Factorización

La factorización es calcular todas las raices de un polinomio, es decir los valores que conviertan el polinomio a 0


Raices de un polinomio

Se dice que a es una raiz del polinomio P(x) cuando cumple con la ecuacion P(a)=0

Ejemplo

Sea P(x)= x-3 entonces la raiz a de este polinomio seria 3 pues P(a) es P(3) y asi P(3)= 3-3 = 0


Casos de factorización


Ejemplos

Sea P(x)= -4 - 2x + 4(x^2) + 2(x^3) , entonces con ayuda del paquete ā€œlibraryā€ tenemos lo siguiente


    library(polynom)
    p1=polynomial(coef=c(-4,-2,4,2))
    raices_p1=solve(p1)
    p1
## -4 - 2*x + 4*x^2 + 2*x^3
    raices_p1
## [1] -2 -1  1

El anterior codigo calcular las raices del polinomio p1, las cuales son -2, -1 y 1.

Se puede confirmar que estas son las raices, remplazando su valor en el polinomio


predict(p1, c(-2,-1,1))
## [1] 0 0 0
y como el resultado da 0 en los 3 casos, se evidencia que los 3 valores son raices del polinomio, finalmente,otra forma es la representacion grafica como se muestra a continuación

y asi se evidencia que los 3 puntos en azul, pertenecientes a los valores de las raices se ubican en la interseccion entre la grafica del polinomio(linea en negro) y la linea y=0 (rojo)

LS0tCnRpdGxlOiAiRmFjdG9yaXphY2nDs24gZGUgUG9saW5vbWlvcyIKYXV0aG9yOiAiS2hhcmVuIERhbmllbGEgQmVuYXZpZGVzIEFjb3N0YSIKZGF0ZTogIjIwMjIvMDgvMDEiCm91dHB1dDoKICBodG1sX2RvY3VtZW50OgogICAgY29kZV9kb3dubG9hZDogVFJVRSAKLS0tCgojICoqRmFjdG9yaXphY2nDs24qKgoKTGEgZmFjdG9yaXphY2nDs24gZXMgY2FsY3VsYXIgdG9kYXMgbGFzIHJhaWNlcyBkZSB1biBwb2xpbm9taW8sIGVzIGRlY2lyIGxvcyB2YWxvcmVzIHF1ZSBjb252aWVydGFuIGVsIHBvbGlub21pbyBhIDAKCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tCgojIyBSYWljZXMgZGUgdW4gcG9saW5vbWlvCgpTZSBkaWNlIHF1ZSBhIGVzIHVuYSByYWl6IGRlbCBwb2xpbm9taW8gUCh4KSBjdWFuZG8gY3VtcGxlIGNvbiBsYSBlY3VhY2lvbiBQKGEpPTAKCipFamVtcGxvKgoKU2VhIFAoeCk9IHgtMyBlbnRvbmNlcyBsYSByYWl6IGEgZGUgZXN0ZSBwb2xpbm9taW8gc2VyaWEgMyBwdWVzIFAoYSkgZXMgUCgzKSB5IGFzaSBQKDMpPSAzLTMgPSAwCgotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQoKIyMgQ2Fzb3MgZGUgZmFjdG9yaXphY2nDs24KCjxjZW50ZXI+CgohW10oaHR0cHM6Ly9lbmNyeXB0ZWQtdGJuMC5nc3RhdGljLmNvbS9pbWFnZXM/cT10Ym46QU5kOUdjU2NGTnFBaTNBeHVyZVcwZGpPMjJwY3k0UkFkejZpRXBIbHJnJnVzcXA9Q0FVKQoKPC9jZW50ZXI+CgotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQoKIyAqKkVqZW1wbG9zKioKClNlYSBQKHgpPSAtNCAtIDJ4ICsgNCh4XjIpICsgMih4XjMpICwgZW50b25jZXMgY29uIGF5dWRhIGRlbCBwYXF1ZXRlICJsaWJyYXJ5IiB0ZW5lbW9zIGxvIHNpZ3VpZW50ZQoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KYGBge3IsIGVjaG89VFJVRX0KICAgIGxpYnJhcnkocG9seW5vbSkKICAgIHAxPXBvbHlub21pYWwoY29lZj1jKC00LC0yLDQsMikpCiAgICByYWljZXNfcDE9c29sdmUocDEpCiAgICBwMQogICAgcmFpY2VzX3AxCgpgYGAKCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tCgpFbCBhbnRlcmlvciBjb2RpZ28gY2FsY3VsYXIgbGFzIHJhaWNlcyBkZWwgcG9saW5vbWlvIHAxLCBsYXMgY3VhbGVzIHNvbiAtMiwgLTEgeSAxLgoKU2UgcHVlZGUgY29uZmlybWFyIHF1ZSBlc3RhcyBzb24gbGFzIHJhaWNlcywgcmVtcGxhemFuZG8gc3UgdmFsb3IgZW4gZWwgcG9saW5vbWlvIAoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KCmBgYHtyLCBlY2hvPVRSVUV9CnByZWRpY3QocDEsIGMoLTIsLTEsMSkpCmBgYAotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KeSBjb21vIGVsIHJlc3VsdGFkbyBkYSAwIGVuIGxvcyAzIGNhc29zLCBzZSBldmlkZW5jaWEgcXVlIGxvcyAzIHZhbG9yZXMgc29uIHJhaWNlcyBkZWwgcG9saW5vbWlvLCBmaW5hbG1lbnRlLG90cmEgZm9ybWEgZXMgbGEgcmVwcmVzZW50YWNpb24gZ3JhZmljYSBjb21vIHNlIG11ZXN0cmEgYSBjb250aW51YWNpw7NuCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tCgpgYGB7ciwgZWNobz1GQUxTRX0KcGxvdChwMSkKYWJsaW5lKGg9MCxsdHk9NCxjb2w9InJlZCIpICNNYXJjYXIgZWwgZWplIFgKcG9pbnRzKC0xLDAsY29sPSJibHVlIixwY2g9OCkKcG9pbnRzKC0yLDAsY29sPSJibHVlIixwY2g9OCkKcG9pbnRzKDEsMCxjb2w9ImJsdWUiLHBjaD04KQoKbGVnZW5kKC0yLCAtMiwgbGVnZW5kPWMoIlBvbGlub21pbyIsICJyYWljZXMiLCAibGluZWEgZGUgY29ydGUiKSwgY29sPWMoImJsYWNrIiwgImJsdWUiLCAicmVkIiksIGx0eT1jKDEsNCxwY2g9OCkpCgpgYGAKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQp5IGFzaSBzZSBldmlkZW5jaWEgcXVlIGxvcyAzIHB1bnRvcyBlbiBhenVsLCBwZXJ0ZW5lY2llbnRlcyBhIGxvcyB2YWxvcmVzIGRlIGxhcyByYWljZXMgc2UgdWJpY2FuIGVuIGxhIGludGVyc2VjY2lvbiBlbnRyZSBsYSBncmFmaWNhIGRlbCBwb2xpbm9taW8obGluZWEgZW4gbmVncm8pIHkgbGEgbGluZWEgeT0wIChyb2pvKQoK