This experiment recruits participants to a chatbot survey using Facebook ads. After clicking on the Facebook ad, a participant is randomized into one of 5 treatment arms (the appendix considers 7 treatment arms).
The power analysis varies along two dimensions:
There are three outcomes, which are correlated: Pr(unvax complete|click), Pr(unvax website click|complete), and Pr(unvax useful free text|complete). We have an estimate of 14% for Pr(unvax complete|click) from the pilots and a rough estimate of 50% for Pr(unvax useful free text|complete), but we do not have an estimate for Pr(unvax website click|complete).
In the following power calculations, the hypothesized level of Pr(unvax complete|click) ranges from 0.04 to 0.20, with treatment effects ranging from 2 to 8 percentage points when comparing adjacent treatments (i.e. treatment 1 to 2, or 2 to 3). The hypothesized level of Pr(unvax useful free text|complete) ranges from 0.35 to 0.55, with treatment effects ranging from 2 to 10 percentage points when comparing adjacent treatments. The hypothesized level of Pr(unvax website click|complete) ranges from 0.05 to 0.35, with treatment effects ranging from 3 to 10 percentage points when comparing adjacent treatments. I do not anticipate that the Pr(unvax website click|complete) outcome will necessarily achieve a high of 0.35, but the outcome we end up using in its place (based on pilot results) should.
For the number of observations, we consider 50k to 150k clicks in 25k intervals.
The pre-analysis plan specifies two research questions, with five hypotheses (one in two parts) to answer them. I list the research questions and accompanying hypotheses below.
Note: The current code only includes the first four hypotheses for research question 2. It will be updated soon.
I recommend that the main experiment aim for 75k clicks at an approximate cost of $15k at $0.146 per click (plus mobile airtime costs which would amount to no more than $1500 at the most optimistic completion rate of 20%).
To assess the power for testing multiple correlated hypotheses, I simulate data, test the hypotheses, correct the p-values, and repeat for r repetitions, then calculate the proportion of repetitions in which I reject each hypothesis. The variables needed in the simulated data are the treatment assignment and the three outcomes.
The data generation process is as follows:
Power is calculated using the following parameters:
Results are reported for uncorrected p-values and for p-values corrected using Bonferonni, Holm, and Hochberg.
Hypothesis 1. Participants in Treatment 4 provide more information, higher-quality information, and are more receptive to new information about the vaccine compared to participants in Treatment 1.
Hypothesis 2. Participants in Treatment 3 provide more information, higher-quality information, and are more receptive to new information about the vaccine compared to participants in Treatment 2.
Hypothesis 3. Participants in Treatment 4 provide more information, higher-quality information, and are more receptive to new information about the vaccine compared to participants in Treatment 3.
Hypothesis 4. Participants in Treatment 4 provide more information, higher-quality information, and are more receptive to new information about the vaccine compared to participants in Treatment 5.
Hypothesis 5. (A) Participants in Treatment 2 provide more information, higher-quality information, and are more receptive to new information about the vaccine compared to participants in Treatment 1. (B) Moreover, the difference between participants in Treatment 2 and participants in Treatment 1 is greater than the difference between participants in Treatment 4 and participants in Treatment 5. –>
set.seed(94305)
### DEFINE PARAMETERS ###
n <- seq(50000, 150000, 25000)
# outcomes
outcomes <- matrix(c( 0.08, 0.12, 0.14, 0.16, 0.14, # Pr(unvax complete|click)
0.14, 0.19, 0.22, 0.25, 0.22, # Pr(unvax web click|complete)
0.44, 0.48, 0.5, 0.52, 0.5), # Pr(useful free text| complete)
nrow = 3, byrow = T)
outcomes2 <- matrix(c( 0.04, 0.12, 0.16, 0.2, 0.16, # Pr(unvax complete|click)
0.05, 0.15, 0.2, 0.25, 0.2, # Pr(unvax web click|complete)
0.35, 0.45, 0.5, 0.55, 0.5), # Pr(useful free text| complete)
nrow = 3, byrow = T)
# example second outcomes matrix
outcomes3 <- matrix(c( 0.04, 0.12, 0.16, 0.2, 0.14, # Pr(unvax complete|click)
0.22, 0.29, 0.32, 0.35, 0.32,
0.3, 0.4, 0.45, 0.55, 0.5), # Pr(useful free text| complete)
nrow = 3, byrow = T)
outcomes_list <- list(outcomes, outcomes2, outcomes3)
# treatments
t_list <- lapply(outcomes_list, FUN=function(x){c(1:ncol(x))})
# alpha
alpha <- 0.05
# number of replications
r <- 1000
### DEFINE FUNCTION ###
trial <- function(N, outcomes, t){
### Simulate Data
# create dataframe
d <- data.frame(matrix(nrow = N, ncol = 0))
# treatment assignment
d$treat <- sample(t, N, replace=T, prob = c(3/14,3/14,2/14,4/14,2/14))
# generate data with completion outcome
d <- d %>%
mutate(complete = rbinom(n(),1,outcomes[1,treat]))
d_complete <- d %>%
group_by(treat) %>%
summarise(
complete = sum(complete),
clicks = n()
)
# generate data with website click outcome
d_website <- d %>%
filter(complete == 1) %>%
mutate(webclick = rbinom(n(),1,outcomes[2,treat])) %>%
group_by(treat) %>%
summarise(
webclick = sum(webclick),
completes = n()
)
# generate data with useful information outcome
d_useful <- d %>%
filter(complete == 1) %>%
mutate(useful = rbinom(n(),1,outcomes[3,treat])) %>%
group_by(treat) %>%
summarise(
useful = sum(useful),
completes = n()
)
### Calculate p-values
# create matrix for p-values
p_values <- matrix(nrow = nrow(outcomes),ncol = length(t) * (length(t) - 1)/2)
# calculate for completions outcome
d_subset <- cbind(d_complete[,2], d_complete[,3])
p_values[1,] <- na.omit(as.numeric(pairwise.prop.test(d_subset[,1], d_subset[,2],
p.adj = "none")$p.value))
# calculate for completions outcome
d_subset <- cbind(d_website[,2], d_website[,3])
p_values[2,] <- na.omit(as.numeric(pairwise.prop.test(d_subset[,1], d_subset[,2],
p.adj = "none")$p.value))
# calculate for useful outcome
d_subset <- cbind(d_useful[,2], d_useful[,3])
p_values[3,] <- na.omit(as.numeric(pairwise.prop.test(d_subset[,1], d_subset[,2],
p.adj = "none")$p.value))
### MHT corrections
return(rbind(p.adjust(p_values[1,], method = "none"),
p.adjust(p_values[1,], method = "bonferroni"),
p.adjust(p_values[1,], method = "holm"),
