notes: 1. there is no income variable in any of the waves. 2. sciLitSum = sum of correct answers for science literacy 5-item scale 3. sciTrustAvg = average for trust in science 15-item scale; high score = more trust in science 4. crtSum = sum of correct answers for CRT 6-item scale
x <- cbind.data.frame(
d$crtSum.c,
d$sciTrustAvg.c,
d$sciLitSum.c,
d$avgSymbBelief.c,
d$vaxxBehavior.c,
d$vaxxAttitudes_w1.c,
d$vaxxAttitudes_w2.c,
d$avgVaxxAttitudes.c,
d$SESladder.c,
d$education.c,
d$trustExpert_w1.c,
d$trustExpert_w2.c,
d$avgTrustExpert.c,
d$index_ANexp_w1.c,
d$index_ANexp_w2.c,
d$index_ANexp_w3.c)
cor2 <- cor(x, use = "complete.obs")
ggcorrplot(cor2, type = "lower",
lab = TRUE, title = "general correlations", show.legend = F, insig = "blank", digits = 2)
x <- cbind.data.frame(
d$crtSum.c,
d$ABC_exp_w1,
d$CBS_exp_w1,
d$CNN_exp_w1,
d$Fox_exp_w1,
d$MSNBC_exp_w1,
d$NBC_exp_w1,
d$NPR_exp_w1,
d$NYT_exp_w1,
d$PBS_exp_w1,
d$USAT_exp_w1,
d$WSJ_exp_w1,
d$AOL_exp_w1,
d$prop.media.exp_w1)
cor2 <- cor(x, use = "complete.obs")
ggcorrplot(cor2, type = "lower",
lab = TRUE, title = "wave 1 correlations", show.legend = F, insig = "blank", digits = 2)
x <- cbind.data.frame(
d$crtSum.c,
d$ABC_exp_w2,
d$CBS_exp_w2,
d$CNN_exp_w2,
d$Fox_exp_w2,
d$MSNBC_exp_w2,
d$NBC_exp_w2,
d$NPR_exp_w2,
d$NYT_exp_w2,
d$PBS_exp_w2,
d$USAT_exp_w2,
d$WSJ_exp_w2,
d$AOL_exp_w2,
d$prop.media.exp_w2)
cor2 <- cor(x, use = "complete.obs")
ggcorrplot(cor2, type = "lower",
lab = TRUE, title = "wave 2 correlations", show.legend = F, insig = "blank", digits = 2)
x <- cbind.data.frame(
d$crtSum.c,
d$ABC_exp_w3,
d$CBS_exp_w3,
d$CNN_exp_w3,
d$Fox_exp_w3,
d$MSNBC_exp_w3,
d$NBC_exp_w3,
d$NPR_exp_w3,
d$NYT_exp_w3,
d$PBS_exp_w3,
d$USAT_exp_w3,
d$WSJ_exp_w3,
d$AOL_exp_w3,
d$prop.media.exp_w3)
cor2 <- cor(x, use = "complete.obs")
ggcorrplot(cor2, type = "lower",
lab = TRUE, title = "wave 3 correlations", show.legend = F, insig = "blank", digits = 2)
cor.test(d$crtSum.c, d$prop.media.exp_w1)
##
## Pearson's product-moment correlation
##
## data: d$crtSum.c and d$prop.media.exp_w1
## t = -3.4963, df = 1577, p-value = 0.0004848
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.13644373 -0.03853938
## sample estimates:
## cor
## -0.08770335
cor.test(d$crtSum.c, d$prop.media.exp_w2)
##
## Pearson's product-moment correlation
##
## data: d$crtSum.c and d$prop.media.exp_w2
## t = -3.3174, df = 1402, p-value = 0.0009319
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.13992208 -0.03610331
## sample estimates:
## cor
## -0.08825236
cor.test(d$crtSum.c, d$prop.media.exp_w3)
##
## Pearson's product-moment correlation
##
## data: d$crtSum.c and d$prop.media.exp_w3
## t = 6.2934, df = 1653, p-value = 3.97e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.105563 0.199682
## sample estimates:
## cor
## 0.1529693
ma.w1 <- lm(sciTrustAvg ~ index_ANexp_w1 * crtSum.c, data = d)
summary(ma.w1)
##
## Call:
## lm(formula = sciTrustAvg ~ index_ANexp_w1 * crtSum.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.35445 -0.53228 -0.00506 0.57755 1.75092
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.2535402 0.0427955 76.025 < 2e-16 ***
## index_ANexp_w1 0.0019748 0.0003557 5.551 3.62e-08 ***
## crtSum.c -0.0103223 0.0204934 -0.504 0.615
## index_ANexp_w1:crtSum.c 0.0011339 0.0001947 5.825 7.68e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7853 on 1011 degrees of freedom
## (12482 observations deleted due to missingness)
## Multiple R-squared: 0.09307, Adjusted R-squared: 0.09037
## F-statistic: 34.58 on 3 and 1011 DF, p-value: < 2.2e-16
ma.w2 <- lm(sciTrustAvg ~ index_ANexp_w2 * crtSum.c, data = d)
