This script cleans & analyzes the fall 20 ACI data

Contents:

Part 1 - load test data & prep for analysis

Part 2 - basic psychometric analyses

Part 3 - multidimensional analyses

Part 1

load libraries and data

library(mirt)
## Warning: package 'mirt' was built under R version 4.1.3
## Loading required package: stats4
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 4.1.3
library(psych)
library(mokken)
## Warning: package 'mokken' was built under R version 4.1.3
## Loading required package: poLCA
## Warning: package 'poLCA' was built under R version 4.1.3
## Loading required package: scatterplot3d
## Loading required package: MASS
## Warning: package 'MASS' was built under R version 4.1.3
## 
## Attaching package: 'mokken'
## The following object is masked from 'package:psych':
## 
##     ICC
f19s20 <- read.csv("G:/My Drive/EACI/R files/f19s20_data.csv")

clean up some variables

itemNames <- c("se1", "se2", "se3", "se4", "se5", "se6", "se7", "se8", "se9", 
               "se10","se11","se12","se13","se14","se15","se16","se17","se18",
               "se19","se20","se21","se22","se23","se24","se25","se26","se27",
               "se28",  "se29", "se30", "se31", "se32", "se33", "se34", "se35",
               "se36",  "se37", "se38", "se39", "se40", "se41", "se42", "se43",
               "se44",  "se45", "se46", "se47", "se48", "se49", "se50", "se51",
               "se52",  "se53", "se54", "se55", "se56", "ss1",  "ss2",  "ss3",
               "ss4",   "ss5",  "ss6",  "ss7",  "ss8","ss9",    "ss10", "ss11",
               "ss12",  "ss13", "ss14", "ss15", "ss16", "ss17", "ss18", "ss19",
               "ss20",  "ss21", "ss22", "ss23", "ss24", "ss25", "ss26", "ss27",
               "ss28",  "ss29", "ss30", "ss31", "ss32", "ss33", "ss34", "ss35",
               "ss36",  "ss37", "ss38", "ss39", "ss40", "ss41a",    "ss41b",
               "ss41c", "ss41d","ss42a","ss42b","ss42c","ss42d","ss43a",
               "ss43b", "ss43c","ss43d","ss44a","ss44b","ss44c","ss44d","ss45a",
               "ss45b", "ss45c","ss45d","ss46a","ss46b","ss46c","ss46d","ss47a",
               "ss47b", "ss47c",    "ss47d",    "ss47e",    "ss47f",    "ss48a","ss48b",
               "ss48c", "ss48d",    "ss48e",    "ss48f",    "ss49a",    "ss49b","ss49c",
               "ss49d", "ss49e",    "ss49f",    "ss50a",    "ss50b",    "ss50c","ss50d",
               "ss50e", "ss50f",    "ss51a",    "ss51b",    "ss51c",    "ss51d","ss51e",
               "ss51f", "ss52a",    "ss52b",    "ss52c",    "ss52d",    "ss52e","ss52f",
               "ss53",  "ss54", "ss55", "ss56", "ss57", "ss58", "ss59", "ss60",
               "ss61",  "ss62", "ss63", "ss64", "anchor1",  "anchor2","anchor3",
               "anchor4",   "anchor5",  "anchor6")

f19s20[f19s20 == -9] <- NA
f19s20 <- f19s20[,-c(10,12,13,16,18,24,25,27,49,72,91,95,97:156,159)]

describe(f19s20)# basic descriptives for all variables
##         vars    n mean   sd median trimmed  mad min max range  skew kurtosis
## se1        1  329 0.87 0.33    1.0    0.96 0.00   0   1     1 -2.22     2.94
## se2        2  317 0.88 0.33    1.0    0.97 0.00   0   1     1 -2.28     3.23
## se3        3  293 0.84 0.37    1.0    0.92 0.00   0   1     1 -1.81     1.27
## se4        4  307 0.83 0.37    1.0    0.91 0.00   0   1     1 -1.79     1.19
## se5        5  294 0.79 0.41    1.0    0.86 0.00   0   1     1 -1.39    -0.08
## se6        6  273 0.85 0.36    1.0    0.93 0.00   0   1     1 -1.91     1.65
## se7        7  317 0.85 0.36    1.0    0.94 0.00   0   1     1 -1.97     1.89
## se8        8  327 0.85 0.36    1.0    0.94 0.00   0   1     1 -1.95     1.82
## se9        9  290 0.50 0.50    0.0    0.50 0.00   0   1     1  0.01    -2.01
## se11      10  289 0.52 0.50    1.0    0.53 0.00   0   1     1 -0.09    -2.00
## se14      11  310 0.34 0.48    0.0    0.30 0.00   0   1     1  0.66    -1.57
## se15      12  283 0.34 0.47    0.0    0.30 0.00   0   1     1  0.69    -1.53
## se17      13  284 0.52 0.50    1.0    0.52 0.00   0   1     1 -0.07    -2.00
## se19      14  324 0.39 0.49    0.0    0.36 0.00   0   1     1  0.47    -1.79
## se20      15  312 0.63 0.48    1.0    0.66 0.00   0   1     1 -0.53    -1.73
## se21      16  284 0.56 0.50    1.0    0.58 0.00   0   1     1 -0.25    -1.94
## se22      17  260 0.35 0.48    0.0    0.31 0.00   0   1     1  0.63    -1.62
## se23      18  282 0.35 0.48    0.0    0.32 0.00   0   1     1  0.60    -1.64
## se26      19  306 0.54 0.50    1.0    0.54 0.00   0   1     1 -0.14    -1.99
## se28      20  244 0.48 0.50    0.0    0.47 0.00   0   1     1  0.10    -2.00
## se29      21  268 0.53 0.50    1.0    0.54 0.00   0   1     1 -0.13    -1.99
## se30      22  276 0.47 0.50    0.0    0.46 0.00   0   1     1  0.13    -1.99
## se31      23  305 0.62 0.49    1.0    0.65 0.00   0   1     1 -0.50    -1.75
## se32      24  284 0.48 0.50    0.0    0.47 0.00   0   1     1  0.08    -2.00
## se33      25  273 0.56 0.50    1.0    0.58 0.00   0   1     1 -0.26    -1.94
## se34      26  249 0.75 0.44    1.0    0.81 0.00   0   1     1 -1.13    -0.73
## se35      27  273 0.51 0.50    1.0    0.52 0.00   0   1     1 -0.05    -2.00
## se36      28  278 0.81 0.39    1.0    0.88 0.00   0   1     1 -1.57     0.46
## se37      29  301 0.39 0.49    0.0    0.36 0.00   0   1     1  0.47    -1.79
## se38      30  280 0.48 0.50    0.0    0.48 0.00   0   1     1  0.07    -2.00
## se39      31  271 0.49 0.50    0.0    0.49 0.00   0   1     1  0.02    -2.01
## se40      32  240 0.45 0.50    0.0    0.44 0.00   0   1     1  0.18    -1.97
## se41      33  268 0.37 0.48    0.0    0.34 0.00   0   1     1  0.54    -1.72
## se42      34  273 0.34 0.47    0.0    0.30 0.00   0   1     1  0.69    -1.54
## se43      35  301 0.68 0.47    1.0    0.73 0.00   0   1     1 -0.77    -1.41
## se44      36  281 0.39 0.49    0.0    0.36 0.00   0   1     1  0.44    -1.81
## se45      37  238 0.47 0.50    0.0    0.46 0.00   0   1     1  0.12    -1.99
## se46      38  270 0.46 0.50    0.0    0.45 0.00   0   1     1  0.16    -1.98
## se47      39  269 0.38 0.49    0.0    0.35 0.00   0   1     1  0.48    -1.78
## se48      40  270 0.40 0.49    0.0    0.37 0.00   0   1     1  0.42    -1.83
## se50      41  271 0.44 0.50    0.0    0.43 0.00   0   1     1  0.23    -1.95
## se51      42  265 0.28 0.45    0.0    0.23 0.00   0   1     1  0.98    -1.05
## se52      43  235 0.34 0.47    0.0    0.30 0.00   0   1     1  0.69    -1.53
## se53      44  259 0.27 0.44    0.0    0.22 0.00   0   1     1  1.03    -0.95
## se54      45  267 0.32 0.47    0.0    0.27 0.00   0   1     1  0.78    -1.40
## se55      46  294 0.35 0.48    0.0    0.31 0.00   0   1     1  0.64    -1.60
## se56      47  272 0.45 0.50    0.0    0.44 0.00   0   1     1  0.19    -1.97
## ss1       48  319 0.82 0.38    1.0    0.90 0.00   0   1     1 -1.70     0.88
## ss2       49  321 0.73 0.45    1.0    0.79 0.00   0   1     1 -1.03    -0.95
## ss3       50  311 0.68 0.47    1.0    0.72 0.00   0   1     1 -0.76    -1.43
## ss4       51  306 0.41 0.49    0.0    0.39 0.00   0   1     1  0.37    -1.87
## ss5       52  287 0.90 0.31    1.0    0.99 0.00   0   1     1 -2.57     4.63
## ss6       53  302 0.84 0.37    1.0    0.93 0.00   0   1     1 -1.86     1.45
## ss7       54  316 0.62 0.49    1.0    0.65 0.00   0   1     1 -0.49    -1.76
## ss8       55  324 0.66 0.47    1.0    0.70 0.00   0   1     1 -0.67    -1.55
## ss9       56  312 0.82 0.39    1.0    0.90 0.00   0   1     1 -1.63     0.67
## ss10      57  307 0.55 0.50    1.0    0.57 0.00   0   1     1 -0.22    -1.96
## ss11      58  298 0.73 0.44    1.0    0.79 0.00   0   1     1 -1.06    -0.88
## ss12      59  287 0.84 0.36    1.0    0.93 0.00   0   1     1 -1.88     1.53
## ss13      60  317 0.40 0.49    0.0    0.38 0.00   0   1     1  0.39    -1.85
## ss14      61  324 0.60 0.49    1.0    0.63 0.00   0   1     1 -0.43    -1.82
## ss15      62  308 0.67 0.47    1.0    0.71 0.00   0   1     1 -0.73    -1.47
## ss17      63  285 0.32 0.47    0.0    0.28 0.00   0   1     1  0.75    -1.44
## ss18      64  302 0.91 0.28    1.0    1.00 0.00   0   1     1 -2.94     6.65
## ss19      65  319 0.56 0.50    1.0    0.58 0.00   0   1     1 -0.26    -1.94
## ss20      66  321 0.63 0.48    1.0    0.67 0.00   0   1     1 -0.55    -1.71
## ss21      67  309 0.22 0.42    0.0    0.16 0.00   0   1     1  1.32    -0.25
## ss22      68  305 0.92 0.27    1.0    1.00 0.00   0   1     1 -3.03     7.22
## ss23      69  286 0.90 0.30    1.0    1.00 0.00   0   1     1 -2.63     4.92
## ss24      70  303 0.86 0.35    1.0    0.95 0.00   0   1     1 -2.08     2.34
## ss25      71  303 0.83 0.38    1.0    0.91 0.00   0   1     1 -1.70     0.90
## ss26      72  310 0.87 0.34    1.0    0.96 0.00   0   1     1 -2.16     2.68
## ss27      73  294 0.83 0.38    1.0    0.91 0.00   0   1     1 -1.72     0.95
## ss28      74  284 0.79 0.41    1.0    0.86 0.00   0   1     1 -1.38    -0.09
## ss29      75  275 0.88 0.33    1.0    0.97 0.00   0   1     1 -2.33     3.42
## ss30      76  283 0.87 0.34    1.0    0.96 0.00   0   1     1 -2.18     2.76
## ss31      77  306 0.51 0.50    1.0    0.52 0.00   0   1     1 -0.05    -2.00
## ss32      78  307 0.79 0.41    1.0    0.85 0.00   0   1     1 -1.38    -0.09
## ss33      79  291 0.60 0.49    1.0    0.62 0.00   0   1     1 -0.40    -1.85
## ss34      80  282 0.71 0.45    1.0    0.76 0.00   0   1     1 -0.92    -1.16
## ss36      81  282 0.70 0.46    1.0    0.75 0.00   0   1     1 -0.88    -1.23
## ss37      82  301 0.75 0.44    1.0    0.81 0.00   0   1     1 -1.13    -0.72
## ss38      83  304 0.60 0.49    1.0    0.63 0.00   0   1     1 -0.41    -1.83
## ss40      84  280 0.66 0.47    1.0    0.70 0.00   0   1     1 -0.68    -1.55
## ss53      85  271 0.65 0.48    1.0    0.69 0.00   0   1     1 -0.62    -1.62
## ss54      86  280 0.56 0.50    1.0    0.57 0.00   0   1     1 -0.23    -1.95
## ss56      87  286 0.50 0.50    0.5    0.50 0.74   0   1     1  0.00    -2.01
## ss57      88  265 0.38 0.49    0.0    0.35 0.00   0   1     1  0.50    -1.75
## ss58      89  270 0.49 0.50    0.0    0.49 0.00   0   1     1  0.04    -2.01
## ss59      90  266 0.42 0.49    0.0    0.40 0.00   0   1     1  0.33    -1.90
## ss60      91  259 0.64 0.48    1.0    0.68 0.00   0   1     1 -0.60    -1.64
## ss61      92  265 0.42 0.49    0.0    0.39 0.00   0   1     1  0.34    -1.89
## ss62      93  262 0.42 0.50    0.0    0.40 0.00   0   1     1  0.31    -1.91
## ss63      94  257 0.15 0.36    0.0    0.07 0.00   0   1     1  1.93     1.73
## ss64      95  265 0.15 0.36    0.0    0.07 0.00   0   1     1  1.94     1.77
## anchor1   96 1577 0.62 0.48    1.0    0.65 0.00   0   1     1 -0.51    -1.74
## anchor2   97 1578 0.60 0.49    1.0    0.62 0.00   0   1     1 -0.39    -1.85
## anchor3   98 1562 0.55 0.50    1.0    0.56 0.00   0   1     1 -0.20    -1.96
## anchor4   99 1562 0.21 0.41    0.0    0.14 0.00   0   1     1  1.43     0.04
## anchor5  100 1564 0.41 0.49    0.0    0.39 0.00   0   1     1  0.35    -1.88
## anchor6  101 1570 0.78 0.41    1.0    0.85 0.00   0   1     1 -1.37    -0.13
##           se
## se1     0.02
## se2     0.02
## se3     0.02
## se4     0.02
## se5     0.02
## se6     0.02
## se7     0.02
## se8     0.02
## se9     0.03
## se11    0.03
## se14    0.03
## se15    0.03
## se17    0.03
## se19    0.03
## se20    0.03
## se21    0.03
## se22    0.03
## se23    0.03
## se26    0.03
## se28    0.03
## se29    0.03
## se30    0.03
## se31    0.03
## se32    0.03
## se33    0.03
## se34    0.03
## se35    0.03
## se36    0.02
## se37    0.03
## se38    0.03
## se39    0.03
## se40    0.03
## se41    0.03
## se42    0.03
## se43    0.03
## se44    0.03
## se45    0.03
## se46    0.03
## se47    0.03
## se48    0.03
## se50    0.03
## se51    0.03
## se52    0.03
## se53    0.03
## se54    0.03
## se55    0.03
## se56    0.03
## ss1     0.02
## ss2     0.02
## ss3     0.03
## ss4     0.03
## ss5     0.02
## ss6     0.02
## ss7     0.03
## ss8     0.03
## ss9     0.02
## ss10    0.03
## ss11    0.03
## ss12    0.02
## ss13    0.03
## ss14    0.03
## ss15    0.03
## ss17    0.03
## ss18    0.02
## ss19    0.03
## ss20    0.03
## ss21    0.02
## ss22    0.02
## ss23    0.02
## ss24    0.02
## ss25    0.02
## ss26    0.02
## ss27    0.02
## ss28    0.02
## ss29    0.02
## ss30    0.02
## ss31    0.03
## ss32    0.02
## ss33    0.03
## ss34    0.03
## ss36    0.03
## ss37    0.03
## ss38    0.03
## ss40    0.03
## ss53    0.03
## ss54    0.03
## ss56    0.03
## ss57    0.03
## ss58    0.03
## ss59    0.03
## ss60    0.03
## ss61    0.03
## ss62    0.03
## ss63    0.02
## ss64    0.02
## anchor1 0.01
## anchor2 0.01
## anchor3 0.01
## anchor4 0.01
## anchor5 0.01
## anchor6 0.01