p.adjust(p_values[1,], method = "hochberg"),
p.adjust(p_values[2,], method = "none"),
p.adjust(p_values[2,], method = "bonferroni"),
p.adjust(p_values[2,], method = "holm"),
p.adjust(p_values[2,], method = "hochberg"),
p.adjust(p_values[3,], method = "none"),
p.adjust(p_values[3,], method = "bonferroni"),
p.adjust(p_values[3,], method = "holm"),
p.adjust(p_values[3,], method = "hochberg")))
}
### POWER CALCULATIONS ###
for (i in n){
for(o in 1:length(outcomes_list)){
treatments <- t_list[[o]]
outcome_matrix <- outcomes_list[[o]]
# complete r replications of n trials
results <- replicate(r, trial(i, outcomes = outcome_matrix, t = treatments))
# create matrix to store power calculations
power_calc <- matrix(NA,
nrow = nrow(outcome_matrix)*4,
ncol = (length(treatments) * (length(treatments) - 1)/2))
# for each pairwise treatment comparison
for(j in 1:(length(treatments) * (length(treatments) - 1)/2)){
# for each mht correction
for(k in 1:4){
# calculate power for completions outcome
power_calc[k, j] <- sum(results[k, j, ] < alpha)/r
# calculate power for website clicks outcome
power_calc[4+k,j] <- sum(results[k+4,j,]<alpha)/r
# calculate power for useful free text
power_calc[8+k,j] <- sum(results[k+8,j,]<alpha)/r
}
}
power_calc <- data.frame(outcome = c(rep('Unvax completes|Click',4),
rep('Unvax web clicks|Complete', 4),
rep('Unvax useful freetext|Complete', 4)),
test = rep(c("None","Bonferonni", "Holm", "Hochberg"), 3),
power_calc)
colnames(power_calc) <- c("Outcome","Correction", 'T1 v. T2', 'T1 v. T3', 'T1 v. T4','T1 v. T5','T2 v. T3','T2 v. T4','T2 v. T5','T3 v. T4','T3 v. T5','T4 v. T5')
kable(power_calc, format = "html", caption = paste("Power Calculations: ",i/1000," Thousand Clicks", "Matrix", o), digits = 3) %>%
kable_styling()%>%
collapse_rows(columns = 1)%>%
scroll_box(height = "100%")%>%
print()
}
}
set.seed(94305)
### DEFINE PARAMETERS ###
# parameters defined in previous code chunk
### DEFINE FUNCTION ###
trial_subset <- function(N, outcomes, t){
### Simulate Data
# create dataframe
d <- data.frame(matrix(nrow = N, ncol = 0))
# treatment assignment
d$treat <- sample(t, N, replace=T)
# generate data with completion outcome
d <- d %>%
mutate(complete = rbinom(n(),1,outcomes[1,treat]))
d_complete <- d %>%
group_by(treat) %>%
summarise(
complete = sum(complete),
clicks = n()
)
# generate data with website click outcome
d_website <- d %>%
filter(complete == 1) %>%
mutate(webclick = rbinom(n(),1,outcomes[2,treat])) %>%
group_by(treat) %>%
summarise(
webclick = sum(webclick),
completes = n()
)
# generate data with useful information outcome
d_useful <- d %>%
filter(complete == 1) %>%
mutate(useful = rbinom(n(),1,outcomes[3,treat])) %>%
group_by(treat) %>%
summarise(
useful = sum(useful),
completes = n()
)
### Calculate p-values
# create matrix for p-values
p_values <- matrix(nrow = nrow(outcomes),ncol = length(t) - 1)
# calculate for completions outcome
d_subset <- cbind(d_complete[,2], d_complete[,3])
p <- pairwise.prop.test(d_subset[,1], d_subset[,2],
p.adj = "none")$p.value
p_values[1,] <- diag(p)
# calculate for webclicks outcome
d_subset <- cbind(d_website[,2], d_website[,3])
p <- pairwise.prop.test(d_subset[,1], d_subset[,2],
p.adj = "none")$p.value
p_values[2,] <- diag(p)
# calculate for useful information outcome
d_subset <- cbind(d_useful[,2], d_useful[,3])
p <- pairwise.prop.test(d_subset[,1], d_subset[,2],
p.adj = "none")$p.value
p_values[3,] <- diag(p)
### MHT corrections
return(rbind(p.adjust(p_values[1,], method = "none"),
p.adjust(p_values[1,], method = "bonferroni"),
p.adjust(p_values[1,], method = "holm"),
p.adjust(p_values[1,], method = "hochberg"),
p.adjust(p_values[2,], method = "none"),
p.adjust(p_values[2,], method = "bonferroni"),
p.adjust(p_values[2,], method = "holm"),
p.adjust(p_values[2,], method = "hochberg"),
p.adjust(p_values[3,], method = "none"),
p.adjust(p_values[3,], method = "bonferroni"),
p.adjust(p_values[3,], method = "holm"),
p.adjust(p_values[3,], method = "hochberg")))
}
### POWER CALCULATIONS ###
for (i in n){
for(o in 1:length(outcomes_list)){
treatments <- t_list[[o]]
outcome_matrix <- outcomes_list[[o]]
# complete r replications of n trials
results <- replicate(r, trial_subset(i, outcomes = outcome_matrix, t = treatments))
# create matrix to store power calculations
power_calc <- matrix(NA,
nrow = nrow(outcome_matrix)*4,
ncol = length(treatments)-1)
# for each pairwise treatment comparison
# for each pairwise treatment comparison
for(j in 1:(length(treatments) - 1)){
# for each mht correction
for(k in 1:4){
# calculate power for completions outcome
power_calc[k, j] <- sum(results[k, j, ] < alpha)/r
# calculate power for website clicks outcome
power_calc[4+k, j] <- sum(results[k+4, j, ] < alpha)/r
# calculate power for useful informaton outcome
power_calc[8+k, j] <- sum(results[k+8, j, ] < alpha)/r
}
}
# Generate Graph
power_calc <- data.frame(outcome = c(rep('Unvax completes|Click',4),
rep('Unvax web clicks|Complete', 4),
rep('Unvax useful freetext|Complete', 4)),
test = rep(c("None","Bonferonni", "Holm", "Hochberg"), 3),
power_calc)
colnames(power_calc) <- c("Outcome","Correction",
'T1 v. T2', 'T2 v. T3','T3 v. T4','T4 v. T5')
kable(power_calc, format = "html", caption = paste("Power Calculations: ",i/1000," Thousand Clicks", "Matrix", o), digits = 3)%>%
kable_styling()%>%
collapse_rows(columns = 1)%>%
scroll_box(height = "100%")%>%
print()
}
}
set.seed(94305)
### DEFINE PARAMETERS ###
#n <- c(40000)
#n <- c(seq(10000, 40000, 10000), seq(50000, 150000, 25000))
n<- c(seq(50000, 150000, 25000))
# outcomes
outcomes <- matrix(c( 0.08, 0.12, 0.14, 0.16, 0.14, # Pr(unvax complete|click)
0.14, 0.19, 0.22, 0.25, 0.22, # Pr(unvax web click|complete)
0.44, 0.48, 0.5, 0.52, 0.5), # Pr(useful free text| complete)
nrow = 3, byrow = T)
outcomes2 <- matrix(c( 0.04, 0.12, 0.16, 0.2, 0.16, # Pr(unvax complete|click)
0.05, 0.15, 0.2, 0.25, 0.2, # Pr(unvax web click|complete)
0.35, 0.45, 0.5, 0.55, 0.5), # Pr(useful free text| complete)
nrow = 3, byrow = T)
outcomes3 <- matrix(c( 0.04, 0.12, 0.16, 0.2, 0.14, # Pr(unvax complete|click)
0.22, 0.29, 0.32, 0.35, 0.32,
0.3, 0.4, 0.45, 0.55, 0.5), # Pr(useful free text| complete)
nrow = 3, byrow = T)
outcomes_list <- list(outcomes, outcomes2, outcomes3)
# treatments
t_list <- lapply(outcomes_list, FUN=function(x){c(1:ncol(x))})
# alpha
alpha <- 0.05
# number of replications
r <- 1000