summary(ma.w2)
##
## Call:
## lm(formula = sciTrustAvg ~ index_ANexp_w2 * crtSum.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.32504 -0.51466 0.02866 0.56947 1.75012
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.2569108 0.0433835 75.073 < 2e-16 ***
## index_ANexp_w2 0.0021281 0.0003792 5.613 2.62e-08 ***
## crtSum.c -0.0162854 0.0206106 -0.790 0.43
## index_ANexp_w2:crtSum.c 0.0013704 0.0002117 6.472 1.56e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7803 on 940 degrees of freedom
## (12553 observations deleted due to missingness)
## Multiple R-squared: 0.1064, Adjusted R-squared: 0.1036
## F-statistic: 37.32 on 3 and 940 DF, p-value: < 2.2e-16
ma.w3 <- lm(sciTrustAvg ~ index_ANexp_w3 * crtSum.c, data = d)
summary(ma.w3)
##
## Call:
## lm(formula = sciTrustAvg ~ index_ANexp_w3 * crtSum.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.30043 -0.48835 0.00157 0.56281 1.73875
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.2895470 0.0390916 84.150 < 2e-16 ***
## index_ANexp_w3 0.0018353 0.0003491 5.257 1.77e-07 ***
## crtSum.c 0.0005103 0.0184388 0.028 0.978
## index_ANexp_w3:crtSum.c 0.0013002 0.0001979 6.571 7.78e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.782 on 1068 degrees of freedom
## (12425 observations deleted due to missingness)
## Multiple R-squared: 0.09109, Adjusted R-squared: 0.08854
## F-statistic: 35.68 on 3 and 1068 DF, p-value: < 2.2e-16
mb.w1 <- lm(sciLitSum ~ index_ANexp_w1 * crtSum.c, data = d)
summary(mb.w1)
##
## Call:
## lm(formula = sciLitSum ~ index_ANexp_w1 * crtSum.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4760 -0.8671 -0.2277 0.7632 2.1965
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4558348 0.0403383 36.091 <2e-16 ***
## index_ANexp_w1 0.0007933 0.0003728 2.128 0.0335 *
## crtSum.c 0.4160340 0.0209994 19.812 <2e-16 ***
## index_ANexp_w1:crtSum.c -0.0002859 0.0002143 -1.334 0.1824
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.007 on 1499 degrees of freedom
## (11994 observations deleted due to missingness)
## Multiple R-squared: 0.3613, Adjusted R-squared: 0.3601
## F-statistic: 282.7 on 3 and 1499 DF, p-value: < 2.2e-16
mb.w2 <- lm(sciLitSum ~ index_ANexp_w2 * crtSum.c, data = d)
summary(mb.w2)
##
## Call:
## lm(formula = sciLitSum ~ index_ANexp_w2 * crtSum.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4960 -0.8872 -0.1781 0.7704 2.1646
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4709049 0.0415060 35.438 <2e-16 ***
## index_ANexp_w2 0.0008562 0.0004074 2.102 0.0357 *
## crtSum.c 0.4053223 0.0214703 18.878 <2e-16 ***
## index_ANexp_w2:crtSum.c -0.0002336 0.0002375 -0.984 0.3255
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.01 on 1378 degrees of freedom
## (12115 observations deleted due to missingness)
## Multiple R-squared: 0.3566, Adjusted R-squared: 0.3552
## F-statistic: 254.5 on 3 and 1378 DF, p-value: < 2.2e-16
mb.w3 <- lm(sciLitSum ~ index_ANexp_w3 * crtSum.c, data = d)
summary(mb.w3)
##
## Call:
## lm(formula = sciLitSum ~ index_ANexp_w3 * crtSum.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.46822 -0.37611 -0.03865 0.65527 1.11800
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.244e+00 3.917e-02 57.289 < 2e-16 ***
