Regístrate en la página de FRED, consigue una llave y descarga la variable ‘VIXCLS’. Para mostrar tus

resultados imprime el nombre de la variable a la que se asigna la descarga. Nota: el id de esta variable es VIXCLS y es el índice de volatilidad VIX).

knitr::opts_chunk$set(echo = TRUE)
library(fredr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggthemes)
library(quantmod)
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(ggplot2)
library(tidyr)
fredr_set_key("7a7bbb3b1c59ac799cb516deafec8600")
VIX <- fredr(
  series_id = "VIXCLS",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25")
)

# Construye una matriz de datos financieros y económicos que incluya:

#• Nivel de la tasa de referencia de Estados Unidos.
tasa_referencia <- fredr(
  series_id = "FEDFUNDS",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25")
  
)

# • Nivel de tasas de interés en Estados Unidos con los siguientes vencimientos: 1m, 3m, 6m, 1y, 2y, 3y, 5y,7y, 10y, 20y y 30y.

rate1m <- fredr(
  series_id = "DGS1MO",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25")
    
)

rate3m <- fredr(
  series_id = "DGS3MO",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25")
  )

rate6m <- fredr(
  series_id = "DGS6MO",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25")
)

rate1y <- fredr(
  series_id = "DGS1",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25")
)

rate2y <- fredr(
  series_id = "DGS2",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25")
)

rate3y <- fredr(
  series_id = "DGS3",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25")
)

rate5y <- fredr(
  series_id = "DGS5",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25")
)

rate7y <- fredr(
  series_id = "DGS7",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25")
)

rate10y <- fredr(
  series_id = "DGS10",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25")
)

rate20y <- fredr(
  series_id = "DGS20",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25")
)

rate30y <- fredr(
  series_id = "DGS30",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25")
)

# • Nivel de la tasa hipotecaria de 30 años en E.E.U.U.
Tasa_hipotecaria <- fredr(
  series_id = "MORTGAGE30US",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25"))

# • Nivel de los ‘breakeven de inflación’ de 5 y 10 años de E.E.U.U.
breakeven_inflacion_5y <- fredr(
  series_id = "T5YIE",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25"))

breakeven_inflacion_10y <- fredr(
  series_id = "T10YIE",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25"))

#  • Nivel de la inflación forward de 5 años en 5 años de E.E.U.U.
inflacion_forward_5_5 <- fredr(
  series_id = "T5YIFR",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25"))

# • Nivel de la tasa de interés real en Estados Unidos-obtenida de bonos bursátiles- con vencimientos de 5 y 10 años;

tasa_interes_real5Y <- fredr(
  series_id = "DFII5",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25"))
tasa_interes_real10Y <- fredr(
  series_id = "DFII10",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25"))

# # Diferencial entre los siguientes tipos de deuda y bonos gubernamentales en divisa local: alto rendimiento en E.E.U.U., grado de inversión en E.E.U.U., alto rendimiento en Europa y alto rendimiento en mercados emergentes. Nota: trata de no obtener varios vencimientos y busca un indicador que sea un resumen (ej. un promedio de distintos vencimientos).


alto_rendimiento_en_EEUU <- fredr(
  series_id = "BAMLH0A2HYB",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25"))

 
grado_inversion_en_EEUU <- fredr(
  series_id = "BAMLC0A0CM",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25"))


alto_rendimiento_europa <- fredr(
  series_id = "BAMLHE00EHYIOAS",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25"))


alto_rendimiento_mercados_emergentes <- fredr(
  series_id = "BAMLEMHBHYCRPIOAS",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25"))

# Nivel de las principales referencias de petróleo (WTI, Brent).
wti <- fredr(
  series_id = "DCOILWTICO",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25"))
brent <- fredr(
  series_id = "DCOILBRENTEU",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25"))

#Tasa de desempleo 
tasa_desempleo <- fredr(
  series_id = "UNRATE",
  observation_start = as.Date("2003-01-02"),
  observation_end = as.Date("2022-07-25"))

lista <- as.list(.GlobalEnv)
lista_obj <- as.vector(names(lista))
for (i in 1:length(lista)){
  abc <- get(lista_obj[i])
  abc <- abc %>% select(colnames(abc)[1],colnames(abc)[2],colnames(abc)[3])
  colnames(abc)<- c("date", paste0("series_id_",abc[1,2]) ,lista_obj[i])
  abc <- abc[-2]
  assign(lista_obj[i], abc)
}
rm(abc,i)
matriz <- get(lista_obj[1])
for (i in 2:length(lista_obj)){
  matriz <- matriz %>% full_join(get(lista_obj[i]),
                                                         by = "date")
}