Part 2

itemDesc <- describe(f19s20) # get item descriptives
itemDesc
##         vars    n mean   sd median trimmed  mad min max range  skew kurtosis
## se1        1  329 0.87 0.33    1.0    0.96 0.00   0   1     1 -2.22     2.94
## se2        2  317 0.88 0.33    1.0    0.97 0.00   0   1     1 -2.28     3.23
## se3        3  293 0.84 0.37    1.0    0.92 0.00   0   1     1 -1.81     1.27
## se4        4  307 0.83 0.37    1.0    0.91 0.00   0   1     1 -1.79     1.19
## se5        5  294 0.79 0.41    1.0    0.86 0.00   0   1     1 -1.39    -0.08
## se6        6  273 0.85 0.36    1.0    0.93 0.00   0   1     1 -1.91     1.65
## se7        7  317 0.85 0.36    1.0    0.94 0.00   0   1     1 -1.97     1.89
## se8        8  327 0.85 0.36    1.0    0.94 0.00   0   1     1 -1.95     1.82
## se9        9  290 0.50 0.50    0.0    0.50 0.00   0   1     1  0.01    -2.01
## se11      10  289 0.52 0.50    1.0    0.53 0.00   0   1     1 -0.09    -2.00
## se14      11  310 0.34 0.48    0.0    0.30 0.00   0   1     1  0.66    -1.57
## se15      12  283 0.34 0.47    0.0    0.30 0.00   0   1     1  0.69    -1.53
## se17      13  284 0.52 0.50    1.0    0.52 0.00   0   1     1 -0.07    -2.00
## se19      14  324 0.39 0.49    0.0    0.36 0.00   0   1     1  0.47    -1.79
## se20      15  312 0.63 0.48    1.0    0.66 0.00   0   1     1 -0.53    -1.73
## se21      16  284 0.56 0.50    1.0    0.58 0.00   0   1     1 -0.25    -1.94
## se22      17  260 0.35 0.48    0.0    0.31 0.00   0   1     1  0.63    -1.62
## se23      18  282 0.35 0.48    0.0    0.32 0.00   0   1     1  0.60    -1.64
## se26      19  306 0.54 0.50    1.0    0.54 0.00   0   1     1 -0.14    -1.99
## se28      20  244 0.48 0.50    0.0    0.47 0.00   0   1     1  0.10    -2.00
## se29      21  268 0.53 0.50    1.0    0.54 0.00   0   1     1 -0.13    -1.99
## se30      22  276 0.47 0.50    0.0    0.46 0.00   0   1     1  0.13    -1.99
## se31      23  305 0.62 0.49    1.0    0.65 0.00   0   1     1 -0.50    -1.75
## se32      24  284 0.48 0.50    0.0    0.47 0.00   0   1     1  0.08    -2.00
## se33      25  273 0.56 0.50    1.0    0.58 0.00   0   1     1 -0.26    -1.94
## se34      26  249 0.75 0.44    1.0    0.81 0.00   0   1     1 -1.13    -0.73
## se35      27  273 0.51 0.50    1.0    0.52 0.00   0   1     1 -0.05    -2.00
## se36      28  278 0.81 0.39    1.0    0.88 0.00   0   1     1 -1.57     0.46
## se37      29  301 0.39 0.49    0.0    0.36 0.00   0   1     1  0.47    -1.79
## se38      30  280 0.48 0.50    0.0    0.48 0.00   0   1     1  0.07    -2.00
## se39      31  271 0.49 0.50    0.0    0.49 0.00   0   1     1  0.02    -2.01
## se40      32  240 0.45 0.50    0.0    0.44 0.00   0   1     1  0.18    -1.97
## se41      33  268 0.37 0.48    0.0    0.34 0.00   0   1     1  0.54    -1.72
## se42      34  273 0.34 0.47    0.0    0.30 0.00   0   1     1  0.69    -1.54
## se43      35  301 0.68 0.47    1.0    0.73 0.00   0   1     1 -0.77    -1.41
## se44      36  281 0.39 0.49    0.0    0.36 0.00   0   1     1  0.44    -1.81
## se45      37  238 0.47 0.50    0.0    0.46 0.00   0   1     1  0.12    -1.99
## se46      38  270 0.46 0.50    0.0    0.45 0.00   0   1     1  0.16    -1.98
## se47      39  269 0.38 0.49    0.0    0.35 0.00   0   1     1  0.48    -1.78
## se48      40  270 0.40 0.49    0.0    0.37 0.00   0   1     1  0.42    -1.83
## se50      41  271 0.44 0.50    0.0    0.43 0.00   0   1     1  0.23    -1.95
## se51      42  265 0.28 0.45    0.0    0.23 0.00   0   1     1  0.98    -1.05
## se52      43  235 0.34 0.47    0.0    0.30 0.00   0   1     1  0.69    -1.53
## se53      44  259 0.27 0.44    0.0    0.22 0.00   0   1     1  1.03    -0.95
## se54      45  267 0.32 0.47    0.0    0.27 0.00   0   1     1  0.78    -1.40
## se55      46  294 0.35 0.48    0.0    0.31 0.00   0   1     1  0.64    -1.60
## se56      47  272 0.45 0.50    0.0    0.44 0.00   0   1     1  0.19    -1.97
## ss1       48  319 0.82 0.38    1.0    0.90 0.00   0   1     1 -1.70     0.88
## ss2       49  321 0.73 0.45    1.0    0.79 0.00   0   1     1 -1.03    -0.95
## ss3       50  311 0.68 0.47    1.0    0.72 0.00   0   1     1 -0.76    -1.43
## ss4       51  306 0.41 0.49    0.0    0.39 0.00   0   1     1  0.37    -1.87
## ss5       52  287 0.90 0.31    1.0    0.99 0.00   0   1     1 -2.57     4.63
## ss6       53  302 0.84 0.37    1.0    0.93 0.00   0   1     1 -1.86     1.45
## ss7       54  316 0.62 0.49    1.0    0.65 0.00   0   1     1 -0.49    -1.76
## ss8       55  324 0.66 0.47    1.0    0.70 0.00   0   1     1 -0.67    -1.55
## ss9       56  312 0.82 0.39    1.0    0.90 0.00   0   1     1 -1.63     0.67
## ss10      57  307 0.55 0.50    1.0    0.57 0.00   0   1     1 -0.22    -1.96
## ss11      58  298 0.73 0.44    1.0    0.79 0.00   0   1     1 -1.06    -0.88
## ss12      59  287 0.84 0.36    1.0    0.93 0.00   0   1     1 -1.88     1.53
## ss13      60  317 0.40 0.49    0.0    0.38 0.00   0   1     1  0.39    -1.85
## ss14      61  324 0.60 0.49    1.0    0.63 0.00   0   1     1 -0.43    -1.82
## ss15      62  308 0.67 0.47    1.0    0.71 0.00   0   1     1 -0.73    -1.47
## ss17      63  285 0.32 0.47    0.0    0.28 0.00   0   1     1  0.75    -1.44
## ss18      64  302 0.91 0.28    1.0    1.00 0.00   0   1     1 -2.94     6.65
## ss19      65  319 0.56 0.50    1.0    0.58 0.00   0   1     1 -0.26    -1.94
## ss20      66  321 0.63 0.48    1.0    0.67 0.00   0   1     1 -0.55    -1.71
## ss21      67  309 0.22 0.42    0.0    0.16 0.00   0   1     1  1.32    -0.25
## ss22      68  305 0.92 0.27    1.0    1.00 0.00   0   1     1 -3.03     7.22
## ss23      69  286 0.90 0.30    1.0    1.00 0.00   0   1     1 -2.63     4.92
## ss24      70  303 0.86 0.35    1.0    0.95 0.00   0   1     1 -2.08     2.34
## ss25      71  303 0.83 0.38    1.0    0.91 0.00   0   1     1 -1.70     0.90
## ss26      72  310 0.87 0.34    1.0    0.96 0.00   0   1     1 -2.16     2.68
## ss27      73  294 0.83 0.38    1.0    0.91 0.00   0   1     1 -1.72     0.95
## ss28      74  284 0.79 0.41    1.0    0.86 0.00   0   1     1 -1.38    -0.09
## ss29      75  275 0.88 0.33    1.0    0.97 0.00   0   1     1 -2.33     3.42
## ss30      76  283 0.87 0.34    1.0    0.96 0.00   0   1     1 -2.18     2.76
## ss31      77  306 0.51 0.50    1.0    0.52 0.00   0   1     1 -0.05    -2.00
## ss32      78  307 0.79 0.41    1.0    0.85 0.00   0   1     1 -1.38    -0.09
## ss33      79  291 0.60 0.49    1.0    0.62 0.00   0   1     1 -0.40    -1.85
## ss34      80  282 0.71 0.45    1.0    0.76 0.00   0   1     1 -0.92    -1.16
## ss36      81  282 0.70 0.46    1.0    0.75 0.00   0   1     1 -0.88    -1.23
## ss37      82  301 0.75 0.44    1.0    0.81 0.00   0   1     1 -1.13    -0.72
## ss38      83  304 0.60 0.49    1.0    0.63 0.00   0   1     1 -0.41    -1.83
## ss40      84  280 0.66 0.47    1.0    0.70 0.00   0   1     1 -0.68    -1.55
## ss53      85  271 0.65 0.48    1.0    0.69 0.00   0   1     1 -0.62    -1.62
## ss54      86  280 0.56 0.50    1.0    0.57 0.00   0   1     1 -0.23    -1.95
## ss56      87  286 0.50 0.50    0.5    0.50 0.74   0   1     1  0.00    -2.01
## ss57      88  265 0.38 0.49    0.0    0.35 0.00   0   1     1  0.50    -1.75
## ss58      89  270 0.49 0.50    0.0    0.49 0.00   0   1     1  0.04    -2.01
## ss59      90  266 0.42 0.49    0.0    0.40 0.00   0   1     1  0.33    -1.90
## ss60      91  259 0.64 0.48    1.0    0.68 0.00   0   1     1 -0.60    -1.64
## ss61      92  265 0.42 0.49    0.0    0.39 0.00   0   1     1  0.34    -1.89
## ss62      93  262 0.42 0.50    0.0    0.40 0.00   0   1     1  0.31    -1.91
## ss63      94  257 0.15 0.36    0.0    0.07 0.00   0   1     1  1.93     1.73
## ss64      95  265 0.15 0.36    0.0    0.07 0.00   0   1     1  1.94     1.77
## anchor1   96 1577 0.62 0.48    1.0    0.65 0.00   0   1     1 -0.51    -1.74
## anchor2   97 1578 0.60 0.49    1.0    0.62 0.00   0   1     1 -0.39    -1.85
## anchor3   98 1562 0.55 0.50    1.0    0.56 0.00   0   1     1 -0.20    -1.96
## anchor4   99 1562 0.21 0.41    0.0    0.14 0.00   0   1     1  1.43     0.04
## anchor5  100 1564 0.41 0.49    0.0    0.39 0.00   0   1     1  0.35    -1.88
## anchor6  101 1570 0.78 0.41    1.0    0.85 0.00   0   1     1 -1.37    -0.13
##           se
## se1     0.02
## se2     0.02
## se3     0.02
## se4     0.02
## se5     0.02
## se6     0.02
## se7     0.02
## se8     0.02
## se9     0.03
## se11    0.03
## se14    0.03
## se15    0.03
## se17    0.03
## se19    0.03
## se20    0.03
## se21    0.03
## se22    0.03
## se23    0.03
## se26    0.03
## se28    0.03
## se29    0.03
## se30    0.03
## se31    0.03
## se32    0.03
## se33    0.03
## se34    0.03
## se35    0.03
## se36    0.02
## se37    0.03
## se38    0.03
## se39    0.03
## se40    0.03
## se41    0.03
## se42    0.03
## se43    0.03
## se44    0.03
## se45    0.03
## se46    0.03
## se47    0.03
## se48    0.03
## se50    0.03
## se51    0.03
## se52    0.03
## se53    0.03
## se54    0.03
## se55    0.03
## se56    0.03
## ss1     0.02
## ss2     0.02
## ss3     0.03
## ss4     0.03
## ss5     0.02
## ss6     0.02
## ss7     0.03
## ss8     0.03
## ss9     0.02
## ss10    0.03
## ss11    0.03
## ss12    0.02
## ss13    0.03
## ss14    0.03
## ss15    0.03
## ss17    0.03
## ss18    0.02
## ss19    0.03
## ss20    0.03
## ss21    0.02
## ss22    0.02
## ss23    0.02
## ss24    0.02
## ss25    0.02
## ss26    0.02
## ss27    0.02
## ss28    0.02
## ss29    0.02
## ss30    0.02
## ss31    0.03
## ss32    0.02
## ss33    0.03
## ss34    0.03
## ss36    0.03
## ss37    0.03
## ss38    0.03
## ss40    0.03
## ss53    0.03
## ss54    0.03
## ss56    0.03
## ss57    0.03
## ss58    0.03
## ss59    0.03
## ss60    0.03
## ss61    0.03
## ss62    0.03
## ss63    0.02
## ss64    0.02
## anchor1 0.01
## anchor2 0.01
## anchor3 0.01
## anchor4 0.01
## anchor5 0.01
## anchor6 0.01
itemDiff <- itemDesc$mean # save the difficulties as a vector for plotting
items    <- itemDesc$vars # save item names as a vector for plotting