### DEFINE FUNCTION ###
trial_subset <- function(N, outcomes, t){
### Simulate Data
# create dataframe
d <- data.frame(matrix(nrow = N, ncol = 0))
# treatment assignment
d$treat <- sample(t, N, replace=T, prob = c(3/14, 3/14, 2/14, 4/14, 2/14))
# generate data with completion outcome
d <- d %>%
mutate(complete = rbinom(n(),1,outcomes[1,treat]))
## Outcome 1: completion
# make df with columns for treatment and completion
# this is for diff in diff pvalues
d_complete <- d
# aggregate completion counts and click counts by treatment
# this is for the pairwise prop tests
d_complete_agg <- d_complete %>%
group_by(treat) %>%
summarise(
complete = sum(complete),
clicks = n()
)
## Outcome 2: webclicks
# make df with columns for treatment and webclick
# conditional on completes
# this is for diff in diff pvalues
d_website <- d %>%
filter(complete == 1) %>%
mutate(webclick = rbinom(n(),1,outcomes[2,treat]))
# aggregate webclick counts and completes counts by treatment
# this is for the pairwise prop tests
d_website_agg <- d_website %>%
group_by(treat) %>%
summarise(
webclick = sum(webclick),
completes = n()
)
## Outcome 3: Useful free text
# make df with columns for treatment and useful
# conditional on completes
# this is for diff in diff pvalues
d_useful <- d %>%
filter(complete == 1) %>%
mutate(useful = rbinom(n(),1,outcomes[3,treat]))
# aggregate webclick counts and completes counts by treatment
# this is for the pairwise prop tests
d_useful_agg <- d_useful %>%
group_by(treat) %>%
summarise(
useful = sum(useful),
completes = n()
)
### Calculate p-values
# create matrix for p-values
# number of outcomes (3) by number of hypothesis (6)
p_values <- matrix(nrow = nrow(outcomes),ncol = 6)
# calculate for completions outcome
# first get pvalues for usual comparisons (tA vs tB)
d_subset <- cbind(d_complete_agg[,2], d_complete_agg[,3])
p <- pairwise.prop.test(d_subset[,1], d_subset[,2],
p.adj = "none")$p.value
p_values[1, 1:5] <- c(p["4", "1"],
p["3", "2"],
p["4", "3"],
p["5", "4"],
p["2", "1"])
# now get pvalue for diff in diff
model = lm(complete~0+treat, d_complete %>%
# remove observations with treatments not relevant to diff in diff
filter(treat != 3) %>%
# make numeric categories a character so lm doesn't treat them as continuous
mutate(treat = paste("W", treat, sep = "")))
# run hypothesis test for diff in diff
hyp = glht(model, "(treatW2 - treatW1) - (treatW5 - treatW4) = 0")
# extract pvalue
pval <- summary(hyp)$test$pvalues
p_values[1, 6] <- c(pval)
# calculate for webclicks outcome
d_subset <- cbind(d_website_agg[,2], d_website_agg[,3])
p <- pairwise.prop.test(d_subset[,1], d_subset[,2],
p.adj = "none")$p.value
p_values[2, 1:5] <- c(p["4", "1"],
p["3", "2"],
p["4", "3"],
p["5", "4"],
p["2", "1"])
## diff in diff
model = lm(webclick~0+treat, d_website %>% filter(treat != 3) %>% mutate(treat = paste("W", treat, sep = "")))
hyp = glht(model, "(treatW2 - treatW1) - (treatW5 - treatW4) = 0")
pval <- summary(hyp)$test$pvalues
p_values[2, 6] <- c(pval)
# calculate for useful information outcome
d_subset <- cbind(d_useful_agg[,2], d_useful_agg[,3])
p <- pairwise.prop.test(d_subset[,1], d_subset[,2],
p.adj = "none")$p.value
p_values[3, 1:5] <- c(p["4", "1"],
p["3", "2"],
p["4", "3"],
p["5", "4"],
p["2", "1"])
## diff in diff
model = lm(useful~0+treat, d_useful %>% filter(treat != 3) %>% mutate(treat = paste("W", treat, sep = "")))
hyp = glht(model, "(treatW2 - treatW1) - (treatW5 - treatW4) = 0")
pval <- summary(hyp)$test$pvalues
p_values[3, 6] <- c(pval)
### MHT corrections
return(rbind(p.adjust(p_values[1,], method = "none"),
p.adjust(p_values[1,], method = "bonferroni"),
p.adjust(p_values[1,], method = "holm"),
p.adjust(p_values[1,], method = "hochberg"),
p.adjust(p_values[2,], method = "none"),
p.adjust(p_values[2,], method = "bonferroni"),
p.adjust(p_values[2,], method = "holm"),
p.adjust(p_values[2,], method = "hochberg"),
p.adjust(p_values[3,], method = "none"),
p.adjust(p_values[3,], method = "bonferroni"),
p.adjust(p_values[3,], method = "holm"),
p.adjust(p_values[3,], method = "hochberg")))
}
### POWER CALCULATIONS ###
for (i in n){
cat('###',i,' \n')
for(o in 1:length(outcomes_list)){
treatments <- t_list[[o]]
outcome_matrix <- outcomes_list[[o]]
# complete r replications of n trials
results <- replicate(r, trial_subset(i, outcomes = outcome_matrix, t = treatments))
# create matrix to store power calculations
power_calc <- matrix(NA,
nrow = nrow(outcome_matrix)*4,
ncol = 6)
# for each pairwise treatment comparison
for(j in 1:6){
# for each mht correction
for(k in 1:4){
# calculate power for completions outcome
power_calc[k, j] <- sum(results[k, j, ] < alpha)/r
# calculate power for website clicks outcome
power_calc[4+k, j] <- sum(results[k+4, j, ] < alpha)/r
# calculate power for useful informaton outcome
power_calc[8+k, j] <- sum(results[k+8, j, ] < alpha)/r
}
}
# Generate Graph
power_calc <- data.frame(outcome = c(rep('Unvax completes|Click',4),
rep('Unvax web clicks|Complete', 4),
rep('Unvax useful freetext|Complete', 4)),
test = rep(c("None","Bonferonni", "Holm", "Hochberg"), 3),
power_calc)
colnames(power_calc) <- c("Outcome","Correction",
'T1 v. T4', 'T2 v. T3','T3 v. T4','T4 v. T5', 'T1 v. T2', 'T2 - T1 v. T5 - T4')
kable(power_calc, format = "html", caption = paste("Power Calculations: ",i/1000," Thousand Clicks", "Matrix", o), digits = 3)%>%
kable_styling()%>%
collapse_rows(columns = 1)%>%
scroll_box(height = "100%")%>%
print()
}
}
| Outcome | Correction | T1 v. T4 | T2 v. T3 | T3 v. T4 | T4 v. T5 | T1 v. T2 | T2 - T1 v. T5 - T4 |
|---|---|---|---|---|---|---|---|
| Unvax completes|Click | None | 1.000 | 0.972 | 0.966 | 0.961 | 1.000 | 1.000 |
| Bonferonni | 1.000 | 0.898 | 0.885 | 0.870 | 1.000 | 1.000 | |
| Holm | 1.000 | 0.971 | 0.962 | 0.955 | 1.000 | 1.000 | |
| Hochberg | 1.000 | 0.971 | 0.964 | 0.957 | 1.000 | 1.000 | |
| Unvax web clicks|Complete | None | 1.000 | 0.393 | 0.470 | 0.444 | 0.852 | 0.921 |
| Bonferonni | 1.000 | 0.180 | 0.214 | 0.209 | 0.642 | 0.793 | |
| Holm | 1.000 | 0.251 | 0.307 | 0.301 | 0.718 | 0.821 | |
| Hochberg | 1.000 | 0.257 | 0.318 | 0.309 | 0.726 | 0.825 | |
| Unvax useful freetext|Complete | None | 0.978 | 0.142 | 0.176 | 0.154 | 0.435 | 0.543 |
| Bonferonni | 0.914 | 0.037 | 0.048 | 0.053 | 0.192 | 0.284 | |
| Holm | 0.914 | 0.043 | 0.061 | 0.067 | 0.229 | 0.317 | |
| Hochberg | 0.914 | 0.045 | 0.062 | 0.070 | 0.233 | 0.321 |