## index_ANexp_w3 -5.774e-04 3.493e-04 -1.653 0.0986 .
## crtSum.c 9.211e-02 1.849e-02 4.981 7.36e-07 ***
## index_ANexp_w3:crtSum.c 6.651e-05 1.981e-04 0.336 0.7371
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7876 on 1074 degrees of freedom
## (12419 observations deleted due to missingness)
## Multiple R-squared: 0.05869, Adjusted R-squared: 0.05606
## F-statistic: 22.32 on 3 and 1074 DF, p-value: 5.034e-14
mc.w1 <- lm(vaxxAttitudes_w1 ~ index_ANexp_w1 * crtSum.c, data = d)
summary(mc.w1)
##
## Call:
## lm(formula = vaxxAttitudes_w1 ~ index_ANexp_w1 * crtSum.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1343 -1.4143 0.3882 1.7581 2.9551
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1129074 0.0825845 1.367 0.172
## index_ANexp_w1 0.0076259 0.0007633 9.990 <2e-16 ***
## crtSum.c 0.0433480 0.0429921 1.008 0.313
## index_ANexp_w1:crtSum.c 0.0007052 0.0004388 1.607 0.108
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.061 on 1499 degrees of freedom
## (11994 observations deleted due to missingness)
## Multiple R-squared: 0.06602, Adjusted R-squared: 0.06415
## F-statistic: 35.32 on 3 and 1499 DF, p-value: < 2.2e-16
md.w1 <- lm(vaxxAttitudes_w2 ~ index_ANexp_w1 * crtSum.c, data = d)
summary(md.w1)
##
## Call:
## lm(formula = vaxxAttitudes_w2 ~ index_ANexp_w1 * crtSum.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4350 -1.2536 -0.0914 1.8317 3.0213
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0850795 0.0857533 0.992 0.3213
## index_ANexp_w1 0.0045923 0.0007856 5.845 6.32e-09 ***
## crtSum.c 0.0678162 0.0441514 1.536 0.1248
## index_ANexp_w1:crtSum.c 0.0007616 0.0004507 1.690 0.0913 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.036 on 1356 degrees of freedom
## (12137 observations deleted due to missingness)
## Multiple R-squared: 0.03512, Adjusted R-squared: 0.03298
## F-statistic: 16.45 on 3 and 1356 DF, p-value: 1.67e-10
md.w2 <- lm(vaxxAttitudes_w2 ~ index_ANexp_w2 * crtSum.c, data = d)
summary(md.w2)
##
## Call:
## lm(formula = vaxxAttitudes_w2 ~ index_ANexp_w2 * crtSum.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0759 -1.2346 -0.0151 1.7433 3.1075
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.008619 0.082863 -0.104 0.9172
## index_ANexp_w2 0.006218 0.000813 7.648 3.81e-14 ***
## crtSum.c 0.063072 0.042850 1.472 0.1413
## index_ANexp_w2:crtSum.c 0.000986 0.000474 2.080 0.0377 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.014 on 1377 degrees of freedom
## (12116 observations deleted due to missingness)
## Multiple R-squared: 0.05146, Adjusted R-squared: 0.0494
## F-statistic: 24.9 on 3 and 1377 DF, p-value: 1.083e-15
me.w1 <- lm(vaxxBehavior ~ index_ANexp_w1 * crtSum.c, data = d)
summary(me.w1)
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w1 * crtSum.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9797 -0.3303 0.4996 0.8501 1.1660
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.8687327 0.0602367 47.624 < 2e-16 ***
## index_ANexp_w1 0.0038203 0.0005068 7.539 1.03e-13 ***
## crtSum.c 0.0221617 0.0290230 0.764 0.4453
## index_ANexp_w1:crtSum.c 0.0004638 0.0002784 1.666 0.0959 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.138 on 1040 degrees of freedom
## (12453 observations deleted due to missingness)
## Multiple R-squared: 0.06176, Adjusted R-squared: 0.05905
## F-statistic: 22.82 on 3 and 1040 DF, p-value: 2.602e-14
me.w2 <- lm(vaxxBehavior ~ index_ANexp_w2 * crtSum.c, data = d)
summary(me.w2)
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w2 * crtSum.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0625 -0.3214 0.4647 0.8340 1.1076
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.8941733 0.0605260 47.817 < 2e-16 ***
## index_ANexp_w2 0.0040367 0.0005356 7.536 1.11e-13 ***
## crtSum.c 0.0011282 0.0289462 0.039 0.96892
## index_ANexp_w2:crtSum.c 0.0009049 0.0003000 3.016 0.00263 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.121 on 968 degrees of freedom
## (12525 observations deleted due to missingness)
## Multiple R-squared: 0.07449, Adjusted R-squared: 0.07162
## F-statistic: 25.97 on 3 and 968 DF, p-value: 3.678e-16
me.w3 <- lm(vaxxBehavior ~ index_ANexp_w3 * crtSum.c, data = d)
summary(me.w3)
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3 * crtSum.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2070 -0.3237 0.4242 0.8408 1.2896
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.8061207 0.0559949 50.114 <2e-16 ***
## index_ANexp_w3 0.0050163 0.0005006 10.021 <2e-16 ***
## crtSum.c 0.0610337 0.0264132 2.311 0.021 *
## index_ANexp_w3:crtSum.c 0.0003096 0.0002836 1.092 0.275
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.123 on 1072 degrees of freedom