# plot item difficulties
plot(items,itemDiff, type = "l")
points(items,itemDiff)

IRT Analyses

m_1dimension <- 'math.skill = 1-101' # make the 1 dimensional model

# fit the Rasch
results.1pl <- mirt(data=f19s20, model=m_1dimension, itemtype="Rasch", SE=TRUE, verbose=FALSE)
# this ^ is the rasch, i've been fitting the 1pl; not sure if you can do that in MIRT
coef.1pl <- coef(results.1pl, IRTpars=TRUE, simplify=TRUE)

# fit the 2pl
results.2pl <- mirt(data=f19s20, model=m_1dimension, itemtype="2PL", SE=TRUE, verbose=FALSE)
coef.2pl <- coef(results.2pl, IRTpars=TRUE, simplify=TRUE)

param.num.3pl <- mirt(data=f19s20, model=m_1dimension, itemtype="3PL", SE=TRUE, verbose=FALSE,
                      pars='values') # get the parameter numbers
m <- 'F = 1-101
      PRIOR = (1-101, g, norm, -1.1,3)'
model <- mirt.model(m)
results.3pl <- mirt(data=f19s20, model=model, itemtype="3PL", SE=TRUE, verbose=FALSE) # fit the 3pl
## EM cycles terminated after 500 iterations.
coef.3pl    <- coef(results.3pl, IRTpars=TRUE, simplify=TRUE)
coef.3pl
## $items
##              a      b     g u
## se1      1.528 -1.534 0.142 1
## se2      1.952 -0.650 0.596 1
## se3      2.651 -0.203 0.638 1
## se4      1.314 -1.526 0.087 1
## se5      1.192 -0.535 0.414 1
## se6      2.951  0.001 0.697 1
## se7     16.017 -0.057 0.671 1
## se8      2.905 -0.773 0.377 1
## se9      5.327  1.371 0.437 1
## se11    10.817  1.542 0.493 1
## se14     8.987  1.714 0.311 1
## se15     0.673  3.241 0.244 1
## se17     1.629  0.988 0.369 1
## se19     0.723  2.537 0.267 1
## se20     0.254 -0.957 0.154 1
## se21     3.121  1.068 0.459 1
## se22     5.330  1.930 0.333 1
## se23     0.727  1.590 0.137 1
## se26     1.885  0.856 0.361 1
## se28     0.375  0.818 0.097 1
## se29     0.613  0.040 0.097 1
## se30     0.846  1.013 0.223 1
## se31     0.460 -0.046 0.233 1
## se32     2.197  1.393 0.391 1
## se33     2.370  0.501 0.319 1
## se34     0.674 -1.572 0.113 1
## se35     3.363  0.560 0.312 1
## se36     0.898 -1.572 0.187 1
## se37     2.080  1.087 0.218 1
## se38    15.152  1.059 0.388 1
## se39     1.663  0.628 0.229 1
## se40     4.882  1.036 0.361 1
## se41    19.222  1.259 0.299 1
## se42    15.324  1.066 0.234 1
## se43     1.290 -0.088 0.320 1
## se44     3.285  1.792 0.354 1
## se45     3.497  1.306 0.407 1
## se46     1.123  0.917 0.212 1
## se47    16.813  1.368 0.327 1
## se48     7.322  1.148 0.311 1
## se50     7.730  1.283 0.374 1
## se51     5.800  1.825 0.250 1
## se52     2.017  1.258 0.218 1
## se53    -5.544 -2.128 0.246 1
## se54     3.650  1.528 0.263 1
## se55     6.477  1.790 0.318 1
## se56     1.001  1.359 0.274 1
## ss1      3.188 -0.246 0.568 1
## ss2      4.020  0.082 0.484 1
## ss3      4.627  0.582 0.539 1
## ss4      2.764  1.097 0.272 1
## ss5      4.817 -1.157 0.252 1
## ss6      2.421 -1.283 0.037 1
## ss7      1.535  0.640 0.423 1
## ss8      1.799  0.226 0.401 1
## ss9      1.323 -0.891 0.362 1
## ss10     1.565  0.438 0.265 1
## ss11     1.469 -0.736 0.194 1
## ss12     3.691 -0.214 0.630 1
## ss13     1.465  1.308 0.253 1
## ss14     2.928  0.145 0.280 1
## ss15     1.598 -0.018 0.321 1
## ss17     1.217  0.947 0.053 1
## ss18    13.688 -1.320 0.231 1
## ss19     1.268  0.040 0.136 1
## ss20     2.392  0.530 0.446 1
## ss21     1.951  1.577 0.116 1
## ss22     3.409 -1.463 0.123 1
## ss23     2.363 -1.303 0.315 1
## ss24     1.498 -1.586 0.142 1
## ss25     9.273  0.204 0.689 1
## ss26     8.010 -0.221 0.679 1
## ss27     1.801 -1.196 0.095 1
## ss28     0.913 -1.103 0.259 1
## ss29     2.972 -1.153 0.280 1
## ss30     2.344 -1.459 0.043 1
## ss31     2.549  1.226 0.418 1
## ss32     8.602 -0.062 0.540 1
## ss33     0.630 -0.310 0.112 1
## ss34     1.843 -0.634 0.062 1
## ss36     1.803  0.240 0.492 1
## ss37     1.880 -0.029 0.474 1
## ss38     5.141  0.533 0.411 1
## ss40     2.981  0.632 0.507 1
## ss53     1.907  0.580 0.478 1
## ss54     0.977 -0.275 0.043 1
## ss56     1.252  0.068 0.025 1
## ss57     1.661  0.535 0.019 1
## ss58     7.366  0.812 0.343 1
## ss59     0.543  1.291 0.131 1
## ss60     0.517 -0.847 0.116 1
## ss61     1.592  1.604 0.319 1
## ss62     1.880  0.708 0.164 1
## ss63     3.341  1.917 0.118 1
## ss64     0.640  3.640 0.061 1
## anchor1  2.813 -0.284 0.075 1
## anchor2  2.383 -0.191 0.085 1
## anchor3  2.233  0.167 0.188 1
## anchor4  0.621  2.364 0.009 1
## anchor5  0.321  1.375 0.035 1
## anchor6  1.778 -0.550 0.375 1
## 
## $means
## F 
## 0 
## 
## $cov
##   F
## F 1
# lr tests
anova(results.1pl, results.2pl)
## 
## Model 1: mirt(data = f19s20, model = m_1dimension, itemtype = "Rasch", 
##     SE = TRUE, verbose = FALSE)
## Model 2: mirt(data = f19s20, model = m_1dimension, itemtype = "2PL", SE = TRUE, 
##     verbose = FALSE)
##        AIC    SABIC       HQ      BIC    logLik       X2  df   p
## 1 41990.30 42238.35 42200.28 42562.41 -20893.15      NaN NaN NaN
## 2 41162.17 41653.40 41578.01 42295.16 -20379.09 1028.132 100   0
anova(results.2pl, results.3pl)
## 
## Model 1: mirt(data = f19s20, model = m_1dimension, itemtype = "2PL", SE = TRUE, 
##     verbose = FALSE)
## Model 2: mirt(data = f19s20, model = model, itemtype = "3PL", SE = TRUE, 
##     verbose = FALSE)
##        AIC    SABIC       HQ      BIC    logLik   logPost  df
## 1 41162.17 41653.40 41578.01 42295.16 -20379.09 -20379.09 NaN
## 2 41038.34 41775.17 41662.10 42737.82 -20216.17 -20426.41 101
firstFive <- c(1:5)
itemplot(results.3pl, 1)

plot(results.3pl, type='trace', auto.key=F) # all item trace lines

plot(results.3pl, type='infotrace',auto.key=T)

plot(results.3pl, type='info', auto.key=T) # all item trace lines

theta <- fscores(results.3pl)