| Outcome | Correction | T1 v. T4 | T2 v. T3 | T3 v. T4 | T4 v. T5 | T1 v. T2 | T2 - T1 v. T5 - T4 |
|---|---|---|---|---|---|---|---|
| Unvax completes|Click | None | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Bonferonni | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Holm | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Hochberg | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Unvax web clicks|Complete | None | 1 | 0.907 | 0.927 | 0.921 | 1.000 | 1.000 |
| Bonferonni | 1 | 0.744 | 0.744 | 0.752 | 1.000 | 1.000 | |
| Holm | 1 | 0.896 | 0.917 | 0.901 | 1.000 | 1.000 | |
| Hochberg | 1 | 0.901 | 0.920 | 0.909 | 1.000 | 1.000 | |
| Unvax useful freetext|Complete | None | 1 | 0.675 | 0.801 | 0.808 | 0.943 | 0.997 |
| Bonferonni | 1 | 0.393 | 0.579 | 0.583 | 0.838 | 0.975 | |
| Holm | 1 | 0.611 | 0.734 | 0.732 | 0.919 | 0.984 | |
| Hochberg | 1 | 0.631 | 0.750 | 0.751 | 0.925 | 0.985 |
| Outcome | Correction | T1 v. T4 | T2 v. T3 | T3 v. T4 | T4 v. T5 | T1 v. T2 | T2 - T1 v. T5 - T4 |
|---|---|---|---|---|---|---|---|
| Unvax completes|Click | None | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Bonferonni | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Holm | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Hochberg | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Unvax web clicks|Complete | None | 1 | 0.351 | 0.452 | 0.398 | 0.815 | 0.912 |
| Bonferonni | 1 | 0.132 | 0.202 | 0.173 | 0.550 | 0.733 | |
| Holm | 1 | 0.194 | 0.276 | 0.258 | 0.642 | 0.767 | |
| Hochberg | 1 | 0.210 | 0.296 | 0.280 | 0.661 | 0.771 | |
| Unvax useful freetext|Complete | None | 1 | 0.677 | 1.000 | 0.772 | 0.952 | 0.998 |
| Bonferonni | 1 | 0.405 | 0.999 | 0.518 | 0.848 | 0.975 | |
| Holm | 1 | 0.640 | 1.000 | 0.724 | 0.938 | 0.988 | |
| Hochberg | 1 | 0.648 | 1.000 | 0.735 | 0.945 | 0.988 |
| Outcome | Correction | T1 v. T4 | T2 v. T3 | T3 v. T4 | T4 v. T5 | T1 v. T2 | T2 - T1 v. T5 - T4 |
|---|---|---|---|---|---|---|---|
| Unvax completes|Click | None | 1.000 | 0.998 | 0.995 | 0.997 | 1.000 | 1.000 |
| Bonferonni | 1.000 | 0.984 | 0.972 | 0.980 | 1.000 | 1.000 | |
| Holm | 1.000 | 0.998 | 0.995 | 0.997 | 1.000 | 1.000 | |
| Hochberg | 1.000 | 0.998 | 0.995 | 0.997 | 1.000 | 1.000 | |
| Unvax web clicks|Complete | None | 1.000 | 0.557 | 0.624 | 0.636 | 0.954 | 0.990 |
| Bonferonni | 1.000 | 0.301 | 0.355 | 0.364 | 0.857 | 0.945 | |
| Holm | 1.000 | 0.449 | 0.505 | 0.511 | 0.920 | 0.964 | |
| Hochberg | 1.000 | 0.482 | 0.543 | 0.538 | 0.929 | 0.966 | |
| Unvax useful freetext|Complete | None | 0.997 | 0.213 | 0.233 | 0.265 | 0.599 | 0.720 |
| Bonferonni | 0.984 | 0.060 | 0.085 | 0.100 | 0.315 | 0.452 | |
| Holm | 0.985 | 0.079 | 0.108 | 0.131 | 0.356 | 0.500 | |
| Hochberg | 0.985 | 0.086 | 0.112 | 0.137 | 0.359 | 0.504 |
| Outcome | Correction | T1 v. T4 | T2 v. T3 | T3 v. T4 | T4 v. T5 | T1 v. T2 | T2 - T1 v. T5 - T4 |
|---|---|---|---|---|---|---|---|
| Unvax completes|Click | None | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Bonferonni | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Holm | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Hochberg | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Unvax web clicks|Complete | None | 1 | 0.969 | 0.984 | 0.985 | 1.000 | 1.000 |
| Bonferonni | 1 | 0.904 | 0.936 | 0.941 | 1.000 | 1.000 | |
| Holm | 1 | 0.969 | 0.984 | 0.985 | 1.000 | 1.000 | |
| Hochberg | 1 | 0.969 | 0.984 | 0.985 | 1.000 | 1.000 | |
| Unvax useful freetext|Complete | None | 1 | 0.833 | 0.954 | 0.947 | 0.996 | 1.000 |
| Bonferonni | 1 | 0.627 | 0.823 | 0.794 | 0.962 | 0.998 | |
| Holm | 1 | 0.824 | 0.945 | 0.932 | 0.993 | 0.999 | |
| Hochberg | 1 | 0.826 | 0.948 | 0.937 | 0.993 | 0.999 |
| Outcome | Correction | T1 v. T4 | T2 v. T3 | T3 v. T4 | T4 v. T5 | T1 v. T2 | T2 - T1 v. T5 - T4 |
|---|---|---|---|---|---|---|---|
| Unvax completes|Click | None | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Bonferonni | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Holm | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Hochberg | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Unvax web clicks|Complete | None | 1 | 0.480 | 0.589 | 0.540 | 0.935 | 0.980 |
| Bonferonni | 1 | 0.217 | 0.325 | 0.286 | 0.774 | 0.914 | |
| Holm | 1 | 0.343 | 0.451 | 0.408 | 0.854 | 0.941 | |
| Hochberg | 1 | 0.366 | 0.478 | 0.430 | 0.867 | 0.942 | |
| Unvax useful freetext|Complete | None | 1 | 0.865 | 1.000 | 0.919 | 0.995 | 1.000 |
| Bonferonni | 1 | 0.657 | 1.000 | 0.768 | 0.972 | 0.996 | |
| Holm | 1 | 0.860 | 1.000 | 0.907 | 0.994 | 0.999 | |
| Hochberg | 1 | 0.863 | 1.000 | 0.910 | 0.994 | 0.999 |
| Outcome | Correction | T1 v. T4 | T2 v. T3 | T3 v. T4 | T4 v. T5 | T1 v. T2 | T2 - T1 v. T5 - T4 |
|---|---|---|---|---|---|---|---|
| Unvax completes|Click | None | 1.000 | 1.000 | 0.998 | 1.000 | 1.000 | 1.000 |
| Bonferonni | 1.000 | 0.997 | 0.997 | 0.997 | 1.000 | 1.000 | |
| Holm | 1.000 | 1.000 | 0.998 | 1.000 | 1.000 | 1.000 | |
| Hochberg | 1.000 | 1.000 | 0.998 | 1.000 | 1.000 | 1.000 | |
| Unvax web clicks|Complete | None | 1.000 | 0.669 | 0.755 | 0.744 | 0.990 | 0.997 |
| Bonferonni | 1.000 | 0.415 | 0.500 | 0.488 | 0.947 | 0.987 | |
| Holm | 1.000 | 0.605 | 0.677 | 0.663 | 0.976 | 0.992 | |
| Hochberg | 1.000 | 0.628 | 0.699 | 0.690 | 0.983 | 0.993 | |
| Unvax useful freetext|Complete | None | 0.999 | 0.265 | 0.305 | 0.299 | 0.732 | 0.828 |
| Bonferonni | 0.999 | 0.093 | 0.121 | 0.119 | 0.476 | 0.617 | |
| Holm | 0.999 | 0.118 | 0.164 | 0.167 | 0.543 | 0.653 | |
| Hochberg | 0.999 | 0.120 | 0.168 | 0.169 | 0.544 | 0.654 |
| Outcome | Correction | T1 v. T4 | T2 v. T3 | T3 v. T4 | T4 v. T5 | T1 v. T2 | T2 - T1 v. T5 - T4 |
|---|---|---|---|---|---|---|---|
| Unvax completes|Click | None | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1 |
| Bonferonni | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1 | |
| Holm | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1 | |
| Hochberg | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1 | |
| Unvax web clicks|Complete | None | 1 | 0.993 | 0.997 | 0.999 | 1.000 | 1 |
| Bonferonni | 1 | 0.977 | 0.984 | 0.985 | 1.000 | 1 | |
| Holm | 1 | 0.992 | 0.997 | 0.998 | 1.000 | 1 | |
| Hochberg | 1 | 0.993 | 0.997 | 0.999 | 1.000 | 1 | |
| Unvax useful freetext|Complete | None | 1 | 0.931 | 0.978 | 0.977 | 0.999 | 1 |
| Bonferonni | 1 | 0.795 | 0.921 | 0.917 | 0.994 | 1 | |
| Holm | 1 | 0.929 | 0.977 | 0.975 | 0.999 | 1 | |