## (12421 observations deleted due to missingness)
## Multiple R-squared: 0.09203, Adjusted R-squared: 0.08949
## F-statistic: 36.22 on 3 and 1072 DF, p-value: < 2.2e-16
mf.w1 <- lm(avgVaxxAttitudes ~ index_ANexp_w1 * crtSum.c, data = d)
summary(mf.w1)
##
## Call:
## lm(formula = avgVaxxAttitudes ~ index_ANexp_w1 * crtSum.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7898 -1.3378 0.1786 1.6185 3.0040
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0729296 0.0769186 0.948 0.3432
## index_ANexp_w1 0.0063802 0.0007109 8.974 <2e-16 ***
## crtSum.c 0.0490937 0.0400425 1.226 0.2204
## index_ANexp_w1:crtSum.c 0.0007741 0.0004087 1.894 0.0584 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.919 on 1499 degrees of freedom
## (11994 observations deleted due to missingness)
## Multiple R-squared: 0.0575, Adjusted R-squared: 0.05561
## F-statistic: 30.48 on 3 and 1499 DF, p-value: < 2.2e-16
mf.w2 <- lm(avgVaxxAttitudes ~ index_ANexp_w2 * crtSum.c, data = d)
summary(mf.w2)
##
## Call:
## lm(formula = avgVaxxAttitudes ~ index_ANexp_w2 * crtSum.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7062 -1.3440 0.2427 1.5153 2.9978
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0683479 0.0777947 0.879 0.3798
## index_ANexp_w2 0.0072540 0.0007635 9.501 <2e-16 ***
## crtSum.c 0.0421917 0.0402418 1.048 0.2946
## index_ANexp_w2:crtSum.c 0.0010621 0.0004452 2.386 0.0172 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.892 on 1378 degrees of freedom
## (12115 observations deleted due to missingness)
## Multiple R-squared: 0.06954, Adjusted R-squared: 0.06751
## F-statistic: 34.33 on 3 and 1378 DF, p-value: < 2.2e-16
mf.w3 <- lm(avgVaxxAttitudes ~ index_ANexp_w3 * crtSum.c, data = d)
summary(mf.w3)
##
## Call:
## lm(formula = avgVaxxAttitudes ~ index_ANexp_w3 * crtSum.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5614 -1.3769 0.2136 1.6054 3.0903
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0015467 0.0979766 0.016 0.98741
## index_ANexp_w3 0.0070463 0.0008679 8.118 1.34e-15 ***
## crtSum.c 0.1237560 0.0462186 2.678 0.00753 **
## index_ANexp_w3:crtSum.c 0.0006545 0.0004918 1.331 0.18354
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.918 on 1026 degrees of freedom
## (12467 observations deleted due to missingness)
## Multiple R-squared: 0.07286, Adjusted R-squared: 0.07015
## F-statistic: 26.88 on 3 and 1026 DF, p-value: < 2.2e-16
mg.w1 <- lm(d$trustExpert_w1 ~ index_ANexp_w1 * crtSum.c, data = d)
summary(mg.w1)
##
## Call:
## lm(formula = d$trustExpert_w1 ~ index_ANexp_w1 * crtSum.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.4608 -0.8097 0.3477 0.9718 2.0494
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9880561 0.0577582 17.107 <2e-16 ***
## index_ANexp_w1 0.0058255 0.0005338 10.912 <2e-16 ***
## crtSum.c 0.0238962 0.0300679 0.795 0.4269
## index_ANexp_w1:crtSum.c 0.0007682 0.0003069 2.503 0.0124 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.441 on 1499 degrees of freedom
## (11994 observations deleted due to missingness)
## Multiple R-squared: 0.07952, Adjusted R-squared: 0.07768
## F-statistic: 43.17 on 3 and 1499 DF, p-value: < 2.2e-16
mh.w1 <- lm(trustExpert_w2 ~ index_ANexp_w1 * crtSum.c, data = d)
summary(mh.w1)
##
## Call:
## lm(formula = trustExpert_w2 ~ index_ANexp_w1 * crtSum.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.5415 -0.8647 0.4547 0.9571 1.9488
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0742837 0.0601378 17.864 < 2e-16 ***
## index_ANexp_w1 0.0057643 0.0005510 10.462 < 2e-16 ***
## crtSum.c 0.0147296 0.0309809 0.475 0.63455
## index_ANexp_w1:crtSum.c 0.0008306 0.0003162 2.627 0.00871 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.437 on 1372 degrees of freedom
## (12121 observations deleted due to missingness)
## Multiple R-squared: 0.07938, Adjusted R-squared: 0.07737
## F-statistic: 39.44 on 3 and 1372 DF, p-value: < 2.2e-16
mh.w2 <- lm(trustExpert_w2 ~ index_ANexp_w2 * crtSum.c, data = d)
summary(mh.w2)
##
## Call:
## lm(formula = trustExpert_w2 ~ index_ANexp_w2 * crtSum.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.0808 -0.8240 0.4548 0.9284 1.9209
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0819079 0.0586731 18.440 < 2e-16 ***
## index_ANexp_w2 0.0062587 0.0005758 10.869 < 2e-16 ***
## crtSum.c 0.0017828 0.0303505 0.059 0.95317
## index_ANexp_w2:crtSum.c 0.0010857 0.0003358 3.233 0.00125 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.427 on 1378 degrees of freedom
## (12115 observations deleted due to missingness)
## Multiple R-squared: 0.08518, Adjusted R-squared: 0.08319
## F-statistic: 42.77 on 3 and 1378 DF, p-value: < 2.2e-16
mh.w2 <- lm(avgTrustExpert ~ avgIndexANexp.c * crtSum.c, data = d)