Part 3

2 factor model

#parnums.multi2.3pl <- mirt(data=f19s20, model=2, itemtype="3PL",
#                           pars = 'values', SE=TRUE, verbose=FALSE) # get param numbers
#results.multi2.3pl.s20 <- mirt(data=f19s20, model=2, itemtype="3PL",
#                           parprior = list(c(seq(4,505,5), 'norm', -1.1,3),
#                                           c(seq(1,505,5), 'norm',  0.0,3),
#                                           c(seq(2,505,5), 'norm',  0.0,3),
#                                           c(seq(3,505,5), 'norm',  0.0,3)),
#                           SE=TRUE, verbose=FALSE) # fit the 3pl
#save(results.multi2.3pl.s20, file = "results.multi2.3pl.s20")
load('C:/Users/Sydne/Documents/results.multi2.3pl.s20')
coef.multi2.3pl.s20 <- coef(results.multi2.3pl.s20, simplify = T, rotate = 'bifactorT')
## 
## Rotation:  bifactorT
coef.multi2.3pl.s20
## $items
##            a1     a2      d     g u
## se1     1.537 -0.924  2.591 0.105 1
## se2     2.041  0.331  1.250 0.608 1
## se3     2.292 -0.002  0.646 0.618 1
## se4     1.247 -0.764  2.095 0.090 1
## se5     1.086 -0.775  0.665 0.416 1
## se6     2.123 -0.328  0.429 0.657 1
## se7     4.467  0.983  1.150 0.622 1
## se8     2.418 -0.964  2.607 0.220 1
## se9     1.012 -0.787 -1.788 0.363 1
## se11    1.328 -1.408 -3.592 0.479 1
## se14    0.497 -0.983 -2.514 0.259 1
## se15    0.138 -0.445 -0.975 0.068 1
## se17    1.348 -0.212 -1.325 0.351 1
## se19    0.296 -0.253 -0.845 0.110 1
## se20    0.280  0.121  0.205 0.171 1
## se21    0.757 -0.516 -0.328 0.219 1
## se22    1.551  0.980 -3.267 0.275 1
## se23    0.556 -0.225 -0.868 0.078 1
## se26    1.413 -0.382 -1.098 0.318 1
## se28    0.372  0.024 -0.296 0.090 1
## se29    0.660  0.054 -0.066 0.113 1
## se30    1.491  0.420 -1.761 0.323 1
## se31    0.449 -0.169 -0.099 0.275 1
## se32    0.847 -0.636 -1.153 0.270 1
## se33    2.602 -0.683 -1.275 0.323 1
## se34    0.662  0.031  1.021 0.126 1
## se35    2.626 -0.543 -1.319 0.290 1
## se36    1.136 -1.050  0.879 0.472 1
## se37    2.064 -0.963 -2.399 0.218 1
## se38    2.114 -2.538 -2.477 0.304 1
## se39    2.721  0.057 -1.744 0.275 1
## se40    2.134 -0.924 -2.423 0.337 1
## se41    1.322 -3.001 -3.728 0.256 1
## se42    3.302 -0.830 -3.728 0.216 1
## se43    1.573 -0.511 -0.219 0.395 1
## se44    0.070 -1.700 -2.292 0.263 1
## se45    0.639 -1.158 -0.946 0.249 1
## se46    1.279 -0.376 -1.195 0.231 1
## se47    0.880 -2.774 -3.831 0.293 1
## se48    2.951 -0.836 -3.711 0.300 1
## se50    1.401 -3.206 -2.707 0.263 1
## se51    0.011 -0.788 -1.407 0.068 1
## se52    1.426 -0.311 -1.843 0.183 1
## se53    1.381 -0.949 -4.668 0.248 1
## se54    2.431  0.444 -3.808 0.245 1
## se55    1.261 -0.486 -3.084 0.287 1
## se56    0.593 -0.127 -0.743 0.175 1
## ss1     2.169 -0.776  1.308 0.458 1
## ss2     2.919  0.287  0.306 0.422 1
## ss3     1.969 -0.745 -0.595 0.447 1
## ss4     1.063 -1.041 -1.266 0.167 1
## ss5     3.258 -0.156  4.181 0.204 1
## ss6     2.436 -0.660  3.188 0.030 1
## ss7     1.169 -0.548 -0.543 0.366 1
## ss8     1.386 -0.100  0.010 0.327 1
## ss9     1.292 -0.148  1.094 0.387 1
## ss10    1.102 -0.626 -0.097 0.133 1
## ss11    1.801 -0.766  0.993 0.280 1
## ss12    2.912 -0.297  0.911 0.606 1
## ss13    1.636  0.394 -2.042 0.252 1
## ss14    2.511  0.261 -0.122 0.243 1
## ss15    1.209 -0.501  0.583 0.143 1
## ss17    1.317 -0.561 -1.292 0.068 1
## ss18    3.758 -0.228  5.844 0.082 1
## ss19    1.212 -0.383 -0.005 0.127 1
## ss20    2.301 -0.195 -1.162 0.442 1
## ss21    0.929 -1.257 -2.142 0.051 1
## ss22    2.498  0.656  4.048 0.105 1
## ss23    2.408 -1.542  3.925 0.188 1
## ss24    1.512  0.022  2.472 0.091 1
## ss25    3.391  0.440  0.114 0.636 1
## ss26    3.570 -1.039  2.068 0.577 1
## ss27    1.729 -0.070  2.145 0.075 1
## ss28    0.857 -0.089  1.128 0.195 1
## ss29    2.465 -0.426  3.384 0.147 1
## ss30    2.310 -0.923  3.504 0.046 1
## ss31    2.192 -1.543 -2.787 0.397 1
## ss32    3.174 -0.140  1.112 0.436 1
## ss33    0.638 -0.252  0.253 0.087 1
## ss34    1.828 -0.078  1.211 0.044 1
## ss36    1.475 -0.152 -0.214 0.463 1
## ss37    1.690 -0.240  0.259 0.440 1
## ss38    3.306 -0.186 -1.553 0.390 1
## ss40    0.964 -1.166  0.212 0.265 1
## ss53    0.927  0.302  0.233 0.227 1
## ss54    1.037 -0.421  0.237 0.066 1
## ss56    1.285  0.023 -0.072 0.025 1
## ss57    1.598 -0.654 -0.904 0.028 1
## ss58    2.758 -1.765 -2.184 0.291 1
## ss59    0.661 -0.883 -1.192 0.214 1
## ss60    0.624  0.463  0.540 0.072 1
## ss61    0.430 -0.483 -0.601 0.075 1
## ss62    1.486 -0.823 -0.995 0.124 1
## ss63    0.296 -0.873 -2.329 0.044 1
## ss64    0.863 -0.771 -2.821 0.078 1
## anchor1 2.802 -0.086  0.827 0.074 1
## anchor2 2.842 -0.086  0.346 0.130 1
## anchor3 2.116 -0.693 -0.260 0.174 1
## anchor4 2.360  3.093 -4.083 0.048 1
## anchor5 1.729  3.821 -1.862 0.106 1
## anchor6 1.652  0.000  1.111 0.329 1
## 
## $means
## F1 F2 
##  0  0 
## 
## $cov
##    F1 F2
## F1  1  0
## F2  0  1

3 factor model

#parnums.multi3.3pl <- mirt(data=f19s20, model=3, itemtype="3PL",
#                           pars = 'values', SE=TRUE, verbose=FALSE) # get param numbers
#results.multi3.3pl.s20 <- mirt(data=f19s20, model=3, itemtype="3PL",
#                               parprior = list(c(seq(5,606,6), 'norm', -1.1,3),
#                                               c(seq(1,606,6), 'norm',  0.0,3),
#                                               c(seq(2,606,6), 'norm',  0.0,3),
#                                               c(seq(3,606,6), 'norm',  0.0,3),
#                                               c(seq(4,606,6), 'norm',  0.0,3)),
#                               SE=TRUE, verbose=FALSE) # fit the 3pl
#save(results.multi3.3pl.s20, file = "results.multi3.3pl.s20")
load('C:/Users/Sydne/Documents/results.multi3.3pl.s20')
coef.multi3.3pl.s20 <- coef(results.multi3.3pl.s20, simplify = T, rotate = 'bifactorT')
## 
## Rotation:  bifactorT
coef.multi3.3pl.s20
## $items
##             a1     a2     a3      d     g u
## se1      1.740 -0.471  0.032  2.597 0.105 1
## se2      2.408  0.762 -0.375  1.479 0.593 1
## se3      1.853  0.398  0.958  1.084 0.551 1
## se4      1.296 -0.200 -0.791  2.151 0.080 1
## se5      1.114 -0.331  0.023  1.087 0.263 1
## se6      2.143  0.303 -0.150  0.365 0.665 1
## se7      3.628  1.863  0.832  1.301 0.599 1
## se8      2.825 -0.505  0.109  2.544 0.295 1
## se9      1.913 -0.148 -0.940 -2.337 0.368 1
## se11     1.276  0.206 -1.097 -2.786 0.455 1
## se14    -0.163 -0.649  2.334 -2.558 0.186 1
## se15     0.320 -0.362 -0.300 -1.037 0.081 1
## se17     1.773 -0.173  0.767 -1.679 0.363 1
## se19     1.349 -0.224  1.272 -3.084 0.301 1
## se20     0.979  0.337 -1.403 -0.126 0.265 1
## se21     0.752 -0.355  0.221 -0.110 0.150 1
## se22     0.804  1.624 -1.072 -3.081 0.244 1
## se23     0.612 -0.152  0.041 -0.979 0.104 1
## se26     1.660 -0.110  0.195 -1.313 0.336 1
## se28     0.346  0.129  0.014 -0.299 0.090 1
## se29     0.577  0.193  0.073 -0.072 0.113 1
## se30     1.417  0.991 -0.633 -1.915 0.323 1
## se31     0.797 -0.122 -0.275 -0.794 0.429 1
## se32     0.905 -0.417  0.366 -1.108 0.263 1
## se33     2.536 -0.676  2.281 -1.150 0.271 1
## se34     0.648  0.071  0.463  1.056 0.133 1
## se35     2.740  0.464 -0.185 -1.353 0.286 1
## se36     1.788 -0.851 -1.756  0.740 0.543 1
## se37     2.264 -0.234 -0.245 -2.422 0.221 1
## se38     2.588 -2.042  0.704 -2.608 0.312 1
## se39     2.699  0.390  2.960 -1.925 0.229 1
## se40     2.677 -0.186 -0.740 -2.814 0.340 1
## se41     2.508 -0.872 -2.943 -3.826 0.228 1
## se42     3.857 -0.456  1.031 -3.990 0.199 1
## se43     1.574  0.042 -0.069 -0.038 0.361 1
## se44     0.533 -2.184 -0.177 -2.782 0.271 1
## se45     1.057 -1.202 -0.133 -1.144 0.268 1
## se46     1.938 -0.229  2.008 -2.463 0.289 1
## se47     1.970 -0.879 -2.052 -3.985 0.297 1
## se48     3.487 -0.434  0.613 -4.071 0.293 1
## se50     1.919 -2.836  0.855 -2.800 0.270 1
## se51     0.313 -0.629 -0.691 -1.409 0.060 1
## se52     1.167  0.038  0.303 -1.472 0.145 1
## se53     1.349 -0.312 -0.521 -4.471 0.249 1
## se54     2.340  1.259 -0.728 -3.991 0.240 1
## se55     1.247  0.048 -1.671 -3.280 0.263 1
## se56     0.600  0.009  0.197 -0.828 0.194 1
## ss1      1.649 -0.323  0.649  2.087 0.120 1
## ss2      2.223  0.772  1.198  0.507 0.383 1
## ss3      1.524 -0.307  0.895 -0.225 0.399 1
## ss4      1.037 -0.358 -0.956 -0.736 0.057 1
## ss5      3.170  0.722  0.221  4.146 0.213 1
## ss6      2.540  0.280 -1.261  3.423 0.035 1
## ss7      1.027 -0.127 -0.515 -0.065 0.261 1
## ss8      1.359  0.005  0.904 -0.164 0.359 1
## ss9      1.696 -0.054  2.182  0.760 0.551 1
## ss10     2.076  0.041 -2.100  0.118 0.077 1
## ss11     2.108  0.080 -1.133  0.931 0.316 1
## ss12     3.162  1.007 -0.499  1.264 0.579 1
## ss13     1.273  1.518 -1.812 -1.965 0.187 1
## ss14     2.617  0.618  1.510 -0.448 0.286 1
## ss15     1.212 -0.237  0.390  0.609 0.139 1
## ss17     1.360 -0.072 -0.282 -1.274 0.068 1
## ss18     3.421  1.055 -1.334  5.866 0.081 1
## ss19     1.430  0.039 -0.350 -0.195 0.185 1
## ss20     1.769  0.099  2.136 -0.838 0.387 1
## ss21     0.848 -1.056  1.041 -2.080 0.035 1
## ss22     2.306  1.403 -0.052  4.171 0.104 1
## ss23     2.989 -0.722 -0.621  4.296 0.164 1
## ss24     1.313  0.850 -0.891  2.663 0.089 1
## ss25     3.321  1.749 -0.873  0.504 0.615 1
## ss26     3.476 -0.502  1.899  2.221 0.568 1
## ss27     1.571  0.296  1.490  2.522 0.064 1
## ss28     0.807  0.169 -0.180  1.211 0.149 1
## ss29     2.477  0.326  0.064  3.362 0.159 1
## ss30     2.361  0.117 -1.832  3.930 0.049 1
## ss31     0.945 -0.218 -2.070 -0.335 0.121 1
## ss32     2.080  0.388  2.237  2.418 0.119 1
## ss33     0.484 -0.115  0.708  0.270 0.092 1
## ss34     1.741  0.392  0.115  1.205 0.042 1
## ss36     1.053  0.027  0.421  0.599 0.250 1
## ss37     1.227  0.284 -0.611  1.100 0.181 1
## ss38     2.783  0.367  1.435 -1.391 0.377 1
## ss40     1.135 -0.760 -0.251  0.324 0.227 1
## ss53     0.891  0.498  0.710  0.197 0.246 1
## ss54     1.527  0.257 -1.668 -0.030 0.146 1
## ss56     1.333  0.364  0.026 -0.073 0.025 1
## ss57     1.725 -0.194  0.050 -0.917 0.027 1
## ss58     2.977 -1.358  1.285 -2.312 0.294 1
## ss59     0.699 -0.549 -0.091 -0.656 0.105 1
## ss60     1.073 -0.017  3.385  1.344 0.053 1
## ss61     0.909 -0.497 -0.521 -0.966 0.141 1
## ss62     1.745 -0.523  0.190 -1.111 0.134 1
## ss63     0.491 -0.176 -0.908 -2.276 0.028 1
## ss64     1.232 -1.268  0.557 -3.217 0.064 1
## anchor1  2.749  0.571  0.464  0.877 0.067 1
## anchor2  2.922  0.542  0.626  0.363 0.133 1
## anchor3  2.250 -0.265  0.372 -0.247 0.171 1
## anchor4  1.532  3.832  0.424 -4.372 0.052 1
## anchor5  0.814  4.859  0.850 -2.380 0.126 1
## anchor6  1.510  0.532  0.151  1.261 0.276 1
## 
## $means
## F1 F2 F3 
##  0  0  0 
## 
## $cov
##    F1 F2 F3
## F1  1  0  0
## F2  0  1  0
## F3  0  0  1

