suppressMessages(library(NCA))
data(nca.example)
dulieu <- nca.example
dulieu <-data.frame(dulieu)
head(dulieu,10)
## Individualism Risk.taking Innovation.performance
## Australia 90 84 50.9
## Austria 55 65 52.4
## Belgium 75 41 75.1
## Canada 80 87 81.4
## Czech Rep 58 61 14.5
## Denmark 74 112 116.3
## Finland 63 76 173.1
## France 71 49 77.6
## Germany 67 70 109.5
## Greece 35 23 12.0
cols: Corrected Ordinary Least Squares qr: Quantile Regression ce_vrs: Ceiling Envelopment with Varying Return to Scale cr_vrs: Ceiling Regression with Varying Return to Scale ce_fdh: Ceiling Envelopment with Free Disposal Hull cr_fdh: Ceiling Regression with Free Disposal Hull c_lp: Ceiling Linear Programming
# OK: model <- nca_analysis(dulieu,c("Individualism","Risk taking"),"Innovation performance")
# OK: model <- nca_analysis(dulieu,c(1:2),3)
model <- nca_analysis(dulieu,c(1,2),3)
model
##
## --------------------------------------------------------------------------------
## Effect size(s):
## ce_fdh cr_fdh
## Individualism 0.416 0.307
## Risk.taking 0.309 0.282
## --------------------------------------------------------------------------------
model1 <- nca_analysis(dulieu,c(1:2),3,ceilings=c("ce_fdh","cr_fdh", "ce_vrs", "cols","qr", "ce_vrs","cr_vrs", "c_lp"))
##
## Warning:
##
model1
##
## --------------------------------------------------------------------------------
## Effect size(s):
## ce_fdh cr_fdh ce_vrs cols qr cr_vrs c_lp
## Individualism 0.416 0.307 0.255 0.156 0.163 0.310 0.163
## Risk.taking 0.309 0.282 0.181 0.098 0.107 0.247 0.107
## --------------------------------------------------------------------------------
model2 <- nca_analysis(dulieu,c(1:2),3,ceilings=c("ce_fdh","cr_fdh", "ce_vrs"))
model2
##
## --------------------------------------------------------------------------------
## Effect size(s):
## ce_fdh cr_fdh ce_vrs
## Individualism 0.416 0.307 0.255
## Risk.taking 0.309 0.282 0.181
## --------------------------------------------------------------------------------
nca_output(model, plots=TRUE, summaries = FALSE)
nca_output(model1, plots=TRUE, summaries = FALSE)
nca_output(model2, plots=TRUE, summaries = FALSE)
nca_output(model1, plots=TRUE, summaries = TRUE)
##
## --------------------------------------------------------------------------------
## NCA Parameters : Individualism - Innovation.performance
## --------------------------------------------------------------------------------
##
## Number of observations 28
## Scope 15563.6
## Xmin 18.0
## Xmax 91.0
## Ymin 1.2
## Ymax 214.4
##
## ce_fdh cr_fdh ce_vrs cols qr cr_vrs
## Ceiling zone 6466.800 4772.541 3971.600 2430.653 2534.236 4825.737
## Effect size 0.416 0.307 0.255 0.156 0.163 0.310
## # above 0 2 0 0 0 2
## c-accuracy 100% 92.9% 100% 100% 100% 92.9%
## Fit 100% 73.8% 61.4% 37.6% 39.2% 74.6%
##
## Slope 2.230 1.206 0.951 2.225
## Intercept 28.353 116.130 127.849 27.792
## Abs. ineff. 3000.300 6018.517 3000.300 10702.293 10495.129 5912.126
## Rel. ineff. 19.278 38.670 19.278 68.765 67.434 37.987
## Condition ineff. 0.000 10.383 0.000 13.023 0.000 9.785
## Outcome ineff. 19.278 31.565 19.278 64.088 67.434 31.260
## c_lp
## Ceiling zone 2534.236
## Effect size 0.163
## # above 0
## c-accuracy 100%
## Fit 39.2%
##
## Slope 0.951
## Intercept 127.849
## Abs. ineff. 10495.129
## Rel. ineff. 67.434
## Condition ineff. 0.000
## Outcome ineff. 67.434
##
##
## --------------------------------------------------------------------------------
## NCA Parameters : Risk.taking - Innovation.performance
## --------------------------------------------------------------------------------
##
## Number of observations 28
## Scope 18974.8
## Xmin 23.0
## Xmax 112.0
## Ymin 1.2
## Ymax 214.4
##
## ce_fdh cr_fdh ce_vrs cols qr cr_vrs
## Ceiling zone 5871.100 5348.968 3436.400 1852.392 2026.487 4689.769
## Effect size 0.309 0.282 0.181 0.098 0.107 0.247
## # above 0 1 0 0 0 1
## c-accuracy 100% 96.4% 100% 100% 100% 96.4%
## Fit 100% 91.1% 58.5% 31.6% 34.5% 79.9%
##
## Slope 2.642 1.216 0.930 2.695
## Intercept -14.478 119.309 131.591 -6.569
## Abs. ineff. 5616.400 8276.863 5616.400 15270.017 14921.826 9595.263
## Rel. ineff. 29.599 43.620 29.599 80.475 78.640 50.568
## Condition ineff. 25.843 28.500 25.843 37.983 25.843 33.713
## Outcome ineff. 5.066 21.147 5.066 68.517 71.197 25.428
## c_lp
## Ceiling zone 2026.487
## Effect size 0.107
## # above 0
## c-accuracy 100%
## Fit 34.5%
##
## Slope 0.930
## Intercept 131.591
## Abs. ineff. 14921.826
## Rel. ineff. 78.640
## Condition ineff. 25.843
## Outcome ineff. 71.197
model0 <- nca_analysis(dulieu,1:2,3,ceilings = "ce_fdh",test.rep = 10000)
