6 7 8 9
1. cap1
2. cap2 .77***
3. cap3 .83*** .81***
4. cap4 .80*** .80*** .81***
5. cap5 .72*** .79*** .76*** .73***
6. positive .51*** .50*** .55*** .44*** .47***
7. negative -.43*** -.39*** -.44*** -.42*** -.39*** -.27***
8. flour .55*** .46*** .56*** .46*** .48*** .36*** -.42***
9. familia .11† .10 .16* .15* .09 .09 -.15* .20**
M 4.42 4.44 4.33 4.38 4.52 2.86 2.44 3.44 3.52
SD 0.78 0.84 0.91 0.92 0.88 0.75 0.79 0.77 0.81
n 234 234 234 234 234 234 234 234 234

Entre las capacidades y los demograficos

base_totales |> 
  select(-id,-A3) |> 
  fastDummies::dummy_cols(remove_selected_columns = T,remove_first_dummy = F) |> 
  select(-flour,-positive,-negative,-familia) |> 
  select(cap1:cap5,A6,everything()) |> 
  Ben::harcor() |> 
  slice(6:77) |> 
  select(1:6) |> 
  gt::gt()
1 2 3 4 5
6. A6 .00 .09 .07 .00 .05
7. A1_No .00 .00 -.01 -.08 .01
8. A1_Sí .00 .00 .01 .08 -.01
9. A2_Facultad de Arquitectura y Urbanismo -.09 -.15* -.10 -.13* -.10
10. A2_Facultad de Arte y Diseño .05 .06 .05 -.01 .02
11. A2_Facultad de Artes Escénicas .02 .06 .02 .09 .08
12. A2_Facultad de Ciencias Contables .07 .14* .08 .11† .09
13. A2_Facultad de Ciencias e Ingeniería -.05 -.05 -.02 -.07 -.05
14. A2_Facultad de Ciencias Sociales .05 -.03 .02 .03 .00
15. A2_Facultad de Ciencias y Artes de la Comunicación .06 .10 .10 .07 .07
16. A2_Facultad de Derecho -.05 -.04 .00 .03 -.03
17. A2_Facultad de Educación -.01 .09 .01 .05 .07
18. A2_Facultad de Estudios Interdisciplinarios .09 .05 .05 .03 .07
19. A2_Facultad de Gestión y Alta Dirección .01 .03 -.04 .02 -.03
20. A2_Facultad de Letras y Ciencias Humanas -.05 -.06 -.16* -.08 -.04
21. A2_Facultad de Psicología .00 .00 .03 -.01 .04
22. A4_Cuarto -.01 -.04 -.02 -.03 .00
23. A4_Décimo .11† .14* .12† .14* .10
24. A4_Noveno -.08 -.02 -.06 -.05 -.02
25. A4_Octavo .09 .15* .12† .16* .16*
26. A4_Quinto -.03 -.09 -.06 -.02 -.07
27. A4_Segundo .00 -.01 .02 -.05 -.01
28. A4_Séptimo .02 .03 -.01 -.02 -.02
29. A4_Sexto -.06 -.07 -.04 -.04 -.04
30. A4_Tercer -.01 -.06 -.03 -.05 -.07
31. A5_Femenino .04 .06 .03 .03 .13*
32. A5_Masculino -.02 -.03 .01 -.01 -.10
33. A5_No binario .01 -.03 -.05 -.04 -.02
34. A5_Prefiero no decir -.09 -.11† -.09 -.07 -.09
35. A7_No -.14* -.20** -.16* -.17** -.11
36. A7_Sí .14* .20** .16* .17** .11
37. A8_No -.15* -.20** -.20** -.15* -.15*
38. A8_Sí .15* .20** .20** .15* .15*
39. A9_19 -.02 -.01 -.11 -.17 -.03
40. A9_2006 .02 -.05 .01 -.11 -.06
41. A9_2007 .27† .22 .26† .23 .20
42. A9_2010 .05 -.25† -.11 -.06 -.29†
43. A9_2015 .00 .20 .14 .15 .04
44. A9_2016 -.11 -.20 -.16 -.23 -.11
45. A9_2017 .05 .09 .07 .02 .03
46. A9_2019 -.10 -.13 -.04 -.04 -.01
47. A9_2020 -.18 -.15 -.13 -.12 -.11
48. A9_2021 .17 .27† .26† .23 .30*
49. A9_2022 -.01 -.09 -.13 -.01 -.06
50. A9_2022-1 -.09 .04 -.14 -.03 -.26†
51. A9_Primero -.06 -.03 .01 -.09 .04
52. A9_NA -.15* -.20** -.20** -.15* -.15*
53. A10_Por horas -.24 -.12 -.27† -.18 -.14
54. A10_Tiempo completo (40hr) .30* .15 .30* .19 .10
55. A10_Tiempo parcial (20hr) -.01 -.01 .02 .03 .05
56. A10_NA -.15* -.20** -.20** -.15* -.15*
57. A11_4 -.62** -.42† -.15 -.28 -.15
58. A11_6 .43† .51* .71** .43† .52*
59. A11_8 .07 .04 -.15 -.28 .00
60. A11_8h .17 .04 -.21 .25 .07
61. A11_10 .07 -.42† -.09 -.39 -.38
62. A11_10-24 -.09 .16 -.21 .02 -.52*
63. A11_12 -.15 -.07 -.21 -.04 .00
64. A11_15 .02 .02 .05 -.06 .26
65. A11_16 .49* -.07 .03 .31 .00
66. A11_20 -.20 -.19 -.21 -.10 .14
67. A11_30 -.06 .26 .38 .33 .03
68. A11_36 -.04 .04 .03 -.28 .07
69. A11_55 -.04 -.13 -.27 -.16 -.15
70. A11_NA .00 -.07 -.03 -.02 -.03
M 4.42 4.44 4.33 4.38 4.52
SD 0.78 0.84 0.91 0.92 0.88
n 234 234 234 234 234