4 factor model

#parnums.multi4.3pl <- mirt(data=f19s20, model=4, itemtype="3PL",
#                           pars = 'values', SE=TRUE, verbose=FALSE) # get param numbers
#results.multi4.3pl.s20 <- mirt(data=f19s20, model=4, itemtype="3PL",
#                               parprior = list(c(seq(6,707,7), 'norm', -1.1,3),
#                                               c(seq(1,707,7), 'norm',  0.0,3),
#                                               c(seq(2,707,7), 'norm',  0.0,3),
#                                               c(seq(3,707,7), 'norm',  0.0,3),
#                                               c(seq(4,707,7), 'norm',  0.0,3),
#                                               c(seq(5,707,7), 'norm',  0.0,3)),
#                               SE=TRUE, verbose=FALSE, method = 'QMCEM') # fit the 3pl
#save(results.multi4.3pl.s20, file = "results.multi4.3pl.s20")
load('C:/Users/Sydne/Documents/results.multi4.3pl.s20')
coef.multi4.3pl.s20 <- coef(results.multi4.3pl.s20, simplify = T, rotate = 'bifactorT')
## 
## Rotation:  bifactorT
coef.multi4.3pl.s20
## $items
##             a1     a2     a3     a4      d     g u
## se1      1.725 -0.191  1.196  0.710  2.966 0.099 1
## se2      2.245  0.648  1.292 -0.357  2.818 0.306 1
## se3      2.943 -0.068 -1.344 -0.561  2.316 0.410 1
## se4      0.976 -0.215 -0.026  1.013  2.017 0.108 1
## se5      1.674 -0.787 -0.511  1.623 -0.170 0.576 1
## se6      3.126  0.258  0.540 -0.550  0.653 0.654 1
## se7      4.319  1.882  0.203  0.048  1.428 0.598 1
## se8      3.009  0.087  1.892  0.052  3.630 0.131 1
## se9      1.964 -0.250  0.849  1.809 -3.000 0.377 1
## se11     1.785 -0.045  1.525 -0.198 -3.988 0.475 1
## se14     0.331 -0.583 -1.995 -1.661 -2.279 0.147 1
## se15    -0.015 -0.461  0.193  1.371 -1.187 0.045 1
## se17     1.021 -0.036 -0.094 -0.207 -0.489 0.207 1
## se19     0.339 -0.204  0.187  0.186 -0.907 0.122 1
## se20     1.378  0.980  2.644  0.592 -1.455 0.412 1
## se21     0.834 -0.329 -0.218  0.446 -0.471 0.251 1
## se22     0.375  1.559  1.249  0.816 -2.814 0.218 1
## se23     0.520 -0.048  0.180  0.286 -0.904 0.085 1
## se26     1.906  0.098  1.590  0.190 -1.188 0.281 1
## se28     0.320  0.152 -0.125  0.087 -0.320 0.095 1
## se29     0.506  0.203 -0.080  0.437 -0.105 0.128 1
## se30     2.040  0.705 -0.657 -0.809 -2.311 0.328 1
## se31     0.469 -0.077  0.054  0.216 -0.180 0.298 1
## se32     1.813 -0.534  0.389 -1.591 -1.697 0.258 1
## se33     2.727 -0.526 -1.923  0.002 -1.055 0.261 1
## se34     0.702  0.042 -0.538 -0.025  1.069 0.142 1
## se35     2.838  0.469  0.691  0.129 -1.242 0.268 1
## se36     0.912 -0.454  0.124  1.179  0.784 0.488 1
## se37     2.372 -0.550 -0.100  0.120 -2.698 0.232 1
## se38     2.438 -2.115 -0.371  0.001 -2.316 0.291 1
## se39     2.917  0.539 -2.904  0.587 -1.921 0.221 1
## se40     3.101 -0.159  0.922 -1.885 -2.452 0.271 1
## se41     1.363 -0.616  4.298 -0.730 -1.853 0.029 1
## se42     2.672  0.189  3.212  0.463 -3.149 0.134 1
## se43     1.634 -0.240 -0.124  0.574 -0.175 0.381 1
## se44     0.338 -1.224  0.049 -0.414 -1.834 0.240 1
## se45     1.312 -1.151  0.076 -0.884 -1.028 0.234 1
## se46     2.039 -0.153 -1.846  0.115 -2.352 0.280 1
## se47     2.240 -0.577  2.812 -1.260 -3.925 0.250 1
## se48     2.275  0.231  2.956  0.607 -3.465 0.249 1
## se50     1.907 -2.838 -0.779 -0.064 -2.785 0.267 1
## se51     0.215 -0.680  0.557  0.285 -1.436 0.065 1
## se52     1.159  0.075 -0.202  0.276 -1.506 0.151 1
## se53    -1.563  0.924  0.565 -0.127 -3.654 0.203 1
## se54     1.884  1.000  1.384 -0.935 -3.511 0.215 1
## se55     0.887 -0.714 -1.443 -0.973 -2.489 0.199 1
## se56     0.683  0.036 -0.188 -0.082 -1.028 0.232 1
## ss1      1.806  0.091  1.329  0.628  2.109 0.254 1
## ss2      2.006  0.522 -0.810  0.089  0.854 0.299 1
## ss3      1.393 -0.261 -0.719  0.022  0.058 0.335 1
## ss4      0.989 -0.427  1.032  0.136 -0.683 0.047 1
## ss5      3.061  0.554 -0.731  0.990  4.208 0.243 1
## ss6      1.497  0.603  0.577  2.559  3.641 0.033 1
## ss7      0.885 -0.163  0.255 -0.321  0.366 0.100 1
## ss8      1.526  0.302  0.173 -1.336  0.769 0.141 1
## ss9      1.917  0.000 -1.826 -0.357  1.170 0.480 1
## ss10     1.856 -0.062  2.018  0.306  0.126 0.081 1
## ss11     1.588  0.240 -0.261  2.774  1.013 0.330 1
## ss12     2.817  0.755  0.517  0.785  1.010 0.603 1
## ss13     1.798  0.577 -1.232 -1.010 -2.080 0.203 1
## ss14     2.352  0.825 -0.349 -0.560  0.062 0.208 1
## ss15     1.187 -0.182 -0.425  0.479  0.366 0.227 1
## ss17     1.805 -0.215  0.507  1.351 -1.950 0.107 1
## ss18     2.218  1.178 -0.617  2.967  6.085 0.062 1
## ss19     1.506 -0.045  0.433 -0.138 -0.226 0.188 1
## ss20     2.102  0.074 -1.433 -0.809 -0.531 0.354 1
## ss21     1.085 -1.250 -1.236  0.397 -2.555 0.059 1
## ss22     2.389  1.425  0.283  0.232  4.258 0.106 1
## ss23     2.334 -0.723  0.271  1.821  4.382 0.085 1
## ss24     0.813  0.802  0.477  1.221  2.629 0.088 1
## ss25     3.214  1.086  0.419 -0.905  1.056 0.556 1
## ss26     3.913 -0.231 -0.195 -1.314  2.900 0.506 1
## ss27     1.494  0.337 -1.298  0.830  2.512 0.074 1
## ss28     1.605  0.091  0.247 -1.348  1.838 0.131 1
## ss29     2.600  0.210  0.053  0.623  3.537 0.175 1
## ss30     1.224  0.003  0.009  2.753  3.969 0.044 1
## ss31     1.711 -1.123 -0.848 -1.678 -0.627 0.147 1
## ss32     2.905  0.351 -1.190 -0.090  1.624 0.343 1
## ss33     0.425 -0.117 -0.852  0.429  0.272 0.103 1
## ss34     1.798  0.405  0.018  0.293  1.227 0.044 1
## ss36     1.402  0.018  0.240 -0.145  0.801 0.209 1
## ss37     1.865  0.170 -0.109 -0.522  0.560 0.381 1
## ss38     2.784  0.360 -0.716 -0.097 -1.214 0.368 1
## ss40     1.291 -0.872  0.230 -0.024  0.150 0.288 1
## ss53     1.322  0.587 -0.197 -1.209  0.806 0.091 1
## ss54     0.585  0.212  0.472  1.032  0.295 0.039 1
## ss56     1.315  0.327  0.297  0.217 -0.077 0.023 1
## ss57     1.721 -0.253 -0.003  0.559 -0.969 0.035 1
## ss58     3.100 -1.336 -0.998 -0.451 -1.990 0.256 1
## ss59     0.766 -0.650  0.831  1.988 -2.566 0.291 1
## ss60     1.775  0.129 -3.351 -0.860  0.573 0.224 1
## ss61     1.300 -0.581  0.901 -0.651 -0.753 0.037 1
## ss62     1.897 -0.570 -0.098  0.797 -1.368 0.160 1
## ss63     0.378 -0.218  1.015  0.051 -2.234 0.020 1
## ss64     1.046 -0.307  0.845  1.478 -4.048 0.098 1
## anchor1  2.790  0.662 -0.337  1.263  0.877 0.077 1
## anchor2  3.162  0.704 -0.405  1.791  0.417 0.127 1
## anchor3  2.561 -0.314 -0.171  0.641 -0.418 0.196 1
## anchor4  1.459  3.609 -0.337  0.045 -4.075 0.046 1
## anchor5  0.723  3.973 -0.416 -0.289 -1.614 0.084 1
## anchor6  1.493  0.352 -0.171  0.359  1.283 0.261 1
## 
## $means
## F1 F2 F3 F4 
##  0  0  0  0 
## 
## $cov
##    F1 F2 F3 F4
## F1  1  0  0  0
## F2  0  1  0  0
## F3  0  0  1  0
## F4  0  0  0  1

compare fit

anova(results.3pl, results.multi2.3pl.s20, results.multi3.3pl.s20,
      results.multi4.3pl.s20)
##        AIC    SABIC       HQ      BIC    logLik   logPost  df
## 1 41038.34 41775.17 41662.10 42737.82 -20216.17 -20426.41 NaN
## 2 40845.57 41825.59 41675.20 43105.95 -20019.79 -20890.06 100
## 3 40792.03 42012.79 41825.46 43607.68 -19894.01 -20978.14  99
## 4 40784.17 42243.25 42019.34 44149.49 -19792.08 -21085.21  98