summary(mh.w2)
##
## Call:
## lm(formula = avgTrustExpert ~ avgIndexANexp.c * crtSum.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9230 -0.7378 0.3133 0.9599 2.0557
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5866537 0.0348740 45.497 < 2e-16 ***
## avgIndexANexp.c 0.0068026 0.0005340 12.740 < 2e-16 ***
## crtSum.c 0.1140364 0.0190182 5.996 2.52e-09 ***
## avgIndexANexp.c:crtSum.c 0.0011823 0.0003092 3.824 0.000137 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.317 on 1523 degrees of freedom
## (11970 observations deleted due to missingness)
## Multiple R-squared: 0.1047, Adjusted R-squared: 0.1029
## F-statistic: 59.36 on 3 and 1523 DF, p-value: < 2.2e-16
m3a.w1 <- lm(sciTrustAvg ~ index_ANexp_w1 * education.c, data = d)
summary(m3a.w1)
##
## Call:
## lm(formula = sciTrustAvg ~ index_ANexp_w1 * education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.52535 -0.52940 0.03215 0.55727 1.74257
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.286e+00 3.946e-02 83.262 < 2e-16 ***
## index_ANexp_w1 2.026e-03 3.550e-04 5.706 1.52e-08 ***
## education.c 3.388e-02 1.540e-02 2.199 0.0281 *
## index_ANexp_w1:education.c 3.537e-05 1.058e-04 0.334 0.7381
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8061 on 1010 degrees of freedom
## (12483 observations deleted due to missingness)
## Multiple R-squared: 0.04461, Adjusted R-squared: 0.04177
## F-statistic: 15.72 on 3 and 1010 DF, p-value: 5.363e-10
ma.w2 <- lm(sciTrustAvg ~ index_ANexp_w2 * education.c, data = d)
summary(ma.w2)
##
## Call:
## lm(formula = sciTrustAvg ~ index_ANexp_w2 * education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.52189 -0.55015 0.02632 0.56954 1.76135
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.2882449 0.0404783 81.235 < 2e-16 ***
## index_ANexp_w2 0.0021084 0.0003835 5.497 4.99e-08 ***
## education.c 0.0632226 0.0170202 3.715 0.000216 ***
## index_ANexp_w2:education.c -0.0002063 0.0001234 -1.671 0.095011 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8067 on 925 degrees of freedom
## (12568 observations deleted due to missingness)
## Multiple R-squared: 0.04966, Adjusted R-squared: 0.04657
## F-statistic: 16.11 on 3 and 925 DF, p-value: 3.25e-10
ma.w3 <- lm(sciTrustAvg ~ index_ANexp_w3 * education.c, data = d)
summary(ma.w3)
##
## Call:
## lm(formula = sciTrustAvg ~ index_ANexp_w3 * education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.47699 -0.56615 0.03983 0.57739 1.83153
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.337e+00 3.683e-02 90.602 < 2e-16 ***
## index_ANexp_w3 1.648e-03 3.591e-04 4.590 4.99e-06 ***
## education.c 4.830e-02 1.486e-02 3.251 0.00119 **
## index_ANexp_w3:education.c -9.582e-05 1.125e-04 -0.852 0.39453
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8095 on 1005 degrees of freedom
## (12488 observations deleted due to missingness)
## Multiple R-squared: 0.03526, Adjusted R-squared: 0.03238
## F-statistic: 12.24 on 3 and 1005 DF, p-value: 7.163e-08
mb.w1 <- lm(sciLitSum ~ index_ANexp_w1 * education.c, data = d)
summary(mb.w1)
##
## Call:
## lm(formula = sciLitSum ~ index_ANexp_w1 * education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7225 -1.4736 0.3702 1.3397 2.2531
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5631561 0.0500158 31.253 < 2e-16 ***
## index_ANexp_w1 -0.0002526 0.0004570 -0.553 0.58054
## education.c 0.0609707 0.0198652 3.069 0.00218 **
## index_ANexp_w1:education.c -0.0001209 0.0001435 -0.843 0.39934
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.253 on 1497 degrees of freedom
## (11996 observations deleted due to missingness)
## Multiple R-squared: 0.01043, Adjusted R-squared: 0.008449
## F-statistic: 5.261 on 3 and 1497 DF, p-value: 0.001303
mb.w2 <- lm(sciLitSum ~ index_ANexp_w2 * education.c, data = d)
summary(mb.w2)
##
## Call:
## lm(formula = sciLitSum ~ index_ANexp_w2 * education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7378 -1.5088 0.3581 1.3294 2.2134
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5824455 0.0516303 30.650 < 2e-16 ***
## index_ANexp_w2 -0.0001403 0.0005021 -0.279 0.77992
## education.c 0.0594496 0.0219276 2.711 0.00679 **
## index_ANexp_w2:education.c -0.0002160 0.0001701 -1.270 0.20426
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.252 on 1352 degrees of freedom
## (12141 observations deleted due to missingness)
## Multiple R-squared: 0.006887, Adjusted R-squared: 0.004683
## F-statistic: 3.125 on 3 and 1352 DF, p-value: 0.02502
mb.w3 <- lm(sciLitSum ~ index_ANexp_w3 * education.c, data = d)