## Do test for : ce_fdh - Individualism
Done test for : ce_fdh - Individualism
## Do test for : ce_fdh - Risk.taking
Done test for : ce_fdh - Risk.taking
model0
##
## --------------------------------------------------------------------------------
## Effect size(s):
## ce_fdh p
## Individualism 0.416 0.080
## Risk.taking 0.309 0.101
## --------------------------------------------------------------------------------
nca_output(model0, summaries = FALSE, test = TRUE)
nca_output(model1, bottlenecks=TRUE ,summaries = FALSE)
##
## --------------------------------------------------------------------------------
## Bottleneck CE-FDH (cutoff = 0)
## Y Innovation.performance (percentage.range)
## 1 Individualism (percentage.range)
## 2 Risk.taking (percentage.range)
## --------------------------------------------------------------------------------
## Y 1 2
## 0 NN NN
## 10 NN 20.2
## 20 38.4 20.2
## 30 38.4 20.2
## 40 38.4 22.5
## 50 38.4 22.5
## 60 38.4 22.5
## 70 38.4 22.5
## 80 61.6 59.6
## 90 NA 74.2
## 100 NA 74.2
##
##
## --------------------------------------------------------------------------------
## Bottleneck CR-FDH (cutoff = 0)
## Y Innovation.performance (percentage.range)
## 1 Individualism (percentage.range)
## 2 Risk.taking (percentage.range)
## --------------------------------------------------------------------------------
## Y 1 2
## 0 NN NN
## 10 NN NN
## 20 NN NN
## 30 NN 8.0
## 40 11.0 17.1
## 50 24.1 26.2
## 60 37.2 35.2
## 70 50.3 44.3
## 80 63.4 53.4
## 90 76.5 62.4
## 100 89.6 71.5
##
##
## --------------------------------------------------------------------------------
## Bottleneck CE-VRS (cutoff = 0)
## Y Innovation.performance (percentage.range)
## 1 Individualism (percentage.range)
## 2 Risk.taking (percentage.range)
## --------------------------------------------------------------------------------
## Y 1 2
## 0 NN NN
## 10 NN 1.5
## 20 0.5 4.5
## 30 6.8 7.5
## 40 13.1 10.5
## 50 19.4 13.5
## 60 25.8 16.5
## 70 32.1 19.5
## 80 38.6 22.7
## 90 69.3 48.4
## 100 NA 74.2
##
##
## --------------------------------------------------------------------------------
## Bottleneck COLS (cutoff = 0)
## Y Innovation.performance (percentage.range)
## 1 Individualism (percentage.range)
## 2 Risk.taking (percentage.range)
## --------------------------------------------------------------------------------
## Y 1 2
## 0 NN NN
## 10 NN NN
## 20 NN NN
## 30 NN NN
## 40 NN NN
## 50 NN NN
## 60 NN NN
## 70 14.3 2.9
## 80 38.5 22.6
## 90 62.8 42.3
## 100 87.0 62.0
##
##
## --------------------------------------------------------------------------------
## Bottleneck QR (cutoff = 0)
## Y Innovation.performance (percentage.range)
## 1 Individualism (percentage.range)
## 2 Risk.taking (percentage.range)
## --------------------------------------------------------------------------------
## Y 1 2
## 0 NN NN
## 10 NN NN
## 20 NN NN
## 30 NN NN
## 40 NN NN
## 50 NN NN
## 60 NN NN
## 70 7.9 NN
## 80 38.6 22.7
## 90 69.3 48.4
## 100 NA 74.2
##
##
## --------------------------------------------------------------------------------
## Bottleneck CR-VRS (cutoff = 0)
## Y Innovation.performance (percentage.range)
## 1 Individualism (percentage.range)
## 2 Risk.taking (percentage.range)
## --------------------------------------------------------------------------------
## Y 1 2
## 0 NN NN
## 10 NN NN
## 20 NN NN
## 30 NN 4.1
## 40 11.5 13.0
## 50 24.6 21.8
## 60 37.7 30.7
## 70 50.8 39.6
## 80 64.0 48.5
## 90 77.1 57.4
## 100 90.2 66.3
##
##
## --------------------------------------------------------------------------------
## Bottleneck C-LP (cutoff = 0)
## Y Innovation.performance (percentage.range)
## 1 Individualism (percentage.range)
## 2 Risk.taking (percentage.range)
## --------------------------------------------------------------------------------
## Y 1 2
## 0 NN NN
## 10 NN NN
## 20 NN NN
## 30 NN NN
## 40 NN NN
## 50 NN NN
## 60 NN NN
## 70 7.9 NN
## 80 38.6 22.7
## 90 69.3 48.4
## 100 NA 74.2
##
model <- nca_analysis(dulieu,1:2,3,ceilings = "ce_fdh", test.rep = 10000)
## Do test for : ce_fdh - Individualism
Done test for : ce_fdh - Individualism
## Do test for : ce_fdh - Risk.taking
Done test for : ce_fdh - Risk.taking
nca_output(model, summaries = FALSE, test = TRUE)
nca(dulieu, 1:2, 3, ceilings=c('ols', 'ce_fdh', 'cr_fdh'))
##
## --------------------------------------------------------------------------------
## Effect size(s):
## ce_fdh cr_fdh
## Individualism 0.416 0.307
## Risk.taking 0.309 0.282
## --------------------------------------------------------------------------------