calculate IECV 2 factor

sum.multi2.s20 <- summary(results.multi2.3pl.s20, rotate = "bifactorT")
## 
## Rotation:  bifactorT 
## 
## Rotated factor loadings: 
## 
##              F1        F2     h2
## se1     0.62174 -0.373728 0.5262
## se2     0.76215  0.123483 0.5961
## se3     0.80283 -0.000596 0.6445
## se4     0.55583 -0.340512 0.4249
## se5     0.50219 -0.358451 0.3807
## se6     0.77458 -0.119838 0.6143
## se7     0.91532  0.201449 0.8784
## se8     0.77747 -0.309968 0.7005
## se9     0.47491 -0.369345 0.3620
## se11    0.51527 -0.546211 0.5639
## se14    0.24520 -0.484880 0.2952
## se15    0.07800 -0.252281 0.0697
## se17    0.61790 -0.097278 0.3913
## se19    0.16926 -0.145170 0.0497
## se20    0.16217  0.069752 0.0312
## se21    0.39159 -0.266980 0.2246
## se22    0.61975  0.391455 0.5373
## se23    0.30815 -0.124702 0.1105
## se26    0.62951 -0.170260 0.4253
## se28    0.21345  0.014046 0.0458
## se29    0.36161  0.029508 0.1316
## se30    0.64784  0.182485 0.4530
## se31    0.25410 -0.095485 0.0737
## se32    0.42271 -0.317235 0.2793
## se33    0.81740 -0.214428 0.7141
## se34    0.36245  0.017000 0.1317
## se35    0.82678 -0.170896 0.7128
## se36    0.49394 -0.456625 0.4525
## se37    0.72585 -0.338752 0.6416
## se38    0.56884 -0.683090 0.7902
## se39    0.84766  0.017739 0.7188
## se40    0.74047 -0.320763 0.6512
## se41    0.35777 -0.812264 0.7878
## se42    0.86749 -0.217946 0.8000
## se43    0.66288 -0.215155 0.4857
## se44    0.02889 -0.706380 0.4998
## se45    0.29654 -0.537089 0.3764
## se46    0.59163 -0.173940 0.3803
## se47    0.26099 -0.822803 0.7451
## se48    0.84124 -0.238448 0.7645
## se50    0.36002 -0.823999 0.8086
## se51    0.00561 -0.420172 0.1766
## se52    0.63601 -0.138523 0.4237
## se53    0.57826 -0.397199 0.4922
## se54    0.81017  0.147976 0.6783
## se55    0.58018 -0.223577 0.3866
## se56    0.32799 -0.070438 0.1125
## ss1     0.75727 -0.271074 0.6469
## ss2     0.86079  0.084738 0.7481
## ss3     0.72727 -0.275244 0.6047
## ss4     0.47010 -0.460509 0.4331
## ss5     0.88557 -0.042285 0.7860
## ss6     0.80024 -0.216935 0.6874
## ss7     0.54731 -0.256519 0.3654
## ss8     0.63079 -0.045711 0.4000
## ss9     0.60308 -0.069119 0.3685
## ss10    0.51935 -0.294792 0.3566
## ss11    0.69435 -0.295238 0.5693
## ss12    0.86003 -0.087802 0.7474
## ss13    0.68343  0.164811 0.4942
## ss14    0.82468  0.085745 0.6874
## ss15    0.56306 -0.233330 0.3715
## ss17    0.59219 -0.252437 0.4144
## ss18    0.90955 -0.055133 0.8303
## ss19    0.57050 -0.180094 0.3579
## ss20    0.80209 -0.067912 0.6480
## ss21    0.40214 -0.543941 0.4576
## ss22    0.80759  0.212130 0.6972
## ss23    0.72361 -0.463453 0.7384
## ss24    0.66423  0.009762 0.4413
## ss25    0.88780  0.115120 0.8014
## ss26    0.87303 -0.254129 0.8268
## ss27    0.71243 -0.028762 0.5084
## ss28    0.44944 -0.046597 0.2042
## ss29    0.81469 -0.140810 0.6835
## ss30    0.76637 -0.306338 0.6812
## ss31    0.69028 -0.485971 0.7126
## ss32    0.88061 -0.038817 0.7770
## ss33    0.34767 -0.137465 0.1398
## ss34    0.73152 -0.031356 0.5361
## ss36    0.65334 -0.067210 0.4314
## ss37    0.70108 -0.099616 0.5014
## ss38    0.88797 -0.050007 0.7910
## ss40    0.42340 -0.512094 0.4415
## ss53    0.47269  0.153799 0.2471
## ss54    0.50914 -0.206746 0.3020
## ss56    0.60248  0.010961 0.3631
## ss57    0.65923 -0.269652 0.5073
## ss58    0.74740 -0.478174 0.7873
## ss59    0.32596 -0.435384 0.2958
## ss60    0.33347  0.247581 0.1725
## ss61    0.23623 -0.265297 0.1262
## ss62    0.61790 -0.342221 0.4989
## ss63    0.15291 -0.451052 0.2268
## ss64    0.41917 -0.374601 0.3160
## anchor1 0.85439 -0.026340 0.7307
## anchor2 0.85763 -0.026004 0.7362
## anchor3 0.75508 -0.247243 0.6313
## anchor4 0.55578  0.728312 0.8393
## anchor5 0.38204  0.844171 0.8586
## anchor6 0.69639  0.000000 0.4850
## 
## Rotated SS loadings:  39.83 10.723 
## 
## Factor correlations: 
## 
##    F1 F2
## F1  1  0
## F2  0  1
f2.iecv.s20 <- sum.multi2.s20$rotF[,1]^2/sum.multi2.s20$h2
f2.summary <- as.data.frame(cbind(sum.multi2.s20$rotF[,1], sum.multi2.s20$h2,
                                  f2.iecv.s20))
names(f2.summary) <- c("Gen Factor", "Communality", "IECV")
round(f2.summary,2)
##         Gen Factor Communality IECV
## se1           0.62        0.53 0.73
## se2           0.76        0.60 0.97
## se3           0.80        0.64 1.00
## se4           0.56        0.42 0.73
## se5           0.50        0.38 0.66
## se6           0.77        0.61 0.98
## se7           0.92        0.88 0.95
## se8           0.78        0.70 0.86
## se9           0.47        0.36 0.62
## se11          0.52        0.56 0.47
## se14          0.25        0.30 0.20
## se15          0.08        0.07 0.09
## se17          0.62        0.39 0.98
## se19          0.17        0.05 0.58
## se20          0.16        0.03 0.84
## se21          0.39        0.22 0.68
## se22          0.62        0.54 0.71
## se23          0.31        0.11 0.86
## se26          0.63        0.43 0.93
## se28          0.21        0.05 1.00
## se29          0.36        0.13 0.99
## se30          0.65        0.45 0.93
## se31          0.25        0.07 0.88
## se32          0.42        0.28 0.64
## se33          0.82        0.71 0.94
## se34          0.36        0.13 1.00
## se35          0.83        0.71 0.96
## se36          0.49        0.45 0.54
## se37          0.73        0.64 0.82
## se38          0.57        0.79 0.41
## se39          0.85        0.72 1.00
## se40          0.74        0.65 0.84
## se41          0.36        0.79 0.16
## se42          0.87        0.80 0.94
## se43          0.66        0.49 0.90
## se44          0.03        0.50 0.00
## se45          0.30        0.38 0.23
## se46          0.59        0.38 0.92
## se47          0.26        0.75 0.09
## se48          0.84        0.76 0.93
## se50          0.36        0.81 0.16
## se51          0.01        0.18 0.00
## se52          0.64        0.42 0.95
## se53          0.58        0.49 0.68
## se54          0.81        0.68 0.97
## se55          0.58        0.39 0.87
## se56          0.33        0.11 0.96
## ss1           0.76        0.65 0.89
## ss2           0.86        0.75 0.99
## ss3           0.73        0.60 0.87
## ss4           0.47        0.43 0.51
## ss5           0.89        0.79 1.00
## ss6           0.80        0.69 0.93
## ss7           0.55        0.37 0.82
## ss8           0.63        0.40 0.99
## ss9           0.60        0.37 0.99
## ss10          0.52        0.36 0.76
## ss11          0.69        0.57 0.85
## ss12          0.86        0.75 0.99
## ss13          0.68        0.49 0.95
## ss14          0.82        0.69 0.99
## ss15          0.56        0.37 0.85
## ss17          0.59        0.41 0.85
## ss18          0.91        0.83 1.00
## ss19          0.57        0.36 0.91
## ss20          0.80        0.65 0.99
## ss21          0.40        0.46 0.35
## ss22          0.81        0.70 0.94
## ss23          0.72        0.74 0.71
## ss24          0.66        0.44 1.00
## ss25          0.89        0.80 0.98
## ss26          0.87        0.83 0.92
## ss27          0.71        0.51 1.00
## ss28          0.45        0.20 0.99
## ss29          0.81        0.68 0.97
## ss30          0.77        0.68 0.86
## ss31          0.69        0.71 0.67
## ss32          0.88        0.78 1.00
## ss33          0.35        0.14 0.86
## ss34          0.73        0.54 1.00
## ss36          0.65        0.43 0.99
## ss37          0.70        0.50 0.98
## ss38          0.89        0.79 1.00
## ss40          0.42        0.44 0.41
## ss53          0.47        0.25 0.90
## ss54          0.51        0.30 0.86
## ss56          0.60        0.36 1.00
## ss57          0.66        0.51 0.86
## ss58          0.75        0.79 0.71
## ss59          0.33        0.30 0.36
## ss60          0.33        0.17 0.64
## ss61          0.24        0.13 0.44
## ss62          0.62        0.50 0.77
## ss63          0.15        0.23 0.10
## ss64          0.42        0.32 0.56
## anchor1       0.85        0.73 1.00
## anchor2       0.86        0.74 1.00
## anchor3       0.76        0.63 0.90
## anchor4       0.56        0.84 0.37
## anchor5       0.38        0.86 0.17
## anchor6       0.70        0.48 1.00