summary(mb.w3)
##
## Call:
## lm(formula = sciLitSum ~ index_ANexp_w3 * education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.41737 -0.37896 -0.08089 0.65870 1.44789
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3560369 0.0361298 65.210 < 2e-16 ***
## index_ANexp_w3 -0.0010992 0.0003511 -3.131 0.00179 **
## education.c 0.0380343 0.0146085 2.604 0.00936 **
## index_ANexp_w3:education.c 0.0000836 0.0001106 0.756 0.44968
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7965 on 1011 degrees of freedom
## (12482 observations deleted due to missingness)
## Multiple R-squared: 0.03349, Adjusted R-squared: 0.03063
## F-statistic: 11.68 on 3 and 1011 DF, p-value: 1.585e-07
mc.w1 <- lm(vaxxAttitudes_w1 ~ index_ANexp_w1 * education.c, data = d)
summary(mc.w1)
##
## Call:
## lm(formula = vaxxAttitudes_w1 ~ index_ANexp_w1 * education.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7525 -1.1216 0.5175 1.7155 3.4234
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7165656 0.0297149 24.115 < 2e-16 ***
## index_ANexp_w1 0.0031082 0.0002476 12.555 < 2e-16 ***
## education.c 0.0990795 0.0117502 8.432 < 2e-16 ***
## index_ANexp_w1:education.c -0.0003242 0.0000873 -3.713 0.000206 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.933 on 10757 degrees of freedom
## (2736 observations deleted due to missingness)
## Multiple R-squared: 0.02294, Adjusted R-squared: 0.02267
## F-statistic: 84.19 on 3 and 10757 DF, p-value: < 2.2e-16
md.w1 <- lm(vaxxAttitudes_w2 ~ index_ANexp_w1 * education.c, data = d)
summary(md.w1)
##
## Call:
## lm(formula = vaxxAttitudes_w2 ~ index_ANexp_w1 * education.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5010 -1.4187 0.0336 1.7749 4.4763
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0344276 0.0641767 -0.536 0.5917
## index_ANexp_w1 0.0046715 0.0005735 8.145 5.93e-16 ***
## education.c 0.1077020 0.0252728 4.262 2.11e-05 ***
## index_ANexp_w1:education.c -0.0003644 0.0001838 -1.983 0.0475 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.062 on 2486 degrees of freedom
## (11007 observations deleted due to missingness)
## Multiple R-squared: 0.03523, Adjusted R-squared: 0.03407
## F-statistic: 30.26 on 3 and 2486 DF, p-value: < 2.2e-16
md.w2 <- lm(vaxxAttitudes_w2 ~ index_ANexp_w2 * education.c, data = d)
summary(md.w2)
##
## Call:
## lm(formula = vaxxAttitudes_w2 ~ index_ANexp_w2 * education.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6687 -1.4168 0.0257 1.7266 4.2962
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0832680 0.0621226 -1.340 0.180245
## index_ANexp_w2 0.0056466 0.0005880 9.603 < 2e-16 ***
## education.c 0.0906031 0.0246641 3.673 0.000244 ***
## index_ANexp_w2:education.c -0.0002156 0.0001907 -1.131 0.258373
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.051 on 2479 degrees of freedom
## (11014 observations deleted due to missingness)
## Multiple R-squared: 0.04413, Adjusted R-squared: 0.04297
## F-statistic: 38.15 on 3 and 2479 DF, p-value: < 2.2e-16
me.w1 <- lm(vaxxBehavior ~ index_ANexp_w1 * education.c, data = d)
summary(me.w1)
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w1 * education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9637 -0.3264 0.4808 0.7983 2.2267
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.9037212 0.0546991 53.085 < 2e-16 ***
## index_ANexp_w1 0.0036486 0.0004933 7.397 2.87e-13 ***
## education.c 0.0844410 0.0211899 3.985 7.22e-05 ***
## index_ANexp_w1:education.c -0.0002210 0.0001477 -1.496 0.135
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.133 on 1039 degrees of freedom
## (12454 observations deleted due to missingness)
## Multiple R-squared: 0.07021, Adjusted R-squared: 0.06752
## F-statistic: 26.15 on 3 and 1039 DF, p-value: 2.608e-16
me.w2 <- lm(vaxxBehavior ~ index_ANexp_w2 * education.c, data = d)
summary(me.w2)
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w2 * education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2670 -0.3157 0.4790 0.7965 2.0373
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.918e+00 5.572e-02 52.365 < 2e-16 ***
## index_ANexp_w2 3.899e-03 5.291e-04 7.368 3.75e-13 ***
## education.c 7.135e-02 2.329e-02 3.063 0.00225 **
## index_ANexp_w2:education.c -7.641e-05 1.709e-04 -0.447 0.65485
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.126 on 952 degrees of freedom
## (12541 observations deleted due to missingness)
## Multiple R-squared: 0.07242, Adjusted R-squared: 0.0695
## F-statistic: 24.78 on 3 and 952 DF, p-value: 1.931e-15
me.w3 <- lm(vaxxBehavior ~ index_ANexp_w3 * education.c, data = d)
summary(me.w3)