| Hochberg | 1 | 0.929 | 0.978 | 0.976 | 0.999 | 1 |
| Outcome | Correction | T1 v. T4 | T2 v. T3 | T3 v. T4 | T4 v. T5 | T1 v. T2 | T2 - T1 v. T5 - T4 |
|---|---|---|---|---|---|---|---|
| Unvax completes|Click | None | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Bonferonni | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Holm | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Hochberg | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Unvax web clicks|Complete | None | 1 | 0.591 | 0.706 | 0.657 | 0.978 | 0.995 |
| Bonferonni | 1 | 0.344 | 0.449 | 0.394 | 0.909 | 0.971 | |
| Holm | 1 | 0.501 | 0.616 | 0.564 | 0.956 | 0.982 | |
| Hochberg | 1 | 0.526 | 0.637 | 0.586 | 0.964 | 0.983 | |
| Unvax useful freetext|Complete | None | 1 | 0.946 | 1.000 | 0.966 | 1.000 | 1.000 |
| Bonferonni | 1 | 0.830 | 1.000 | 0.878 | 0.995 | 1.000 | |
| Holm | 1 | 0.944 | 1.000 | 0.962 | 0.999 | 1.000 | |
| Hochberg | 1 | 0.946 | 1.000 | 0.965 | 1.000 | 1.000 |
| Outcome | Correction | T1 v. T4 | T2 v. T3 | T3 v. T4 | T4 v. T5 | T1 v. T2 | T2 - T1 v. T5 - T4 |
|---|---|---|---|---|---|---|---|
| Unvax completes|Click | None | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Bonferonni | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Holm | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Hochberg | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Unvax web clicks|Complete | None | 1 | 0.805 | 0.832 | 0.820 | 0.999 | 1.000 |
| Bonferonni | 1 | 0.562 | 0.611 | 0.607 | 0.988 | 0.998 | |
| Holm | 1 | 0.766 | 0.799 | 0.776 | 0.998 | 1.000 | |
| Hochberg | 1 | 0.775 | 0.812 | 0.791 | 0.998 | 1.000 | |
| Unvax useful freetext|Complete | None | 1 | 0.302 | 0.380 | 0.369 | 0.820 | 0.905 |
| Bonferonni | 1 | 0.123 | 0.174 | 0.157 | 0.600 | 0.722 | |
| Holm | 1 | 0.154 | 0.238 | 0.232 | 0.670 | 0.772 | |
| Hochberg | 1 | 0.159 | 0.248 | 0.241 | 0.677 | 0.773 |
| Outcome | Correction | T1 v. T4 | T2 v. T3 | T3 v. T4 | T4 v. T5 | T1 v. T2 | T2 - T1 v. T5 - T4 |
|---|---|---|---|---|---|---|---|
| Unvax completes|Click | None | 1 | 1.000 | 1.000 | 1.000 | 1 | 1 |
| Bonferonni | 1 | 1.000 | 1.000 | 1.000 | 1 | 1 | |
| Holm | 1 | 1.000 | 1.000 | 1.000 | 1 | 1 | |
| Hochberg | 1 | 1.000 | 1.000 | 1.000 | 1 | 1 | |
| Unvax web clicks|Complete | None | 1 | 1.000 | 1.000 | 0.999 | 1 | 1 |
| Bonferonni | 1 | 0.995 | 0.996 | 0.995 | 1 | 1 | |
| Holm | 1 | 1.000 | 1.000 | 0.999 | 1 | 1 | |
| Hochberg | 1 | 1.000 | 1.000 | 0.999 | 1 | 1 | |
| Unvax useful freetext|Complete | None | 1 | 0.982 | 0.997 | 0.990 | 1 | 1 |
| Bonferonni | 1 | 0.903 | 0.962 | 0.957 | 1 | 1 | |
| Holm | 1 | 0.982 | 0.997 | 0.990 | 1 | 1 | |
| Hochberg | 1 | 0.982 | 0.997 | 0.990 | 1 | 1 |
| Outcome | Correction | T1 v. T4 | T2 v. T3 | T3 v. T4 | T4 v. T5 | T1 v. T2 | T2 - T1 v. T5 - T4 |
|---|---|---|---|---|---|---|---|
| Unvax completes|Click | None | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Bonferonni | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Holm | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Hochberg | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Unvax web clicks|Complete | None | 1 | 0.668 | 0.824 | 0.762 | 0.997 | 0.999 |
| Bonferonni | 1 | 0.430 | 0.595 | 0.514 | 0.970 | 0.995 | |
| Holm | 1 | 0.612 | 0.762 | 0.693 | 0.995 | 0.998 | |
| Hochberg | 1 | 0.628 | 0.776 | 0.712 | 0.995 | 0.998 | |
| Unvax useful freetext|Complete | None | 1 | 0.976 | 1.000 | 0.989 | 1.000 | 1.000 |
| Bonferonni | 1 | 0.893 | 1.000 | 0.942 | 1.000 | 1.000 | |
| Holm | 1 | 0.975 | 1.000 | 0.988 | 1.000 | 1.000 | |
| Hochberg | 1 | 0.976 | 1.000 | 0.989 | 1.000 | 1.000 |
| Outcome | Correction | T1 v. T4 | T2 v. T3 | T3 v. T4 | T4 v. T5 | T1 v. T2 | T2 - T1 v. T5 - T4 |
|---|---|---|---|---|---|---|---|
| Unvax completes|Click | None | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Bonferonni | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Holm | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Hochberg | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Unvax web clicks|Complete | None | 1 | 0.847 | 0.892 | 0.896 | 1.000 | 1.000 |
| Bonferonni | 1 | 0.657 | 0.702 | 0.724 | 0.996 | 1.000 | |
| Holm | 1 | 0.830 | 0.871 | 0.869 | 1.000 | 1.000 | |
| Hochberg | 1 | 0.836 | 0.875 | 0.878 | 1.000 | 1.000 | |
| Unvax useful freetext|Complete | None | 1 | 0.346 | 0.449 | 0.438 | 0.879 | 0.950 |
| Bonferonni | 1 | 0.134 | 0.201 | 0.201 | 0.692 | 0.837 | |
| Holm | 1 | 0.209 | 0.282 | 0.287 | 0.759 | 0.864 | |
| Hochberg | 1 | 0.224 | 0.292 | 0.297 | 0.771 | 0.865 |
| Outcome | Correction | T1 v. T4 | T2 v. T3 | T3 v. T4 | T4 v. T5 | T1 v. T2 | T2 - T1 v. T5 - T4 |
|---|---|---|---|---|---|---|---|
| Unvax completes|Click | None | 1 | 1.000 | 1.000 | 1.000 | 1 | 1 |
| Bonferonni | 1 | 1.000 | 1.000 | 1.000 | 1 | 1 | |
| Holm | 1 | 1.000 | 1.000 | 1.000 | 1 | 1 | |
| Hochberg | 1 | 1.000 | 1.000 | 1.000 | 1 | 1 | |
| Unvax web clicks|Complete | None | 1 | 1.000 | 1.000 | 1.000 | 1 | 1 |
| Bonferonni | 1 | 1.000 | 1.000 | 1.000 | 1 | 1 | |
| Holm | 1 | 1.000 | 1.000 | 1.000 | 1 | 1 | |
| Hochberg | 1 | 1.000 | 1.000 | 1.000 | 1 | 1 | |
| Unvax useful freetext|Complete | None | 1 | 0.991 | 1.000 | 0.997 | 1 | 1 |
| Bonferonni | 1 | 0.950 | 0.994 | 0.990 | 1 | 1 | |
| Holm | 1 | 0.991 | 1.000 | 0.997 | 1 | 1 | |
| Hochberg | 1 | 0.991 | 1.000 | 0.997 | 1 | 1 |
| Outcome | Correction | T1 v. T4 | T2 v. T3 | T3 v. T4 | T4 v. T5 | T1 v. T2 | T2 - T1 v. T5 - T4 |
|---|---|---|---|---|---|---|---|
| Unvax completes|Click | None | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Bonferonni | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Holm | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Hochberg | 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
| Unvax web clicks|Complete | None | 1 | 0.817 | 0.880 | 0.836 | 0.999 | 1.000 |
| Bonferonni | 1 | 0.562 | 0.681 | 0.603 | 0.989 | 0.998 | |
| Holm | 1 | 0.784 | 0.853 | 0.790 | 0.999 | 1.000 | |
| Hochberg | 1 | 0.798 | 0.870 | 0.813 | 0.999 | 1.000 | |
| Unvax useful freetext|Complete | None | 1 | 0.992 | 1.000 | 0.998 | 1.000 | 1.000 |
| Bonferonni | 1 | 0.951 | 1.000 | 0.987 | 1.000 | 1.000 | |
| Holm | 1 | 0.992 | 1.000 | 0.998 | 1.000 | 1.000 | |
| Hochberg | 1 | 0.992 | 1.000 | 0.998 | 1.000 | 1.000 |
The below figure uses the below equation to calculate the sample size needed for each treatment arm, given the parameters.
