alphas
- trust in science
psych::alpha (data.frame(
d$sciTrust_1,
d$sciTrust_2,
d$sciTrust_3,
d$sciTrust_4,
d$sciTrust_5,
d$sciTrust_6,
d$sciTrust_7,
d$sciTrust_8,
d$sciTrust_9,
d$sciTrust_10,
d$sciTrust_11,
d$sciTrust_12,
d$sciTrust_13,
d$sciTrust_14,
d$sciTrust_15), cumulative = F, na.rm = T, delete = T)
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(d$sciTrust_1, d$sciTrust_2, d$sciTrust_3,
## d$sciTrust_4, d$sciTrust_5, d$sciTrust_6, d$sciTrust_7, d$sciTrust_8,
## d$sciTrust_9, d$sciTrust_10, d$sciTrust_11, d$sciTrust_12,
## d$sciTrust_13, d$sciTrust_14, d$sciTrust_15), cumulative = F,
## na.rm = T, delete = T)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.94 0.94 0.95 0.5 15 0.00078 3.5 0.82 0.5
##
## lower alpha upper 95% confidence boundaries
## 0.94 0.94 0.94
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## d.sciTrust_1 0.94 0.94 0.95 0.51 15 0.00080 0.021 0.51
## d.sciTrust_2 0.93 0.93 0.95 0.49 14 0.00087 0.022 0.49
## d.sciTrust_3 0.93 0.93 0.95 0.50 14 0.00085 0.022 0.49
## d.sciTrust_4 0.93 0.93 0.95 0.50 14 0.00083 0.022 0.49
## d.sciTrust_5 0.93 0.93 0.95 0.49 14 0.00087 0.022 0.49
## d.sciTrust_6 0.94 0.93 0.95 0.51 14 0.00081 0.021 0.53
## d.sciTrust_7 0.93 0.93 0.95 0.50 14 0.00082 0.021 0.51
## d.sciTrust_8 0.94 0.94 0.95 0.51 15 0.00079 0.020 0.53
## d.sciTrust_9 0.94 0.94 0.95 0.51 15 0.00080 0.019 0.53
## d.sciTrust_10 0.94 0.93 0.95 0.51 14 0.00081 0.021 0.53
## d.sciTrust_11 0.93 0.93 0.95 0.49 13 0.00088 0.023 0.48
## d.sciTrust_12 0.93 0.93 0.95 0.50 14 0.00085 0.022 0.49
## d.sciTrust_13 0.93 0.93 0.95 0.49 13 0.00088 0.021 0.49
## d.sciTrust_14 0.93 0.93 0.95 0.50 14 0.00084 0.022 0.49
## d.sciTrust_15 0.93 0.93 0.95 0.51 14 0.00083 0.022 0.49
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## d.sciTrust_1 1077 0.65 0.64 0.60 0.59 3.3 1.16
## d.sciTrust_2 1077 0.81 0.80 0.79 0.78 3.2 1.23
## d.sciTrust_3 1075 0.78 0.77 0.75 0.74 3.6 1.11
## d.sciTrust_4 1075 0.72 0.70 0.68 0.66 3.2 1.19
## d.sciTrust_5 1075 0.81 0.80 0.79 0.77 3.5 1.19
## d.sciTrust_6 1077 0.68 0.70 0.68 0.63 3.7 1.00
## d.sciTrust_7 1071 0.72 0.74 0.73 0.68 3.6 1.01
## d.sciTrust_8 1073 0.64 0.66 0.64 0.58 3.6 1.06
## d.sciTrust_9 1076 0.62 0.64 0.62 0.57 3.5 0.96
## d.sciTrust_10 1077 0.68 0.69 0.68 0.63 3.5 1.06
## d.sciTrust_11 1075 0.83 0.83 0.81 0.80 3.5 1.19
## d.sciTrust_12 1075 0.76 0.75 0.73 0.71 3.2 1.19
## d.sciTrust_13 1075 0.84 0.83 0.83 0.81 3.3 1.17
## d.sciTrust_14 1072 0.73 0.72 0.69 0.68 3.2 1.19
## d.sciTrust_15 1073 0.70 0.70 0.68 0.66 3.8 1.04
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## d.sciTrust_1 0.08 0.16 0.30 0.30 0.16 0.92
## d.sciTrust_2 0.11 0.17 0.27 0.28 0.16 0.92
## d.sciTrust_3 0.05 0.10 0.28 0.32 0.24 0.92
## d.sciTrust_4 0.09 0.18 0.32 0.24 0.18 0.92
## d.sciTrust_5 0.07 0.12 0.27 0.29 0.25 0.92
## d.sciTrust_6 0.04 0.07 0.26 0.41 0.22 0.92
## d.sciTrust_7 0.04 0.07 0.29 0.40 0.19 0.92
## d.sciTrust_8 0.06 0.08 0.27 0.41 0.18 0.92
## d.sciTrust_9 0.04 0.06 0.39 0.36 0.14 0.92
## d.sciTrust_10 0.05 0.09 0.30 0.38 0.18 0.92
## d.sciTrust_11 0.07 0.13 0.25 0.31 0.23 0.92
## d.sciTrust_12 0.09 0.17 0.31 0.26 0.16 0.92
## d.sciTrust_13 0.08 0.16 0.31 0.27 0.18 0.92
## d.sciTrust_14 0.09 0.18 0.31 0.25 0.17 0.92
## d.sciTrust_15 0.04 0.05 0.26 0.33 0.32 0.92
1. correlation plots
i. all DVs
x <- cbind.data.frame(
d$avgCRT,
d$avgSciLit,
d$avgSymbBelief,
d$vaxxBehavior,
d$vaxxAttitudes_w1,
d$vaxxAttitudes_w2,
d$avgVaxxAttitudes, #wave 1 + wave 2
d$SESladder,
d$education,
d$expertAtt_w1,
d$expertAtt_w2,
d$avgExpertAtt, #wave 1 + wave 2
d$index_ANexp_w1,
d$index_ANexp_w2,
d$index_ANexp_w3)
colnames(x) <- c(
'avgCRT',
'avgSciLit',
'symbolicBelief',
'vaxxBehavior',
'vaxxAttitudes_w1',
'vaxxAttitudes_w2',
'avgVaxxAttitudes',
'SES',
'education',
'expertAttitude_w1',
'expertAttitude_w2',
'avgExpertAttitude',
'mediaIndex_w1',
'mediaIndex_w2',
'mediaIndex_w3')
cor2 <- cor(x, use = "complete.obs")
ggcorrplot(cor2, type = "lower",
lab = TRUE,
title = "correlations",
show.legend = F,
insig = "blank",
lab_size = 2.5,
digits = 2,
pch.cex = 7,
tl.cex = 10) +
theme(axis.text.x = element_text(margin = margin(-2, 0, 0, 0)),
axis.text.y = element_text(margin = margin(0, -2, 0, 0)),
panel.grid.minor = element_line(size = 7))