calculate IECV 3 factor

sum.multi3.s20 <- summary(results.multi3.3pl.s20, rotate = "bifactorT")
## 
## Rotation:  bifactorT 
## 
## Rotated factor loadings: 
## 
##              F1       F2       F3     h2
## se1      0.7018 -0.19006  0.01305 0.5288
## se2      0.7847  0.24831 -0.12233 0.6924
## se3      0.6808  0.14632  0.35203 0.6088
## se4      0.5662 -0.08716 -0.34536 0.4474
## se5      0.5406 -0.16054  0.01104 0.3181
## se6      0.7772  0.10979 -0.05431 0.6190
## se7      0.8068  0.41428  0.18493 0.8568
## se8      0.8463 -0.15127  0.03274 0.7401
## se9      0.7002 -0.05402 -0.34426 0.6118
## se11     0.5310  0.08595 -0.45675 0.4980
## se14    -0.0551 -0.21895  0.78708 0.6705
## se15     0.1782 -0.20162 -0.16701 0.1003
## se17     0.6871 -0.06694  0.29718 0.5649
## se19     0.5340 -0.08866  0.50340 0.5464
## se20     0.4017  0.13843 -0.57589 0.5122
## se21     0.3945 -0.18623  0.11583 0.2037
## se22     0.2968  0.59997 -0.39597 0.6049
## se23     0.3373 -0.08345  0.02254 0.1212
## se26     0.6952 -0.04596  0.08153 0.4921
## se28     0.1988  0.07385  0.00826 0.0451
## se29     0.3191  0.10658  0.04010 0.1148
## se30     0.5652  0.39534 -0.25232 0.5394
## se31     0.4189 -0.06423 -0.14458 0.2005
## se32     0.4513 -0.20796  0.18253 0.2802
## se33     0.6551 -0.17466  0.58913 0.8068
## se34     0.3445  0.03752  0.24636 0.1808
## se35     0.8395  0.14219 -0.05655 0.7281
## se36     0.5683 -0.27050 -0.55792 0.7074
## se37     0.7937 -0.08212 -0.08592 0.6441
## se38     0.6854 -0.54064  0.18644 0.7969
## se39     0.6176  0.08927  0.67738 0.8483
## se40     0.8205 -0.05711 -0.22691 0.7279
## se41     0.5814 -0.20215 -0.68219 0.8443
## se42     0.8838 -0.10439  0.23629 0.8479
## se43     0.6786  0.01817 -0.02995 0.4617
## se44     0.1885 -0.77304 -0.06271 0.6371
## se45     0.4516 -0.51362 -0.05671 0.4710
## se46     0.5914 -0.06988  0.61283 0.7302
## se47     0.5744 -0.25639 -0.59836 0.7538
## se48     0.8823 -0.10971  0.15508 0.8146
## se50     0.4897 -0.72382  0.21825 0.8113
## se51     0.1591 -0.31992 -0.35115 0.2510
## se52     0.5594  0.01805  0.14541 0.3344
## se53     0.5981 -0.13857 -0.23090 0.4303
## se54     0.7225  0.38890 -0.22494 0.7238
## se55     0.4633  0.01798 -0.62075 0.6003
## se56     0.3307  0.00515  0.10839 0.1211
## ss1      0.6654 -0.13018  0.26176 0.5282
## ss2      0.7077  0.24558  0.38135 0.7065
## ss3      0.6163 -0.12397  0.36205 0.5263
## ss4      0.4632 -0.15982 -0.42700 0.4225
## ss5      0.8623  0.19629  0.06009 0.7857
## ss6      0.7653  0.08430 -0.37990 0.7371
## ss7      0.4990 -0.06158 -0.25040 0.3155
## ss8      0.5762  0.00195  0.38339 0.4790
## ss9      0.5224 -0.01669  0.67224 0.7251
## ss10     0.6090  0.01198 -0.61614 0.7507
## ss11     0.7175  0.02729 -0.38579 0.6644
## ss12     0.8403  0.26771 -0.13268 0.7954
## ss13     0.4004  0.47760 -0.57002 0.7133
## ss14     0.7430  0.17553  0.42856 0.7665
## ss15     0.5667 -0.11098  0.18236 0.3668
## ss17     0.6188 -0.03293 -0.12827 0.4004
## ss18     0.8179  0.25230 -0.31905 0.8344
## ss19     0.6354  0.01739 -0.15553 0.4282
## ss20     0.5434  0.03044  0.65605 0.7266
## ss21     0.3518 -0.43772  0.43179 0.5018
## ss22     0.7225  0.43974 -0.01616 0.7156
## ss23     0.8375 -0.20237 -0.17390 0.7725
## ss24     0.5300  0.34295 -0.35969 0.5279
## ss25     0.7884  0.41507 -0.20726 0.8368
## ss26     0.8009 -0.11561  0.43747 0.8462
## ss27     0.5670  0.10687  0.53796 0.6224
## ss28     0.4247  0.08921 -0.09463 0.1973
## ss29     0.8192  0.10784  0.02110 0.6832
## ss30     0.6862  0.03389 -0.53238 0.7554
## ss31     0.3314 -0.07659 -0.72641 0.6434
## ss32     0.5912  0.11031  0.63585 0.7660
## ss33     0.2533 -0.06035  0.37077 0.2053
## ss34     0.7051  0.15897  0.04642 0.5247
## ss36     0.5149  0.01308  0.20569 0.3076
## ss37     0.5566  0.12904 -0.27746 0.4035
## ss38     0.7767  0.10241  0.40069 0.7743
## ss40     0.5167 -0.34609 -0.11407 0.3997
## ss53     0.4229  0.23615  0.33700 0.3482
## ss54     0.5373  0.09036 -0.58697 0.6414
## ss56     0.6081  0.16600  0.01180 0.3975
## ss57     0.7094 -0.07970  0.02046 0.5100
## ss58     0.7622 -0.34772  0.32909 0.8101
## ss59     0.3635 -0.28582 -0.04711 0.2160
## ss60     0.2726 -0.00439  0.85956 0.8132
## ss61     0.4414 -0.24148 -0.25277 0.3170
## ss62     0.6979 -0.20910  0.07592 0.5365
## ss63     0.2455 -0.08789 -0.45432 0.2744
## ss64     0.4894 -0.50401  0.22127 0.5425
## anchor1  0.8290  0.17221  0.13991 0.7365
## anchor2  0.8393  0.15565  0.17995 0.7610
## anchor3  0.7873 -0.09274  0.13027 0.6453
## anchor4  0.3417  0.85452  0.09447 0.8559
## anchor5  0.1542  0.92004  0.16088 0.8961
## anchor6  0.6450  0.22709  0.06465 0.4717
## 
## Rotated SS loadings:  37.127 7.231 12.762 
## 
## Factor correlations: 
## 
##    F1 F2 F3
## F1  1  0  0
## F2  0  1  0
## F3  0  0  1
f3.iecv.s20 <- sum.multi3.s20$rotF[,1]^2/sum.multi3.s20$h2
f3.summary <- as.data.frame(cbind(sum.multi3.s20$rotF[,1], sum.multi3.s20$h2,
                                  f3.iecv.s20))
names(f3.summary) <- c("Gen Factor", "Communality", "IECV")
round(f3.summary,2)
##         Gen Factor Communality IECV
## se1           0.70        0.53 0.93
## se2           0.78        0.69 0.89
## se3           0.68        0.61 0.76
## se4           0.57        0.45 0.72
## se5           0.54        0.32 0.92
## se6           0.78        0.62 0.98
## se7           0.81        0.86 0.76
## se8           0.85        0.74 0.97
## se9           0.70        0.61 0.80
## se11          0.53        0.50 0.57
## se14         -0.06        0.67 0.00
## se15          0.18        0.10 0.32
## se17          0.69        0.56 0.84
## se19          0.53        0.55 0.52
## se20          0.40        0.51 0.32
## se21          0.39        0.20 0.76
## se22          0.30        0.60 0.15
## se23          0.34        0.12 0.94
## se26          0.70        0.49 0.98
## se28          0.20        0.05 0.88
## se29          0.32        0.11 0.89
## se30          0.57        0.54 0.59
## se31          0.42        0.20 0.88
## se32          0.45        0.28 0.73
## se33          0.66        0.81 0.53
## se34          0.34        0.18 0.66
## se35          0.84        0.73 0.97
## se36          0.57        0.71 0.46
## se37          0.79        0.64 0.98
## se38          0.69        0.80 0.59
## se39          0.62        0.85 0.45
## se40          0.82        0.73 0.92
## se41          0.58        0.84 0.40
## se42          0.88        0.85 0.92
## se43          0.68        0.46 1.00
## se44          0.19        0.64 0.06
## se45          0.45        0.47 0.43
## se46          0.59        0.73 0.48
## se47          0.57        0.75 0.44
## se48          0.88        0.81 0.96
## se50          0.49        0.81 0.30
## se51          0.16        0.25 0.10
## se52          0.56        0.33 0.94
## se53          0.60        0.43 0.83
## se54          0.72        0.72 0.72
## se55          0.46        0.60 0.36
## se56          0.33        0.12 0.90
## ss1           0.67        0.53 0.84
## ss2           0.71        0.71 0.71
## ss3           0.62        0.53 0.72
## ss4           0.46        0.42 0.51
## ss5           0.86        0.79 0.95
## ss6           0.77        0.74 0.79
## ss7           0.50        0.32 0.79
## ss8           0.58        0.48 0.69
## ss9           0.52        0.73 0.38
## ss10          0.61        0.75 0.49
## ss11          0.72        0.66 0.77
## ss12          0.84        0.80 0.89
## ss13          0.40        0.71 0.22
## ss14          0.74        0.77 0.72
## ss15          0.57        0.37 0.88
## ss17          0.62        0.40 0.96
## ss18          0.82        0.83 0.80
## ss19          0.64        0.43 0.94
## ss20          0.54        0.73 0.41
## ss21          0.35        0.50 0.25
## ss22          0.72        0.72 0.73
## ss23          0.84        0.77 0.91
## ss24          0.53        0.53 0.53
## ss25          0.79        0.84 0.74
## ss26          0.80        0.85 0.76
## ss27          0.57        0.62 0.52
## ss28          0.42        0.20 0.91
## ss29          0.82        0.68 0.98
## ss30          0.69        0.76 0.62
## ss31          0.33        0.64 0.17
## ss32          0.59        0.77 0.46
## ss33          0.25        0.21 0.31
## ss34          0.71        0.52 0.95
## ss36          0.51        0.31 0.86
## ss37          0.56        0.40 0.77
## ss38          0.78        0.77 0.78
## ss40          0.52        0.40 0.67
## ss53          0.42        0.35 0.51
## ss54          0.54        0.64 0.45
## ss56          0.61        0.40 0.93
## ss57          0.71        0.51 0.99
## ss58          0.76        0.81 0.72
## ss59          0.36        0.22 0.61
## ss60          0.27        0.81 0.09
## ss61          0.44        0.32 0.61
## ss62          0.70        0.54 0.91
## ss63          0.25        0.27 0.22
## ss64          0.49        0.54 0.44
## anchor1       0.83        0.74 0.93
## anchor2       0.84        0.76 0.93
## anchor3       0.79        0.65 0.96
## anchor4       0.34        0.86 0.14
## anchor5       0.15        0.90 0.03
## anchor6       0.64        0.47 0.88