\[ n \geq \dfrac{4(1-p)}{\lambda^2p} \times (z_\alpha + \Phi^{-1}(1-\beta))^2 \]
### DEFINE PARAMETERS ###
# outcome
p <- 0.14365 #from pilot 5 descriptive analytics analysis 595/4142
# standard deviation
sd <- sqrt(p * (1 - p))
# define the possible treatment effect sizes in *percent*
lambda <- seq(from = 0.1, to = 0.3, length.out = 100 )
# alpha
alpha <- 0.05
# beta
beta <- 0.2
# number of treatments
treat <- cbind(5,7)
### DEFINE FUNCTION ###
vax_power <- function(t, lambda) {
4 * (qnorm(1-alpha/2/(3*factorial(t)/2))+(qnorm(1 - beta)))^2 * ((1 - p)/((lambda * lambda) * p))}
### CREATE PLOT ###
# create vector to hold number of observations for each value of lambda and number of treatments
n_obs <- matrix(NA, nrow = length(lambda), ncol = length(treat))
# calculate number of observations for each value of lambda
for (i in 1:length(lambda)) {
for (j in 1:length(treat)){
n_obs[i,j] <- vax_power(treat[j], lambda[i])
}
}
# create data frame that combines data to graph
df <- data.frame(cbind(n_obs,lambda))
# create the graph
ggplot(df, aes(x = lambda)) +
geom_line(aes(y = df[,1], color = "5")) +
geom_line(aes(y = df[,2], color = "7")) +
labs(x = 'Treatment effect size (in percentage terms)',
y = 'Number of clicks needed per treatment arm') +
scale_color_manual(name = "Number of treatment arms", values = c("5" = "darkblue", "7" = "red"))
Then, we can calculate total costs based on $0.155 per click.
Let’s say instead that we only compare each treatment arm to one other treatment arm. This approach is what we have outlined in the experimental design document. Then, the below figure contains the same information as the above figure, but we are conducting fewer hypothesis tests.
### DEFINE PARAMETERS ###
# outcome
p <- 0.14365 #from pilot 5 descriptive analytics analysis 595/4142
# standard deviation
sd <- sqrt(p * (1 - p))
# define the possible treatment effect sizes in *percent*
lambda <- seq(from = 0.1, to = 0.3, length.out = 100 )
# alpha
alpha <- 0.05
# beta
beta <- 0.2
# number of treatments
treat <- cbind(5,7)
### DEFINE FUNCTION ###
vax_power <- function(t, lambda) {
4 * (qnorm(1-alpha/2/(3*(t-1)))+(qnorm(1 - beta)))^2 * ((1 - p)/((lambda * lambda) * p))}
### CREATE PLOT ###
# create vector to hold number of observations for each value of lambda and number of treatments
n_obs <- matrix(NA, nrow = length(lambda), ncol = length(treat))
# calculate number of observations for each value of lambda
for (i in 1:length(lambda)) {
for (j in 1:length(treat)){
n_obs[i,j] <- vax_power(treat[j], lambda[i])
}
}
# create data frame that combines data to graph
df <- data.frame(cbind(n_obs,lambda))
# create the graph
ggplot(df, aes(x = lambda)) +
geom_line(aes(y = df[,1], color = "5")) +
geom_line(aes(y = df[,2], color = "7")) +
labs(x = 'Treatment effect size (in percentage terms)',
y = 'Number of clicks needed per treatment arm') +
scale_color_manual(name = "Number of treatment arms", values = c("5" = "darkblue", "7" = "red"))
Then, we can again calculate total costs based on $0.155 per click.
print(paste("For treatment effect of 15% over baseline, the treatment effect would need to be",round(0.15*p,4)," and you would need:"))
## [1] "For treatment effect of 15% over baseline, the treatment effect would need to be 0.0215 and you would need:"
print(paste(round(vax_power(treat,0.15),0),"clicks per treatment arm for", treat,"treatment arms, for a total number of ", round(treat*vax_power(treat,0.15),0),"clicks at a total cost of $",round(0.155*treat*vax_power(treat,0.15),0)))
## [1] "14563 clicks per treatment arm for 5 treatment arms, for a total number of 72813 clicks at a total cost of $ 11286"
## [2] "15570 clicks per treatment arm for 7 treatment arms, for a total number of 108989 clicks at a total cost of $ 16893"
The below figure uses the previous equation to calculate the sample size needed for each treatment arm, given the parameters.
### DEFINE PARAMETERS ###
# outcome
p <- 0.2
# standard deviation
sd <- sqrt(p * (1 - p))
# define the possible treatment effect sizes in *percent*
lambda <- seq(from = 0.1, to = 0.3, length.out = 100 )
# alpha
alpha <- 0.05
# beta
beta <- 0.2
# number of treatments
treat <- cbind(5,7)
### DEFINE FUNCTION ###
vax_power <- function(t, lambda) {
4 * (qnorm(1-alpha/2/(3*factorial(t)/2))+(qnorm(1 - beta)))^2 * ((1 - p)/((lambda * lambda) * p))}
### CREATE PLOT ###
# create vector to hold number of observations for each value of lambda and number of treatments
n_obs <- matrix(NA, nrow = length(lambda), ncol = length(treat))
# calculate number of observations for each value of lambda
for (i in 1:length(lambda)) {
for (j in 1:length(treat)){
n_obs[i,j] <- vax_power(treat[j], lambda[i])
}
}
# create data frame that combines data to graph
df <- data.frame(cbind(n_obs,lambda))
# create the graph
ggplot(df, aes(x = lambda)) +
geom_line(aes(y = df[,1], color = "5")) +
geom_line(aes(y = df[,2], color = "7")) +
labs(x = 'Treatment effect size (in percentage terms)',
y = 'Number of completes needed per treatment arm') +
scale_color_manual(name = "Number of treatment arms", values = c("5" = "darkblue", "7" = "red"))
Then, we can calculate total costs based on $1.30 per unvaccinated complete.
print(paste("For treatment effect of 25% over baseline, the treatment effect would need to be",round(0.25*p,4)," and you would need:"))
## [1] "For treatment effect of 25% over baseline, the treatment effect would need to be 0.05 and you would need:"
print(paste(round(vax_power(treat,0.25),0),"completes per treatment arm for", treat,"treatment arms, for a total number of ", round(treat*vax_power(treat,0.25),0),"clicks at a total cost of $",round(1.3*treat*vax_power(treat,0.25),0)))
## [1] "5131 completes per treatment arm for 5 treatment arms, for a total number of 25654 clicks at a total cost of $ 33350"
## [2] "7320 completes per treatment arm for 7 treatment arms, for a total number of 51241 clicks at a total cost of $ 66614"
Let’s say instead that we only compare each treatment arm to one other treatment arm. This approach is what we have outlined in the experimental design document. Then, the below figure contains the same information as the above figure, but we are conducting fewer hypothesis tests.
### DEFINE PARAMETERS ###
# outcome
p <- 0.2
# standard deviation
sd <- sqrt(p * (1 - p))
# define the possible treatment effect sizes in *percent*
lambda <- seq(from = 0.1, to = 0.3, length.out = 100 )
# alpha
alpha <- 0.05
# beta
beta <- 0.2
# number of treatments
treat <- cbind(5,7)
### DEFINE FUNCTION ###
vax_power <- function(t, lambda) {
4 * (qnorm(1-alpha/2/(3*(t-1)))+(qnorm(1 - beta)))^2 * ((1 - p)/((lambda * lambda) * p))}
### CREATE PLOT ###
# create vector to hold number of observations for each value of lambda and number of treatments
n_obs <- matrix(NA, nrow = length(lambda), ncol = length(treat))
# calculate number of observations for each value of lambda
for (i in 1:length(lambda)) {
for (j in 1:length(treat)){
n_obs[i,j] <- vax_power(treat[j], lambda[i])
}
}
# create data frame that combines data to graph
df <- data.frame(cbind(n_obs,lambda))
# create the graph
ggplot(df, aes(x = lambda)) +
geom_line(aes(y = df[,1], color = "5")) +
geom_line(aes(y = df[,2], color = "7")) +
labs(x = 'Treatment effect size (in percentage terms)',
y = 'Number of completes needed per treatment arm') +
scale_color_manual(name = "Number of treatment arms", values = c("5" = "darkblue", "7" = "red"))
Then, we can again calculate total costs based on $1.30 per unvaccinated complete.