ii. CRT vs. media exposure wave 1
x <- cbind.data.frame(
d$avgCRT,
d$ABC_exp_w1,
d$CBS_exp_w1,
d$CNN_exp_w1,
d$Fox_exp_w1,
d$MSNBC_exp_w1,
d$NBC_exp_w1,
d$NPR_exp_w1,
d$NYT_exp_w1,
d$PBS_exp_w1,
d$USAT_exp_w1,
d$WSJ_exp_w1,
d$AOL_exp_w1,
d$prop.media.exp_w1)
colnames(x) <- c(
'avgCRT',
'ABC_exp',
'CBS_exp',
'CNN_exp',
'Fox_exp',
'MSNBC_exp',
'NBC_exp',
'NPR_exp',
'NYT_exp',
'PBS_exp',
'USAT_exp',
'WSJ_exp',
'AOL_exp',
'prop.media.exp')
cor2 <- cor(x, use = "complete.obs")
ggcorrplot(cor2, type = "lower",
lab = TRUE,
title = "wave 1",
show.legend = F,
insig = "blank",
lab_size = 2.5,
digits = 2,
pch.cex = 7,
tl.cex = 10) +
theme(axis.text.x = element_text(margin = margin(-2, 0, 0, 0)),
axis.text.y = element_text(margin = margin(0, -2, 0, 0)),
panel.grid.minor = element_line(size = 7))

iii. CRT vs. media exposure wave 2
x <- cbind.data.frame(
d$avgCRT.c,
d$ABC_exp_w2,
d$CBS_exp_w2,
d$CNN_exp_w2,
d$Fox_exp_w2,
d$MSNBC_exp_w2,
d$NBC_exp_w2,
d$NPR_exp_w2,
d$NYT_exp_w2,
d$PBS_exp_w2,
d$USAT_exp_w2,
d$WSJ_exp_w2,
d$AOL_exp_w2,
d$prop.media.exp_w2)
colnames(x) <- c(
'avgCRT',
'ABC_exp',
'CBS_exp',
'CNN_exp',
'Fox_exp',
'MSNBC_exp',
'NBC_exp',
'NPR_exp',
'NYT_exp',
'PBS_exp',
'USAT_exp',
'WSJ_exp',
'AOL_exp',
'prop.media.exp')
cor2 <- cor(x, use = "complete.obs")
ggcorrplot(cor2, type = "lower",
lab = TRUE,
title = "wave 2",
show.legend = F,
insig = "blank",
lab_size = 2.5,
digits = 2,
pch.cex = 7,
tl.cex = 10) +
theme(axis.text.x = element_text(margin = margin(-2, 0, 0, 0)),
axis.text.y = element_text(margin = margin(0, -2, 0, 0)),
panel.grid.minor = element_line(size = 7))