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3 * education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2450 -0.3334 0.4251 0.7825 2.3787
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.8818951 0.0505569 57.003 < 2e-16 ***
## index_ANexp_w3 0.0045851 0.0004927 9.306 < 2e-16 ***
## education.c 0.0941596 0.0204146 4.612 4.49e-06 ***
## index_ANexp_w3:education.c -0.0003106 0.0001547 -2.008 0.0449 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.112 on 1009 degrees of freedom
## (12484 observations deleted due to missingness)
## Multiple R-squared: 0.09875, Adjusted R-squared: 0.09607
## F-statistic: 36.85 on 3 and 1009 DF, p-value: < 2.2e-16
mf.w1 <- lm(avgVaxxAttitudes ~ index_ANexp_w1 * education.c, data = d)
summary(mf.w1)
##
## Call:
## lm(formula = avgVaxxAttitudes ~ index_ANexp_w1 * education.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6805 -1.1145 0.3834 1.7062 3.3806
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.953e-01 2.920e-02 23.814 < 2e-16 ***
## index_ANexp_w1 2.955e-03 2.433e-04 12.147 < 2e-16 ***
## education.c 9.359e-02 1.155e-02 8.106 5.78e-16 ***
## index_ANexp_w1:education.c -3.103e-04 8.578e-05 -3.618 0.000298 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.9 on 10757 degrees of freedom
## (2736 observations deleted due to missingness)
## Multiple R-squared: 0.02135, Adjusted R-squared: 0.02107
## F-statistic: 78.21 on 3 and 10757 DF, p-value: < 2.2e-16
mf.w2 <- lm(avgVaxxAttitudes ~ index_ANexp_w2 * education.c, data = d)
summary(mf.w2)
##
## Call:
## lm(formula = avgVaxxAttitudes ~ index_ANexp_w2 * education.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5284 -1.3737 0.2362 1.5537 4.0373
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0246976 0.0579437 0.426 0.6700
## index_ANexp_w2 0.0062007 0.0005486 11.304 < 2e-16 ***
## education.c 0.1126115 0.0230055 4.895 1.05e-06 ***
## index_ANexp_w2:education.c -0.0002968 0.0001779 -1.668 0.0954 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.913 on 2480 degrees of freedom
## (11013 observations deleted due to missingness)
## Multiple R-squared: 0.0625, Adjusted R-squared: 0.06137
## F-statistic: 55.11 on 3 and 2480 DF, p-value: < 2.2e-16
mf.w3 <- lm(avgVaxxAttitudes ~ index_ANexp_w3 * education.c, data = d)
summary(mf.w3)
##
## Call:
## lm(formula = avgVaxxAttitudes ~ index_ANexp_w3 * education.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9398 -1.3658 0.2604 1.6416 3.5271
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1586125 0.0879496 1.803 0.0716 .
## index_ANexp_w3 0.0062296 0.0008547 7.289 6.29e-13 ***
## education.c 0.0885659 0.0355610 2.491 0.0129 *
## index_ANexp_w3:education.c -0.0002556 0.0002691 -0.950 0.3424
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.939 on 1011 degrees of freedom
## (12482 observations deleted due to missingness)
## Multiple R-squared: 0.05629, Adjusted R-squared: 0.05349
## F-statistic: 20.1 on 3 and 1011 DF, p-value: 1.169e-12
mg.w1 <- lm(d$trustExpert_w1 ~ index_ANexp_w1 * education.c, data = d)
summary(mg.w1)
##
## Call:
## lm(formula = d$trustExpert_w1 ~ index_ANexp_w1 * education.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0556 -0.6361 0.4329 1.1314 2.7808
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.249e+00 2.260e-02 55.269 <2e-16 ***
## index_ANexp_w1 2.041e-03 1.883e-04 10.837 <2e-16 ***
## education.c 8.754e-02 8.939e-03 9.793 <2e-16 ***
## index_ANexp_w1:education.c -1.152e-04 6.641e-05 -1.735 0.0828 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.47 on 10748 degrees of freedom
## (2745 observations deleted due to missingness)
## Multiple R-squared: 0.02794, Adjusted R-squared: 0.02767
## F-statistic: 103 on 3 and 10748 DF, p-value: < 2.2e-16
mh.w1 <- lm(trustExpert_w2 ~ index_ANexp_w1 * education.c, data = d)
summary(mh.w1)
##
## Call:
## lm(formula = trustExpert_w2 ~ index_ANexp_w1 * education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.4691 -0.8458 0.4224 1.0427 2.4769
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.106e+00 4.429e-02 24.985 < 2e-16 ***
## index_ANexp_w1 4.909e-03 3.957e-04 12.403 < 2e-16 ***
## education.c 5.616e-02 1.730e-02 3.247 0.00118 **
## index_ANexp_w1:education.c 3.776e-05 1.262e-04 0.299 0.76470
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.431 on 2514 degrees of freedom
## (10979 observations deleted due to missingness)
## Multiple R-squared: 0.06851, Adjusted R-squared: 0.0674
## F-statistic: 61.64 on 3 and 2514 DF, p-value: < 2.2e-16
mh.w2 <- lm(trustExpert_w2 ~ index_ANexp_w2 * education.c, data = d)
summary(mh.w2)