print(paste("For treatment effect of 25% over baseline, the treatment effect would need to be",round(0.25*p,4)," and you would need:"))
## [1] "For treatment effect of 25% over baseline, the treatment effect would need to be 0.05 and you would need:"
print(paste(round(vax_power(treat,0.25),0),"completes per treatment arm for", treat,"treatment arms, for a total number of ", round(treat*vax_power(treat,0.25),0),"completes at a total cost of $",round(1.3*treat*vax_power(treat,0.25),0)))
## [1] "3518 completes per treatment arm for 5 treatment arms, for a total number of 17588 completes at a total cost of $ 22865"
## [2] "3761 completes per treatment arm for 7 treatment arms, for a total number of 26327 completes at a total cost of $ 34225"
The below figure uses the below equation to calculate the power needed for each treatment arm, given the parameters.
\[ \boxed{1-\beta = \Phi\left( \frac{\tau}{2\sigma/\sqrt{n}} - z_{1-\alpha} \right)} \]
## DEFINE PARAMETERS ###
# define the possible total number of clicks
n <- seq(from = 50000, to = 300000, length.out = 100 )
# outcome
p <- 0.14365 #from pilot 5 descriptive analytics analysis 595/4142
# standard deviation
sd <- sqrt(p * (1 - p))
# define the possible treatment effect sizes in *percent*
lambda <- cbind(0.1, 0.15, 0.2)
# alpha
alpha <- 0.05
# beta
beta <- 0.2
# number of treatments
treat <- cbind(5,7)
### DEFINE FUNCTION ###
vax_power2 <- function(lambda, n, t) {
pnorm(
( lambda*p / (2 * sd / sqrt(n / t))) - qnorm(1-alpha/2/(3*factorial(t)/2))
)
}
### CREATE PLOT ###
# create vector to hold number of observations for each value of lambda, number of observations, and number of treatments
power <- matrix(NA, nrow = length(n), ncol = length(treat)*length(lambda))
# calculate number of observations for each value of lambda
for (i in 1:length(lambda)) {
for (j in 1:length(treat)){
for (k in 1:length(n)){
power[k,j+2*i-2] <- vax_power2(lambda[i], n[k], treat[j])
}
}
}
# create data frame that combines data to graph
df <- data.frame(cbind(power,n))
# create the graph
ggplot(df, aes(x = n)) +
geom_line(aes(y = df[,1], color = "lambda = 0.1, treat = 5")) +
geom_line(aes(y = df[,2], color = "lambda = 0.1, treat = 7")) +
geom_line(aes(y = df[,3], color = "lambda = 0.15, treat = 5")) +
geom_line(aes(y = df[,4], color = "lambda = 0.15, treat = 7")) +
geom_line(aes(y = df[,5], color = "lambda = 0.2, treat = 5")) +
geom_line(aes(y = df[,6], color = "lambda = 0.2, treat = 7")) +
labs(x = 'Number of Total Clicks',
y = 'Power') +
scale_color_manual(name = "Number of treatment arms", values = c("lambda = 0.1, treat = 5" = "darkblue", "lambda = 0.1, treat = 7" = "red", "lambda = 0.15, treat = 5" = "darkgreen", "lambda = 0.15, treat = 7" = "turquoise4", "lambda = 0.2, treat = 5" = "darkorchid4", "lambda = 0.2, treat = 7" = "springgreen2"))
Let’s say instead that we only compare each treatment arm to one other treatment arm. This approach is what we have outlined in the experimental design document. Then, the below figure contains the same information as the above figure, but we are conducting fewer hypothesis tests.
## DEFINE PARAMETERS ###
# define the possible total number of clicks
n <- seq(from = 50000, to = 300000, length.out = 100 )
# outcome
p <- 0.14365 #from pilot 5 descriptive analytics analysis 595/4142
# standard deviation
sd <- sqrt(p * (1 - p))
# define the possible treatment effect sizes in *percent*
lambda <- cbind(0.1, 0.15, 0.2)
# alpha
alpha <- 0.05
# beta
beta <- 0.2
# number of treatments
treat <- cbind(5,7)
### DEFINE FUNCTION ###
vax_power2 <- function(lambda, n, t) {
pnorm(
( lambda*p / (2 * sd / sqrt(n / t))) - qnorm(1-alpha/2/(3*(t-1)))
)
}
### CREATE PLOT ###
# create vector to hold number of observations for each value of lambda, number of observations, and number of treatments
power <- matrix(NA, nrow = length(n), ncol = length(treat)*length(lambda))
# calculate number of observations for each value of lambda
for (i in 1:length(lambda)) {
for (j in 1:length(treat)){
for (k in 1:length(n)){
power[k,j+2*i-2] <- vax_power2(lambda[i], n[k], treat[j])
}
}
}
# create data frame that combines data to graph
df <- data.frame(cbind(power,n))
# create the graph
ggplot(df, aes(x = n)) +
geom_line(aes(y = df[,1], color = "lambda = 0.1, treat = 5")) +
geom_line(aes(y = df[,2], color = "lambda = 0.1, treat = 7")) +
geom_line(aes(y = df[,3], color = "lambda = 0.15, treat = 5")) +
geom_line(aes(y = df[,4], color = "lambda = 0.15, treat = 7")) +
geom_line(aes(y = df[,5], color = "lambda = 0.2, treat = 5")) +
geom_line(aes(y = df[,6], color = "lambda = 0.2, treat = 7")) +
labs(x = 'Number of Total Clicks',
y = 'Power') +
scale_color_manual(name = "Number of treatment arms", values = c("lambda = 0.1, treat = 5" = "darkblue", "lambda = 0.1, treat = 7" = "red", "lambda = 0.15, treat = 5" = "darkgreen", "lambda = 0.15, treat = 7" = "turquoise4", "lambda = 0.2, treat = 5" = "darkorchid4", "lambda = 0.2, treat = 7" = "springgreen2"))
The below figure uses the previous equation to calculate the power needed for each treatment arm, given the parameters.
\[ \boxed{1-\beta = \Phi\left( \frac{\tau}{2\sigma/\sqrt{n}} - z_{1-\alpha} \right)} \]
## DEFINE PARAMETERS ###
# define the possible total number of completes
n <- seq(from = 10000, to = 100000, length.out = 100 )
# outcome
p <- 0.2 #from pilot 5 descriptive analytics analysis 595/4142
# standard deviation
sd <- sqrt(p * (1 - p))
# define the possible treatment effect sizes in *percent*
lambda <- cbind(0.2, 0.25, 0.3)
# alpha
alpha <- 0.05
# beta
beta <- 0.2
# number of treatments
treat <- cbind(5,7)
### DEFINE FUNCTION ###
vax_power2 <- function(lambda, n, t) {
pnorm(
( lambda*p / (2 * sd / sqrt(n / t))) - qnorm(1-alpha/2/(3*factorial(t)/2))
)
}
### CREATE PLOT ###
# create vector to hold number of observations for each value of lambda, number of observations, and number of treatments
power <- matrix(NA, nrow = length(n), ncol = length(treat)*length(lambda))
# calculate number of observations for each value of lambda
for (i in 1:length(lambda)) {
for (j in 1:length(treat)){
for (k in 1:length(n)){
power[k,j+2*i-2] <- vax_power2(lambda[i], n[k], treat[j])
}
}
}
# create data frame that combines data to graph
df <- data.frame(cbind(power,n))
# create the graph
ggplot(df, aes(x = n)) +
geom_line(aes(y = df[,1], color = "lambda = 0.2, treat = 5")) +
geom_line(aes(y = df[,2], color = "lambda = 0.2, treat = 7")) +
geom_line(aes(y = df[,3], color = "lambda = 0.25, treat = 5")) +
geom_line(aes(y = df[,4], color = "lambda = 0.25, treat = 7")) +
geom_line(aes(y = df[,5], color = "lambda = 0.3, treat = 5")) +
geom_line(aes(y = df[,6], color = "lambda = 0.3, treat = 7")) +
labs(x = 'Number of Total Completes',
y = 'Power') +
scale_color_manual(name = "Number of treatment arms", values = c("lambda = 0.2, treat = 5" = "darkblue", "lambda = 0.2, treat = 7" = "red", "lambda = 0.25, treat = 5" = "darkgreen", "lambda = 0.25, treat = 7" = "turquoise4", "lambda = 0.3, treat = 5" = "darkorchid4", "lambda = 0.3, treat = 7" = "springgreen2"))
Let’s say instead that we only compare each treatment arm to one other treatment arm. This approach is what we have outlined in the experimental design document. Then, the below figure contains the same information as the above figure, but we are conducting fewer hypothesis tests.