iv. CRT vs. media exposure wave 3
x <- cbind.data.frame(
d$avgCRT.c,
d$ABC_exp_w3,
d$CBS_exp_w3,
d$CNN_exp_w3,
d$Fox_exp_w3,
d$MSNBC_exp_w3,
d$NBC_exp_w3,
d$NPR_exp_w3,
d$NYT_exp_w3,
d$PBS_exp_w3,
d$USAT_exp_w3,
d$WSJ_exp_w3,
d$AOL_exp_w3,
d$prop.media.exp_w3)
colnames(x) <- c(
'avgCRT',
'ABC_exp',
'CBS_exp',
'CNN_exp',
'Fox_exp',
'MSNBC_exp',
'NBC_exp',
'NPR_exp',
'NYT_exp',
'PBS_exp',
'USAT_exp',
'WSJ_exp',
'AOL_exp',
'prop.media.exp')
cor2 <- cor(x, use = "complete.obs")
ggcorrplot(cor2, type = "lower",
lab = TRUE,
title = "wave 3",
show.legend = F,
insig = "blank",
lab_size = 2.5,
digits = 2,
pch.cex = 7,
tl.cex = 10) +
theme(axis.text.x = element_text(margin = margin(-2, 0, 0, 0)),
axis.text.y = element_text(margin = margin(0, -2, 0, 0)),
panel.grid.minor = element_line(size = 7))

v. CRT vs. media trust wave 1
x <- cbind.data.frame(
d$avgCRT,
d$ABC_trust_w1,
d$CBS_trust_w1,
d$CNN_trust_w1,
d$Fox_trust_w1,
d$MSNBC_trust_w1,
d$NBC_trust_w1,
d$NPR_trust_w1,
d$NYT_trust_w1,
d$PBS_trust_w1,
d$USAT_trust_w1,
d$WSJ_trust_w1,
d$AOL_trust_w1)
colnames(x) <- c(
'avgCRT',
'ABC_trust',
'CBS_trust',
'CNN_trust',
'Fox_trust',
'MSNBC_trust',
'NBC_trust',
'NPR_trust',
'NYT_trust',
'PBS_trust',
'USAT_trust',
'WSJ_trust',
'AOL_trust')
cor2 <- cor(x, use = "complete.obs")
ggcorrplot(cor2, type = "lower",
lab = TRUE,
title = "wave 1",
show.legend = F,
insig = "blank",
lab_size = 2.5,
digits = 2,
pch.cex = 7,
tl.cex = 10) +
theme(axis.text.x = element_text(margin = margin(-2, 0, 0, 0)),
axis.text.y = element_text(margin = margin(0, -2, 0, 0)),
panel.grid.minor = element_line(size = 7))

vi. CRT vs. media trust wave 2
x <- cbind.data.frame(
d$avgCRT,
d$ABC_trust_w2,
d$CBS_trust_w2,
d$CNN_trust_w2,
d$Fox_trust_w2,
d$MSNBC_trust_w2,
d$NBC_trust_w2,
d$NPR_trust_w2,
d$NYT_trust_w2,
d$PBS_trust_w2,
d$USAT_trust_w2,
d$WSJ_trust_w2,
d$AOL_trust_w2)
colnames(x) <- c(
'avgCRT',
'ABC_trust',
'CBS_trust',
'CNN_trust',
'Fox_trust',
'MSNBC_trust',
'NBC_trust',
'NPR_trust',
'NYT_trust',
'PBS_trust',
'USAT_trust',
'WSJ_trust',
'AOL_trust')
cor2 <- cor(x, use = "complete.obs")
ggcorrplot(cor2, type = "lower",
lab = TRUE,
title = "wave 2",
show.legend = F,
insig = "blank",
lab_size = 2.5,
digits = 2,
pch.cex = 7,
tl.cex = 10) +
theme(axis.text.x = element_text(margin = margin(-2, 0, 0, 0)),
axis.text.y = element_text(margin = margin(0, -2, 0, 0)),
panel.grid.minor = element_line(size = 7))

vii. CRT vs. media trust wave 3
x <- cbind.data.frame(
d$avgCRT,
d$ABC_trust_w3,
d$CBS_trust_w3,
d$CNN_trust_w3,
d$Fox_trust_w3,
d$MSNBC_trust_w3,
d$NBC_trust_w3,
d$NPR_trust_w3,
d$NYT_trust_w3,
d$PBS_trust_w3,
d$USAT_trust_w3,
d$WSJ_trust_w3,
d$AOL_trust_w3)
colnames(x) <- c(
'avgCRT',
'ABC_trust',
'CBS_trust',
'CNN_trust',
'Fox_trust',
'MSNBC_trust',
'NBC_trust',
'NPR_trust',
'NYT_trust',
'PBS_trust',
'USAT_trust',
'WSJ_trust',
'AOL_trust')
cor2 <- cor(x, use = "complete.obs")
ggcorrplot(cor2, type = "lower",
lab = TRUE,
title = "wave 3",
show.legend = F,
insig = "blank",
lab_size = 2.5,
digits = 2,
pch.cex = 7,
tl.cex = 10) +
theme(axis.text.x = element_text(margin = margin(-2, 0, 0, 0)),
axis.text.y = element_text(margin = margin(0, -2, 0, 0)),
panel.grid.minor = element_line(size = 7))
