El problema del hogar
\[
V_t = E_t [\sum_{k=0}^{\infty} \beta^{k}(\frac{C_{t+k}^{1-\sigma}}{1 - \sigma} - \frac{N_{t+k}^{1+v}}{1 + v})]
\]
\[
C_t + B_t = W_t \times N_t + \pi_t - T_t + (1 + r_{t-1}) \times B_{t-1}
\]
Condiciones de primer orden del hogar
\[
C_t^{-\theta} = \beta \times E_t \times [C_{t+1}^{-\theta} \times (1 + r_t)]
\]
\[
C_t^{-\theta} \times W_t = N_t^v
\]
El problema de las firmas
\[
\Omega_t = E_t \times [\sum_{k=0}^\infty \beta^k (\frac{C_{t+k}}{C_t})^{-\sigma}](Y_{t+k} - W_{t+k} \times H_{t+k} - I_{t+k})
\]
\[
Y_{t+k} = A_{t+k} \times K_{t-1+k}^\alpha \times H_{t+k}^{1 - \alpha}
\]
\[
K_{t+k} = I_{t+k} + (1 - \delta) \times K_{t-1+k}
\]
\[
ln(A_{t+k}) = \rho ln (A_{t-1+k}) + \xi_{t+k}
\]
\[
(1 - \alpha) \frac{Y_t}{H_t} = W_t
\]
\[
1 = \beta \times E_t \times [(\frac{C_{t+1}}{C_t})^{-\sigma}\times(\alpha \times \frac{Y_{t+1}}{K_t} + 1 - \delta)]
\]
Condiciones de equilibrio
\[
B_t = 0
\]
\[
Y_t = C_t + I_t + G_t
\]
\[
N_t = H_t
\]
LS0tDQp0aXRsZTogIlByw6FjdGljYSAwIg0Kc3VidGl0bGU6ICJTdWIgaW50ZW50byINCmF1dGhvcjogIkNhcmxvcyBGZXJuYW5kbyBBZ3VpcnJlIENvdmXDsWFzIg0KZGF0ZTogIkHDsW8gMjAyMiINCm91dHB1dDoNCiAgaHRtbF9kb2N1bWVudDoNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQotLS0NCg0KKipFbCBwcm9ibGVtYSBkZWwgaG9nYXIqKg0KDQokJA0KVl90ID0gRV90IFtcc3VtX3trPTB9XntcaW5mdHl9IFxiZXRhXntrfShcZnJhY3tDX3t0K2t9XnsxLVxzaWdtYX19ezEgLSBcc2lnbWF9IC0gXGZyYWN7Tl97dCtrfV57MSt2fX17MSArIHZ9KV0NCiQkDQoNCiQkDQpDX3QgKyBCX3QgPSBXX3QgXHRpbWVzIE5fdCArIFxwaV90IC0gVF90ICsgKDEgKyByX3t0LTF9KSBcdGltZXMgQl97dC0xfQ0KJCQNCg0KKipDb25kaWNpb25lcyBkZSBwcmltZXIgb3JkZW4gZGVsIGhvZ2FyKioNCg0KJCQNCkNfdF57LVx0aGV0YX0gPSBcYmV0YSBcdGltZXMgRV90IFx0aW1lcyBbQ197dCsxfV57LVx0aGV0YX0gXHRpbWVzICgxICsgcl90KV0NCiQkDQoNCiQkDQpDX3Reey1cdGhldGF9IFx0aW1lcyBXX3QgPSBOX3Redg0KJCQNCg0KKipFbCBwcm9ibGVtYSBkZSBsYXMgZmlybWFzKioNCg0KJCQNClxPbWVnYV90ID0gRV90IFx0aW1lcyBbXHN1bV97az0wfV5caW5mdHkgXGJldGFeayAoXGZyYWN7Q197dCtrfX17Q190fSleey1cc2lnbWF9XShZX3t0K2t9IC0gV197dCtrfSBcdGltZXMgSF97dCtrfSAtIElfe3Qra30pDQokJA0KDQokJA0KWV97dCtrfSA9IEFfe3Qra30gXHRpbWVzIEtfe3QtMStrfV5cYWxwaGEgXHRpbWVzIEhfe3Qra31eezEgLSBcYWxwaGF9IA0KJCQNCg0KJCQNCktfe3Qra30gPSBJX3t0K2t9ICsgKDEgLSBcZGVsdGEpIFx0aW1lcyBLX3t0LTEra30NCiQkDQoNCiQkDQpsbihBX3t0K2t9KSA9IFxyaG8gbG4gKEFfe3QtMStrfSkgKyBceGlfe3Qra30NCiQkDQoNCiQkDQooMSAtIFxhbHBoYSkgXGZyYWN7WV90fXtIX3R9ID0gV190DQokJA0KDQokJA0KMSA9IFxiZXRhIFx0aW1lcyBFX3QgXHRpbWVzIFsoXGZyYWN7Q197dCsxfX17Q190fSleey1cc2lnbWF9XHRpbWVzKFxhbHBoYSBcdGltZXMgXGZyYWN7WV97dCsxfX17S190fSArIDEgLSBcZGVsdGEpXQ0KJCQNCg0KKipDb25kaWNpb25lcyBkZSBlcXVpbGlicmlvKioNCg0KJCQNCkJfdCA9IDAgDQokJA0KDQokJA0KWV90ID0gQ190ICsgSV90ICsgR190DQokJA0KDQokJA0KTl90ID0gSF90DQokJA0K