## DEFINE PARAMETERS ###
# define the possible total number of completes
n <- seq(from = 10000, to = 75000, length.out = 100 )
# outcome
p <- 0.2 #from pilot 5 descriptive analytics analysis 595/4142
# standard deviation
sd <- sqrt(p * (1 - p))
# define the possible treatment effect sizes in *percent*
lambda <- cbind(0.2, 0.25, 0.3)
# alpha
alpha <- 0.05
# beta
beta <- 0.2
# number of treatments
treat <- cbind(5,7)
### DEFINE FUNCTION ###
vax_power2 <- function(lambda, n, t) {
pnorm(
( lambda*p / (2 * sd / sqrt(n / t))) - qnorm(1-alpha/2/(3*(t-1)))
)
}
### CREATE PLOT ###
# create vector to hold number of observations for each value of lambda, number of observations, and number of treatments
power <- matrix(NA, nrow = length(n), ncol = length(treat)*length(lambda))
# calculate number of observations for each value of lambda
for (i in 1:length(lambda)) {
for (j in 1:length(treat)){
for (k in 1:length(n)){
power[k,j+2*i-2] <- vax_power2(lambda[i], n[k], treat[j])
}
}
}
# create data frame that combines data to graph
df <- data.frame(cbind(power,n))
# create the graph
ggplot(df, aes(x = n)) +
geom_line(aes(y = df[,1], color = "lambda = 0.2, treat = 5")) +
geom_line(aes(y = df[,2], color = "lambda = 0.2, treat = 7")) +
geom_line(aes(y = df[,3], color = "lambda = 0.25, treat = 5")) +
geom_line(aes(y = df[,4], color = "lambda = 0.25, treat = 7")) +
geom_line(aes(y = df[,5], color = "lambda = 0.3, treat = 5")) +
geom_line(aes(y = df[,6], color = "lambda = 0.3, treat = 7")) +
labs(x = 'Number of Total Completes',
y = 'Power') +
scale_color_manual(name = "Number of treatment arms", values = c("lambda = 0.2, treat = 5" = "darkblue", "lambda = 0.2, treat = 7" = "red", "lambda = 0.25, treat = 5" = "darkgreen", "lambda = 0.25, treat = 7" = "turquoise4", "lambda = 0.3, treat = 5" = "darkorchid4", "lambda = 0.3, treat = 7" = "springgreen2"))
To assess the power for testing multiple correlated hypotheses, I simulate data, test the hypotheses, correct the p-values, and repeat for r repetitions, then calculate the proportion of repetitions in which I reject each hypothesis. The variables needed in the simulated data are the treatment assignment and the two outcomes: completion and clicking on the website link. In particular, we are interested in unvaccinated completes and unvaccinated website clicks. The sample for completion are clicks, while the sample for clicking on the website link are completes.
The data generation process is as follows:
Power is calculated using the following parameters:
Results are reported for uncorrected p-values and for p-values corrected using Bonferonni, Holm, and Hochberg.
First, we consider multiple hypothesis correction for evaluating all pairwise comparisons of treatments.
set.seed(94305)
### DEFINE PARAMETERS ###
outcomes1 <- matrix(c(0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.12, # Pr(unvax complete|click)
0.10, 0.12, 0.14, 0.16, 0.18, 0.20, 0.18, # Pr(unvax web click|complete)
1- 0.13, 1- 0.15, 1- 0.20, 1-0.17, 1-0.21, 1-.2, 1-.16), # Pr(useful free text| complete)
nrow = 3, byrow = T)
outcomes2 <- outcomes1 + 0.05
outcomes_list <- list(outcomes1, outcomes2)
t_list <- lapply(outcomes_list, FUN=function(x){c(1:ncol(x))})
### POWER CALCULATIONS ###
for (i in n){
for(o in 1:length(outcomes_list)){
treatments <- t_list[[o]]
outcome_matrix <- outcomes_list[[o]]
# complete r replications of n trials
results <- replicate(r, trial(i, outcomes = outcome_matrix, t = treatments))
# create matrix to store power calculations
power_calc <- matrix(NA,
nrow = nrow(outcome_matrix)*4,
ncol = (length(treatments) * (length(treatments) - 1)/2))
# for each pairwise treatment comparison
for(j in 1:(length(treatments) * (length(treatments) - 1)/2)){
# for each mht correction
for(k in 1:4){
# calculate power for completions outcome
power_calc[k, j] <- sum(results[k, j, ] < alpha)/r
# calculate power for website clicks outcome
power_calc[4+k,j] <- sum(results[k+4,j,]<alpha)/r
# calculate power for useful information outcome
power_calc[8+k,j] <- sum(results[k+8,j,]<alpha)/r
}
}
# Generate Graph
power_calc <- data.frame(outcome = c(rep('Unvax completes|Click',4),
rep('Unvax web clicks|Complete', 4),
rep('Unvax useful freetext|Complete', 4)),
test = rep(c("None","Bonferonni", "Holm", "Hochberg"), 3),
power_calc)
colnames(power_calc) <- c("Outcome","Correction",
'T1 v. T2', 'T1 v. T3', 'T1 v. T4','T1 v. T5','T1 v. T6','T1 v. T7','T2 v. T3','T2 v. T4','T2 v. T5','T2 v. T6','T2 v. T7','T3 v. T4','T3 v. T5','T3 v. T6','T3 v. T7','T4 v. T5','T4 v. T6','T4 v. T7','T5 v. T6','T5 v. T7','T6 v. T7')
kable(power_calc, format = "html", caption = paste("Power Calculations: ",i/1000," Thousand Clicks", "Matrix", o), digits = 3) %>%
collapse_rows(columns = 1) %>%
print()
}
}
Then, I evaluate how adding structure to the hypothesis testing increases power. Specifically, each treatment \(t\) is designed to be compared to the treatment below it and the treatment above it. So, for five treatments, we make 4 comparisons: T1 v. T2, T2 v. T3, T3 v. T4, and T4 v. T5.
set.seed(94305)
### DEFINE PARAMETERS ###
# parameters defined in previous code chunk
for (i in n){
for(o in 1:length(outcomes_list)){
treatments <- t_list[[o]]
outcome_matrix <- outcomes_list[[o]]
# complete r replications of n trials
results <- replicate(r, trial_subset(i, outcomes = outcome_matrix, t = treatments))
# create matrix to store power calculations
power_calc <- matrix(NA,
nrow = nrow(outcome_matrix)*4,
ncol = length(treatments)-1)
# for each pairwise treatment comparison
for(j in 1:(length(treatments) - 1)){
# for each mht correction
for(k in 1:4){
# calculate power for completions outcome
power_calc[k, j] <- sum(results[k, j, ] < alpha)/r
# calculate power for website clicks outcome
power_calc[4+k,j] <- sum(results[k+4,j,]<alpha)/r
# calculate power for useful information outcome
power_calc[8+k,j] <- sum(results[k+8,j,]<alpha)/r
}
}
# Generate Graph
power_calc <- data.frame(outcome = c(rep('Unvax completes|Click',4),
rep('Unvax web clicks|Complete', 4),
rep('Unvax useful freetext|Complete', 4)),
test = rep(c("None","Bonferonni", "Holm", "Hochberg"), 3),
power_calc)
colnames(power_calc) <- c("Outcome","Correction",
'T1 v. T2', 'T2 v. T3','T3 v. T4','T4 v. T5','T5 v. T6','T6 v. T7')
kable(power_calc, format = "html", caption = paste("Power Calculations: ",i/1000," Thousand Clicks", "Matrix", o), digits = 3) %>%
collapse_rows(columns = 1) %>%
print()
}
}