ggplot(data = fitness)+
  geom_bar(mapping = aes(age, fill= gender),
  stat = "count", position = "dodge")+
  labs(title= "Demographic of participants", x="Age", y = "Total")

 ggplot(data = fitness)+
  geom_bar(mapping = aes(time_of_day, fill = gender)           ,
  stat = "count", position = "dodge")+
  facet_wrap(~age,1)+
  labs(title= "Time of Day", x="Age", y = "Total")+
  theme(axis.text = element_text(angle = 30))

ggplot(data = fitness, aes(x= importance_of_fitness, fill = gender, color = gender))+
  geom_line(stat= "count")+
  labs(title = "Importance of Fitness", x = "Rating", y= "Total")

ggplot(data = fitness) +
  geom_bar(mapping = aes(current_fit_level, fill= gender))+
  facet_wrap(~gender)

 ggplot(data = fitness)+
    geom_point(mapping = aes(frenquency ,fill = gender, color = gender), 
    stat = "count", position= position_dodge(width = 1))+
    theme(axis.text.x = element_text(angle = 90, vjust = 1))+
    labs(title= "Frequency", x="Frequency", y = "Total")

avg_health_level<-aggregate.data.frame(fitness$health_level,list(fitness$gender), FUN=mean)
colnames(avg_health_level) <- c("Gender", "Average Health Level")
kable((avg_health_level), align = rep('c',2))
Gender Average Health Level
Female 3.165563
Male 3.374486
avg_importance_level <-aggregate.data.frame(fitness$importance_of_fitness,list(fitness$gender), FUN=mean)
colnames(avg_importance_level) <- c("Gender", "Average Importance Level")
kable((avg_importance_level), align = rep('c',2))
Gender Average Importance Level
Female 3.751656
Male 4.049383
(agebrkdwn<- fitness %>% 
  group_by(age, gender) %>% 
  summarise(count = n())) %>% 
  arrange(gender)
## # A tibble: 10 × 3
## # Groups:   age [5]
##    age          gender count
##    <chr>        <chr>  <int>
##  1 15 to 18     Female   111
##  2 19 to 25     Female   118
##  3 26 to 30     Female    12
##  4 30 to 40     Female    22
##  5 40 and above Female    39
##  6 15 to 18     Male      56
##  7 19 to 25     Male     118
##  8 26 to 30     Male       8
##  9 30 to 40     Male      15
## 10 40 and above Male      46
cur_level <- fitness %>% 
  group_by(current_fit_level, gender) %>% 
  summarise(count= n())
cur_level %>% arrange(gender) 
## # A tibble: 10 × 3
## # Groups:   current_fit_level [5]
##    current_fit_level gender count
##    <chr>             <chr>  <int>
##  1 Average           Female   117
##  2 Good              Female   122
##  3 Perfect           Female     9
##  4 Unfit             Female    28
##  5 Very good         Female    26
##  6 Average           Male      78
##  7 Good              Male      98
##  8 Perfect           Male      14
##  9 Unfit             Male      26
## 10 Very good         Male      27