“# # Para mostrar tus resultados imprime los siguientes comandos: print(tu_matriz_de_datos) print(tu_matriz_de_datos[8000:8050,]) print(tail(tu_matriz_de_datos))

print(head(matriz))
## # A tibble: 6 × 27
##   date       tasa_int…¹ rate2y brent rate3m grado…² rate1m break…³ rate10y   VIX
##   <date>          <dbl>  <dbl> <dbl>  <dbl>   <dbl>  <dbl>   <dbl>   <dbl> <dbl>
## 1 2003-01-02       2.43   1.8   30.3   1.22    1.86   1.18    1.64    4.07  25.4
## 2 2003-01-03       2.43   1.79  31.4   1.22    1.85   1.18    1.62    4.05  24.7
## 3 2003-01-06       2.46   1.84  31.4   1.21    1.82   1.17    1.63    4.09  24.9
## 4 2003-01-07       2.42   1.77  30.8   1.19    1.81   1.17    1.62    4.04  25.1
## 5 2003-01-08       2.29   1.71  29.3   1.19    1.8    1.17    1.71    4     25.5
## 6 2003-01-09       2.41   1.87  30.3   1.2     1.77   1.18    1.78    4.19  24.2
## # … with 17 more variables: rate30y <dbl>, inflacion_forward_5_5 <dbl>,
## #   rate7y <dbl>, rate5y <dbl>, rate3y <dbl>, rate1y <dbl>, rate6m <dbl>,
## #   wti <dbl>, alto_rendimiento_en_EEUU <dbl>, tasa_referencia <dbl>,
## #   Tasa_hipotecaria <dbl>, alto_rendimiento_europa <dbl>,
## #   tasa_interes_real5Y <dbl>, tasa_desempleo <dbl>,
## #   alto_rendimiento_mercados_emergentes <dbl>, rate20y <dbl>,
## #   breakeven_inflacion_5y <dbl>, and abbreviated variable names …
## # ℹ Use `colnames()` to see all variable names
print(matriz[8000:8050,])
## # A tibble: 51 × 27
##    date   tasa_intere…¹ rate2y brent rate3m grado…² rate1m break…³ rate10y   VIX
##    <date>         <dbl>  <dbl> <dbl>  <dbl>   <dbl>  <dbl>   <dbl>   <dbl> <dbl>
##  1 NA                NA     NA    NA     NA      NA     NA      NA      NA    NA
##  2 NA                NA     NA    NA     NA      NA     NA      NA      NA    NA
##  3 NA                NA     NA    NA     NA      NA     NA      NA      NA    NA
##  4 NA                NA     NA    NA     NA      NA     NA      NA      NA    NA
##  5 NA                NA     NA    NA     NA      NA     NA      NA      NA    NA
##  6 NA                NA     NA    NA     NA      NA     NA      NA      NA    NA
##  7 NA                NA     NA    NA     NA      NA     NA      NA      NA    NA
##  8 NA                NA     NA    NA     NA      NA     NA      NA      NA    NA
##  9 NA                NA     NA    NA     NA      NA     NA      NA      NA    NA
## 10 NA                NA     NA    NA     NA      NA     NA      NA      NA    NA
## # … with 41 more rows, 17 more variables: rate30y <dbl>,
## #   inflacion_forward_5_5 <dbl>, rate7y <dbl>, rate5y <dbl>, rate3y <dbl>,
## #   rate1y <dbl>, rate6m <dbl>, wti <dbl>, alto_rendimiento_en_EEUU <dbl>,
## #   tasa_referencia <dbl>, Tasa_hipotecaria <dbl>,
## #   alto_rendimiento_europa <dbl>, tasa_interes_real5Y <dbl>,
## #   tasa_desempleo <dbl>, alto_rendimiento_mercados_emergentes <dbl>,
## #   rate20y <dbl>, breakeven_inflacion_5y <dbl>, and abbreviated variable …
## # ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
print(tail(matriz))
## # A tibble: 6 × 27
##   date       tasa_int…¹ rate2y brent rate3m grado…² rate1m break…³ rate10y   VIX
##   <date>          <dbl>  <dbl> <dbl>  <dbl>   <dbl>  <dbl>   <dbl>   <dbl> <dbl>
## 1 2020-08-01         NA     NA    NA     NA      NA     NA      NA      NA    NA
## 2 2020-11-01         NA     NA    NA     NA      NA     NA      NA      NA    NA
## 3 2021-05-01         NA     NA    NA     NA      NA     NA      NA      NA    NA
## 4 2021-08-01         NA     NA    NA     NA      NA     NA      NA      NA    NA
## 5 2022-01-01         NA     NA    NA     NA      NA     NA      NA      NA    NA
## 6 2022-05-01         NA     NA    NA     NA      NA     NA      NA      NA    NA
## # … with 17 more variables: rate30y <dbl>, inflacion_forward_5_5 <dbl>,
## #   rate7y <dbl>, rate5y <dbl>, rate3y <dbl>, rate1y <dbl>, rate6m <dbl>,
## #   wti <dbl>, alto_rendimiento_en_EEUU <dbl>, tasa_referencia <dbl>,
## #   Tasa_hipotecaria <dbl>, alto_rendimiento_europa <dbl>,
## #   tasa_interes_real5Y <dbl>, tasa_desempleo <dbl>,
## #   alto_rendimiento_mercados_emergentes <dbl>, rate20y <dbl>,
## #   breakeven_inflacion_5y <dbl>, and abbreviated variable names …
## # ℹ Use `colnames()` to see all variable names

# Para mostrar tus resultados grafica-en elementos separados-la serie del UST 2y (usa verde) y de la tasa de

desempleo (usa rojo). Nota: en tu gráfica deben ser claras las unidades, los elementos de cada eje y debes usar los colores indicados.

## Warning: Removed 1 row(s) containing missing values (geom_path).


## R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see <http://rmarkdown.rstudio.com>.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:


```r
summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.