calculate IECV 4 factor

sum.multi4.s20 <- summary(results.multi4.3pl.s20, rotate = "bifactorT")
## 
## Rotation:  bifactorT 
## 
## Rotated factor loadings: 
## 
##               F1        F2       F3        F4     h2
## se1      0.61594 -6.83e-02  0.42717  0.253421 0.6308
## se2      0.70452  2.03e-01  0.40546 -0.111983 0.7147
## se3      0.79555 -1.83e-02 -0.36339 -0.151680 0.7883
## se4      0.43994 -9.69e-02 -0.01153  0.456726 0.4117
## se5      0.55150 -2.59e-01 -0.16833  0.534746 0.6856
## se6      0.85628  7.07e-02  0.14780 -0.150522 0.7827
## se7      0.86145  3.75e-01  0.04050  0.009510 0.8848
## se8      0.76328  2.20e-02  0.47995  0.013105 0.8136
## se9      0.59740 -7.61e-02  0.25815  0.550175 0.7320
## se11     0.61399 -1.56e-02  0.52466 -0.068272 0.6572
## se14     0.10430 -1.84e-01 -0.62819 -0.523097 0.7129
## se15    -0.00684 -2.06e-01  0.08607  0.611384 0.4235
## se17     0.51083 -1.81e-02 -0.04715 -0.103754 0.2743
## se19     0.19194 -1.16e-01  0.10582  0.105505 0.0725
## se20     0.38071  2.71e-01  0.73062  0.163645 0.7789
## se21     0.41978 -1.66e-01 -0.10993  0.224462 0.2661
## se22     0.13529  5.62e-01  0.45018  0.294025 0.6235
## se23     0.28675 -2.65e-02  0.09918  0.157988 0.1177
## se26     0.63183  3.26e-02  0.52685  0.063112 0.6818
## se28     0.18318  8.72e-02 -0.07145  0.050126 0.0488
## se29     0.27467  1.11e-01 -0.04370  0.237066 0.1458
## se30     0.69399  2.40e-01 -0.22362 -0.275166 0.6648
## se31     0.26354 -4.31e-02  0.03052  0.121174 0.0869
## se32     0.59931 -1.76e-01  0.12874 -0.525951 0.6835
## se33     0.72089 -1.39e-01 -0.50848  0.000511 0.7975
## se34     0.36579  2.18e-02 -0.28020 -0.013095 0.2130
## se35     0.83096  1.37e-01  0.20240  0.037700 0.7517
## se36     0.39472 -1.96e-01  0.05374  0.510233 0.4576
## se37     0.79732 -1.85e-01 -0.03355  0.040360 0.6726
## se38     0.66464 -5.77e-01 -0.10123  0.000210 0.7847
## se39     0.64462  1.19e-01 -0.64183  0.129751 0.8585
## se40     0.75330 -3.87e-02  0.22406 -0.458082 0.8290
## se41     0.27735 -1.25e-01  0.87479 -0.148671 0.8800
## se42     0.58865  4.16e-02  0.70764  0.102031 0.8594
## se43     0.66874 -9.83e-02 -0.05086  0.235081 0.5147
## se44     0.15634 -5.66e-01  0.02284 -0.191337 0.3814
## se45     0.50564 -4.44e-01  0.02945 -0.340758 0.5694
## se46     0.62922 -4.71e-02 -0.56982  0.035503 0.7241
## se47     0.53184 -1.37e-01  0.66761 -0.299093 0.8368
## se48     0.54808  5.56e-02  0.71207  0.146301 0.8319
## se50     0.48922 -7.28e-01 -0.19984 -0.016374 0.8094
## se51     0.11028 -3.49e-01  0.28577  0.146429 0.2370
## se52     0.55473  3.57e-02 -0.09693  0.132131 0.3359
## se53    -0.61153  3.62e-01  0.22128 -0.049582 0.5563
## se54     0.58893  3.13e-01  0.43263 -0.292138 0.7170
## se55     0.33013 -2.66e-01 -0.53682 -0.362193 0.5990
## se56     0.37005  1.96e-02 -0.10170 -0.044365 0.1496
## ss1      0.62585  3.16e-02  0.46056  0.217566 0.6521
## ss2      0.71568  1.86e-01 -0.28902  0.031705 0.6314
## ss3      0.59821 -1.12e-01 -0.30875  0.009408 0.4658
## ss4      0.43606 -1.88e-01  0.45511  0.059854 0.4363
## ss5      0.81548  1.48e-01 -0.19479  0.263888 0.7944
## ss6      0.42547  1.71e-01  0.16405  0.727165 0.7661
## ss7      0.44954 -8.30e-02  0.12978 -0.163198 0.2525
## ss8      0.57156  1.13e-01  0.06464 -0.500147 0.5938
## ss9      0.60515 -2.92e-05 -0.57655 -0.112577 0.7113
## ss10     0.57247 -1.91e-02  0.62248  0.094440 0.7245
## ss11     0.43643  6.61e-02 -0.07160  0.762353 0.7812
## ss12     0.80372  2.15e-01  0.14744  0.224045 0.7642
## ss13     0.59933  1.92e-01 -0.41054 -0.336686 0.6781
## ss14     0.76127  2.67e-01 -0.11285 -0.181274 0.6965
## ss15     0.54470 -8.33e-02 -0.19520  0.219904 0.3901
## ss17     0.62711 -7.48e-02  0.17621  0.469519 0.6504
## ss18     0.51728  2.75e-01 -0.14393  0.691836 0.8425
## ss19     0.64978 -1.95e-02  0.18667 -0.059729 0.4610
## ss20     0.66378  2.32e-02 -0.45246 -0.255381 0.7111
## ss21     0.40100 -4.62e-01 -0.45683  0.146718 0.6043
## ss22     0.72797  4.34e-01  0.08634  0.070792 0.7310
## ss23     0.66672 -2.07e-01  0.07733  0.520138 0.7637
## ss24     0.33409  3.30e-01  0.19605  0.501776 0.5105
## ss25     0.81901  2.77e-01  0.10672 -0.230666 0.8119
## ss26     0.87441 -5.17e-02 -0.04356 -0.293582 0.8554
## ss27     0.54141  1.22e-01 -0.47032  0.300884 0.6197
## ss28     0.59166  3.36e-02  0.09101 -0.496821 0.6063
## ss29     0.81845  6.60e-02  0.01656  0.196069 0.7129
## ss30     0.35367  9.70e-04  0.00273  0.795592 0.7581
## ss31     0.52503 -3.45e-01 -0.26022 -0.514873 0.7273
## ss32     0.80936  9.77e-02 -0.33145 -0.025002 0.7751
## ss33     0.21234 -5.86e-02 -0.42579  0.214440 0.2758
## ss34     0.71180  1.60e-01  0.00698  0.116174 0.5459
## ss36     0.63060  8.00e-03  0.10807 -0.065444 0.4137
## ss37     0.72121  6.59e-02 -0.04221 -0.201737 0.5670
## ss38     0.82820  1.07e-01 -0.21309 -0.028918 0.7436
## ss40     0.55661 -3.76e-01  0.09930 -0.010512 0.4613
## ss53     0.51903  2.30e-01 -0.07735 -0.474460 0.5535
## ss54     0.27357  9.91e-02  0.22073  0.482778 0.3665
## ss56     0.59592  1.48e-01  0.13468  0.098283 0.4049
## ss57     0.68929 -1.01e-01 -0.00139  0.223881 0.5355
## ss58     0.78760 -3.39e-01 -0.25363 -0.114502 0.8130
## ss59     0.26195 -2.22e-01  0.28439  0.679833 0.6611
## ss60     0.41792  3.04e-02 -0.78913 -0.202556 0.8393
## ss61     0.52367 -2.34e-01  0.36311 -0.262371 0.5297
## ss62     0.69435 -2.09e-01 -0.03585  0.291670 0.6120
## ss63     0.18634 -1.08e-01  0.50020  0.025346 0.2971
## ss64     0.39591 -1.16e-01  0.31977  0.559302 0.5853
## anchor1  0.77897  1.85e-01 -0.09422  0.352552 0.7741
## anchor2  0.77233  1.72e-01 -0.09882  0.437495 0.8272
## anchor3  0.81014 -9.94e-02 -0.05417  0.202611 0.7102
## anchor4  0.34237  8.47e-01 -0.07914  0.010651 0.8406
## anchor5  0.16381  9.01e-01 -0.09441 -0.065395 0.8512
## anchor6  0.64209  1.51e-01 -0.07370  0.154537 0.4645
## 
## Rotated SS loadings:  34.197 6.253 10.938 9.813 
## 
## Factor correlations: 
## 
##    F1 F2 F3 F4
## F1  1  0  0  0
## F2  0  1  0  0
## F3  0  0  1  0
## F4  0  0  0  1
f4.iecv.s20 <- sum.multi4.s20$rotF[,1]^2/sum.multi4.s20$h2
f4.summary <- as.data.frame(cbind(sum.multi4.s20$rotF[,1], sum.multi4.s20$h2,
                                  f4.iecv.s20))
names(f4.summary) <- c("Gen Factor", "Communality", "IECV")
round(f4.summary,2)
##         Gen Factor Communality IECV
## se1           0.62        0.63 0.60
## se2           0.70        0.71 0.69
## se3           0.80        0.79 0.80
## se4           0.44        0.41 0.47
## se5           0.55        0.69 0.44
## se6           0.86        0.78 0.94
## se7           0.86        0.88 0.84
## se8           0.76        0.81 0.72
## se9           0.60        0.73 0.49
## se11          0.61        0.66 0.57
## se14          0.10        0.71 0.02
## se15         -0.01        0.42 0.00
## se17          0.51        0.27 0.95
## se19          0.19        0.07 0.51
## se20          0.38        0.78 0.19
## se21          0.42        0.27 0.66
## se22          0.14        0.62 0.03
## se23          0.29        0.12 0.70
## se26          0.63        0.68 0.59
## se28          0.18        0.05 0.69
## se29          0.27        0.15 0.52
## se30          0.69        0.66 0.72
## se31          0.26        0.09 0.80
## se32          0.60        0.68 0.53
## se33          0.72        0.80 0.65
## se34          0.37        0.21 0.63
## se35          0.83        0.75 0.92
## se36          0.39        0.46 0.34
## se37          0.80        0.67 0.95
## se38          0.66        0.78 0.56
## se39          0.64        0.86 0.48
## se40          0.75        0.83 0.68
## se41          0.28        0.88 0.09
## se42          0.59        0.86 0.40
## se43          0.67        0.51 0.87
## se44          0.16        0.38 0.06
## se45          0.51        0.57 0.45
## se46          0.63        0.72 0.55
## se47          0.53        0.84 0.34
## se48          0.55        0.83 0.36
## se50          0.49        0.81 0.30
## se51          0.11        0.24 0.05
## se52          0.55        0.34 0.92
## se53         -0.61        0.56 0.67
## se54          0.59        0.72 0.48
## se55          0.33        0.60 0.18
## se56          0.37        0.15 0.92
## ss1           0.63        0.65 0.60
## ss2           0.72        0.63 0.81
## ss3           0.60        0.47 0.77
## ss4           0.44        0.44 0.44
## ss5           0.82        0.79 0.84
## ss6           0.43        0.77 0.24
## ss7           0.45        0.25 0.80
## ss8           0.57        0.59 0.55
## ss9           0.61        0.71 0.51
## ss10          0.57        0.72 0.45
## ss11          0.44        0.78 0.24
## ss12          0.80        0.76 0.85
## ss13          0.60        0.68 0.53
## ss14          0.76        0.70 0.83
## ss15          0.54        0.39 0.76
## ss17          0.63        0.65 0.60
## ss18          0.52        0.84 0.32
## ss19          0.65        0.46 0.92
## ss20          0.66        0.71 0.62
## ss21          0.40        0.60 0.27
## ss22          0.73        0.73 0.72
## ss23          0.67        0.76 0.58
## ss24          0.33        0.51 0.22
## ss25          0.82        0.81 0.83
## ss26          0.87        0.86 0.89
## ss27          0.54        0.62 0.47
## ss28          0.59        0.61 0.58
## ss29          0.82        0.71 0.94
## ss30          0.35        0.76 0.17
## ss31          0.53        0.73 0.38
## ss32          0.81        0.78 0.85
## ss33          0.21        0.28 0.16
## ss34          0.71        0.55 0.93
## ss36          0.63        0.41 0.96
## ss37          0.72        0.57 0.92
## ss38          0.83        0.74 0.92
## ss40          0.56        0.46 0.67
## ss53          0.52        0.55 0.49
## ss54          0.27        0.37 0.20
## ss56          0.60        0.40 0.88
## ss57          0.69        0.54 0.89
## ss58          0.79        0.81 0.76
## ss59          0.26        0.66 0.10
## ss60          0.42        0.84 0.21
## ss61          0.52        0.53 0.52
## ss62          0.69        0.61 0.79
## ss63          0.19        0.30 0.12
## ss64          0.40        0.59 0.27
## anchor1       0.78        0.77 0.78
## anchor2       0.77        0.83 0.72
## anchor3       0.81        0.71 0.92
## anchor4       0.34        0.84 0.14
## anchor5       0.16        0.85 0.03
## anchor6       0.64        0.46 0.89

plot the IECVs

# 2 factors
f2.summary <- f2.summary[order(f2.summary$IECV),]
f2.summary$color <- ifelse(f2.summary$IECV < .5, "green3",
                           ifelse(f2.summary$IECV > .5 & f2.summary$IECV < .8,
                                  "gold2", "red"))
f2.summary$pch <- ifelse(f2.summary$Communality < .33, 1, 16)
plot(f2.summary$Communality, f2.summary$IECV,
     xlab = "Communality", ylab = "IECV", main = "2 Dimensions",
     col = f2.summary$color, pch = f2.summary$pch)
text(-.03+f2.summary$Communality, f2.summary$IECV,
     labels = row.names(f2.summary))

plot(1-f2.summary$Communality, f2.summary$IECV,
     xlab = "Uniqueness", ylab = "IECV", main = "2 Dimensions")

plot(f2.summary$IECV, xlab = "Item", ylab = "IECV", xaxt = "n")
axis(1, at = seq(1,101,1), las = 2, labels = row.names(f2.summary))

# 3 factors
f3.summary <- f3.summary[order(f3.summary$IECV),]
f3.summary$color <- ifelse(f3.summary$IECV < .5, "green3",
                           ifelse(f3.summary$IECV > .5 & f3.summary$IECV < .8,
                                  "gold2", "red"))
f3.summary$pch <- ifelse(f3.summary$Communality < .33, 1, 16)
plot(f3.summary$Communality, f3.summary$IECV,
     xlab = "Communality", ylab = "IECV", main = "3 Dimensions",
     col = f3.summary$color, pch = f3.summary$pch)
text(-.03+f3.summary$Communality, f3.summary$IECV,
     labels = row.names(f3.summary))

plot(1-f3.summary$Communality, f3.summary$IECV,
     xlab = "Uniqueness", ylab = "IECV", main = "3 Dimensions")

plot(f3.summary$IECV, xlab = "Item", ylab = "IECV", xaxt = "n")
axis(1, at = seq(1,101,1), las = 2, labels = row.names(f3.summary))

# 4 factors
f4.summary <- f4.summary[order(f4.summary$IECV),]
f4.summary$color <- ifelse(f4.summary$IECV < .5, "green3",
                           ifelse(f4.summary$IECV > .5 & f4.summary$IECV < .8,
                                  "gold2", "red"))
f4.summary$pch <- ifelse(f4.summary$Communality < .33, 1, 16)
plot(f4.summary$Communality, f4.summary$IECV,
     xlab = "Communality", ylab = "IECV", main = "4 Dimensions",
     col = f4.summary$color, pch = f4.summary$pch)
text(-.03+f4.summary$Communality, f4.summary$IECV,
     labels = row.names(f4.summary))

plot(1-f4.summary$Communality, f4.summary$IECV,
     xlab = "Uniqueness", ylab = "IECV", main = "4 Dimensions")

plot(f4.summary$IECV, xlab = "Item", ylab = "IECV", xaxt = "n")
axis(1, at = seq(1,101,1), las = 2, labels = row.names(f4.summary))