This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
Meta analisis packages:
# install.packages("meta")
# install.packages("metafor")
# install.packages("foreign")
Libraries
library(meta);library(metafor);library(foreign)
## Loading 'meta' package (version 5.5-0).
## Type 'help(meta)' for a brief overview.
## Readers of 'Meta-Analysis with R (Use R!)' should install
## older version of 'meta' package: https://tinyurl.com/dt4y5drs
## Loading required package: Matrix
## Loading required package: metadat
##
## Loading the 'metafor' package (version 3.4-0). For an
## introduction to the package please type: help(metafor)
Working directory
setwd("~/Dropbox/1 UNL/Tesis/Salome/")
Data
d <- read.csv("datos.1.08.2022.csv", sep=",")
Colnames
colnames(d)
## [1] "Autor" "Titulo"
## [3] "DOI" "Diseño.De.Estudio"
## [5] "Número.De.Participantes" "Población...años."
## [7] "Seroprevalencia" "Prevalencia"
## [9] "Incidencia" "Riesgo"
## [11] "Tasa.de.infección" "Provincia"
## [13] "Total" "Cases"
## [15] "Test" "X"
## [17] "PaÃs" "Resultado.Primario"
## [19] "Conclusión"
d <- d[,c(1,13,14)]
d <- d[c(-5,-6,-7),]
d$Cases <- round(d$Cases,0)
d$Total <- as.numeric(d$Total)
d$Cases <- as.numeric(d$Cases)
Fist model (single Proportions)
meta_d <- metaprop(event = d$Cases,
n = d$Total, studlab=d$Autor)
meta_d
## Number of studies combined: k = 9
## Number of observations: o = 10338
## Number of events: e = 1908
##
## proportion 95%-CI
## Common effect model 0.1846 [0.1772; 0.1922]
## Random effects model 0.1786 [0.1254; 0.2479]
##
## Quantifying heterogeneity:
## tau^2 = 0.3845; tau = 0.6201; I^2 = 97.8% [96.9%; 98.4%]; H = 6.67 [5.66; 7.85]
##
## Test of heterogeneity:
## Q d.f. p-value Test
## 355.61 8 < 0.0001 Wald-type
## 350.23 8 < 0.0001 Likelihood-Ratio
##
## Details on meta-analytical method:
## - Random intercept logistic regression model
## - Maximum-likelihood estimator for tau^2
## - Logit transformation
Forest Plot
metafor::forest(meta_d,comb.random=TRUE,comb.fixed=FALSE)
summary(meta_d)
## proportion 95%-CI
## Ortiz-Prado et al. 2021 0.1586 [0.1033; 0.2284]
## Acurio-Páez et al 2020 0.1319 [0.1187; 0.1459]
## Ortiz-Prado et al. 2022 0.4030 [0.3438; 0.4644]
## Ortiz-Prado et al. 2021 0.2366 [0.2152; 0.2592]
## Ortiz-Prado et al. 2022 0.1227 [0.0766; 0.1831]
## Vallejo-Janeta et al. 2021 0.1265 [0.0960; 0.1626]
## Rodriguez-Paredes et al. 2021 0.1614 [0.1501; 0.1731]
## Del Brutto et al. 2020 0.0773 [0.0520; 0.1099]
## Boonsaeng et al. 2021 0.3400 [0.3114; 0.3695]
##
## Number of studies combined: k = 9
## Number of observations: o = 10338
## Number of events: e = 1908
##
## proportion 95%-CI
## Common effect model 0.1846 [0.1772; 0.1922]
## Random effects model 0.1786 [0.1254; 0.2479]
##
## Quantifying heterogeneity:
## tau^2 = 0.3845; tau = 0.6201; I^2 = 97.8% [96.9%; 98.4%]; H = 6.67 [5.66; 7.85]
##
## Test of heterogeneity:
## Q d.f. p-value Test
## 355.61 8 < 0.0001 Wald-type
## 350.23 8 < 0.0001 Likelihood-Ratio
##
## Details on meta-analytical method:
## - Random intercept logistic regression model
## - Maximum-likelihood estimator for tau^2
## - Logit transformation
## - Clopper-Pearson confidence interval for individual studies
funnel(meta_d,comb.random=T,comb.fixed=F,studlab=F)
Second model Salomé investigar Method.bias
meta_d2 <- metaprop(event = d$Cases,
n = d$Total, studlab=d$Autor, method.bias = "Egger")
meta_d2
## Number of studies combined: k = 9
## Number of observations: o = 10338
## Number of events: e = 1908
##
## proportion 95%-CI
## Common effect model 0.1846 [0.1772; 0.1922]
## Random effects model 0.1786 [0.1254; 0.2479]
##
## Quantifying heterogeneity:
## tau^2 = 0.3845; tau = 0.6201; I^2 = 97.8% [96.9%; 98.4%]; H = 6.67 [5.66; 7.85]
##
## Test of heterogeneity:
## Q d.f. p-value Test
## 355.61 8 < 0.0001 Wald-type
## 350.23 8 < 0.0001 Likelihood-Ratio
##
## Details on meta-analytical method:
## - Random intercept logistic regression model
## - Maximum-likelihood estimator for tau^2
## - Logit transformation
Forest Plot
forest(meta_d2,comb.random=TRUE,comb.fixed=FALSE)
summary(meta_d2)
## proportion 95%-CI
## Ortiz-Prado et al. 2021 0.1586 [0.1033; 0.2284]
## Acurio-Páez et al 2020 0.1319 [0.1187; 0.1459]
## Ortiz-Prado et al. 2022 0.4030 [0.3438; 0.4644]
## Ortiz-Prado et al. 2021 0.2366 [0.2152; 0.2592]
## Ortiz-Prado et al. 2022 0.1227 [0.0766; 0.1831]
## Vallejo-Janeta et al. 2021 0.1265 [0.0960; 0.1626]
## Rodriguez-Paredes et al. 2021 0.1614 [0.1501; 0.1731]
## Del Brutto et al. 2020 0.0773 [0.0520; 0.1099]
## Boonsaeng et al. 2021 0.3400 [0.3114; 0.3695]
##
## Number of studies combined: k = 9
## Number of observations: o = 10338
## Number of events: e = 1908
##
## proportion 95%-CI
## Common effect model 0.1846 [0.1772; 0.1922]
## Random effects model 0.1786 [0.1254; 0.2479]
##
## Quantifying heterogeneity:
## tau^2 = 0.3845; tau = 0.6201; I^2 = 97.8% [96.9%; 98.4%]; H = 6.67 [5.66; 7.85]
##
## Test of heterogeneity:
## Q d.f. p-value Test
## 355.61 8 < 0.0001 Wald-type
## 350.23 8 < 0.0001 Likelihood-Ratio
##
## Details on meta-analytical method:
## - Random intercept logistic regression model
## - Maximum-likelihood estimator for tau^2
## - Logit transformation
## - Clopper-Pearson confidence interval for individual studies
funnel(meta_d2,comb.random=T,comb.fixed=F,studlab=F)
Revisar capitulo 5 de este libro efecto de pequeños estudios (Libro del paquete meta) https://link.springer.com/book/10.1007/978-3-319-21416-0