##
## Call:
## lm(formula = trustExpert_w2 ~ index_ANexp_w2 * education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.7043 -0.7873 0.4037 0.9906 2.2322
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1183995 0.0431904 25.895 <2e-16 ***
## index_ANexp_w2 0.0052468 0.0004089 12.832 <2e-16 ***
## education.c 0.0337567 0.0171480 1.969 0.0491 *
## index_ANexp_w2:education.c 0.0002655 0.0001326 2.002 0.0454 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.426 on 2480 degrees of freedom
## (11013 observations deleted due to missingness)
## Multiple R-squared: 0.07381, Adjusted R-squared: 0.07269
## F-statistic: 65.88 on 3 and 2480 DF, p-value: < 2.2e-16
mi.w1 <- lm(avgTrustExpert ~ index_ANexp_w1 * education.c, data = d)
summary(mi.w1)
##
## Call:
## lm(formula = avgTrustExpert ~ index_ANexp_w1 * education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0603 -0.6447 0.4154 1.0613 2.7438
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.258e+00 2.210e-02 56.928 <2e-16 ***
## index_ANexp_w1 2.038e-03 1.842e-04 11.065 <2e-16 ***
## education.c 8.531e-02 8.741e-03 9.761 <2e-16 ***
## index_ANexp_w1:education.c -1.123e-04 6.494e-05 -1.729 0.0839 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.437 on 10748 degrees of freedom
## (2745 observations deleted due to missingness)
## Multiple R-squared: 0.02826, Adjusted R-squared: 0.02799
## F-statistic: 104.2 on 3 and 10748 DF, p-value: < 2.2e-16
mi.w2 <- lm(avgTrustExpert ~ index_ANexp_w2 * education.c, data = d)
summary(mi.w2)
##
## Call:
## lm(formula = avgTrustExpert ~ index_ANexp_w2 * education.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.3778 -0.7282 0.2958 0.9559 2.3733
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0999780 0.0392663 28.013 <2e-16 ***
## index_ANexp_w2 0.0049803 0.0003717 13.397 <2e-16 ***
## education.c 0.0455647 0.0155899 2.923 0.0035 **
## index_ANexp_w2:education.c 0.0002436 0.0001206 2.021 0.0434 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.297 on 2480 degrees of freedom
## (11013 observations deleted due to missingness)
## Multiple R-squared: 0.08546, Adjusted R-squared: 0.08435
## F-statistic: 77.25 on 3 and 2480 DF, p-value: < 2.2e-16
mj.w1 <- lm(index_ANexp_w1 ~ education.c + prop.media.exp_w1 + avgSymbBelief.c, data = d)
summary(mj.w1)
##
## Call:
## lm(formula = index_ANexp_w1 ~ education.c + prop.media.exp_w1 +
## avgSymbBelief.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -82.954 -21.207 -3.839 21.908 240.976
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.84165 0.47929 30.966 <2e-16 ***
## education.c -0.01965 0.11948 -0.164 0.8694
## prop.media.exp_w1 389.90559 1.80115 216.476 <2e-16 ***
## avgSymbBelief.c -0.49665 0.20688 -2.401 0.0164 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 32.43 on 10752 degrees of freedom
## (2741 observations deleted due to missingness)
## Multiple R-squared: 0.815, Adjusted R-squared: 0.8149
## F-statistic: 1.579e+04 on 3 and 10752 DF, p-value: < 2.2e-16
mj.w1 <- lm(index_ANexp_w1 ~ education.c * avgSymbBelief.c + prop.media.exp_w1, data = d)
summary(mj.w1)
##
## Call:
## lm(formula = index_ANexp_w1 ~ education.c * avgSymbBelief.c +
## prop.media.exp_w1, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -82.779 -21.241 -3.828 21.924 240.968
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.83679 0.48035 30.888 <2e-16 ***
## education.c -0.01996 0.11950 -0.167 0.8673
## avgSymbBelief.c -0.49670 0.20689 -2.401 0.0164 *
## prop.media.exp_w1 389.91323 1.80191 216.389 <2e-16 ***
## education.c:avgSymbBelief.c -0.01213 0.07850 -0.154 0.8772
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 32.43 on 10751 degrees of freedom
## (2741 observations deleted due to missingness)
## Multiple R-squared: 0.815, Adjusted R-squared: 0.8149
## F-statistic: 1.184e+04 on 4 and 10751 DF, p-value: < 2.2e-16
mj.w2 <- lm(index_ANexp_w2 ~ education.c + prop.media.exp_w2 + avgSymbBelief.c, data = d)
summary(mj.w2)
##
## Call:
## lm(formula = index_ANexp_w2 ~ education.c + prop.media.exp_w2 +
## avgSymbBelief.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.0223 -2.3028 0.5035 2.0512 29.2299
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.99063 0.11191 -17.787 < 2e-16 ***
## education.c -0.04272 0.02693 -1.587 0.11275
## prop.media.exp_w2 319.92933 0.33365 958.868 < 2e-16 ***
## avgSymbBelief.c -0.11911 0.04482 -2.658 0.00792 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.511 on 2480 degrees of freedom
## (11013 observations deleted due to missingness)
## Multiple R-squared: 0.9975, Adjusted R-squared: 0.9975
## F-statistic: 3.289e+05 on 3 and 2480 DF, p-value: < 2.2e-16
mj.w3 <- lm(index_ANexp_w3 ~ education.c + prop.media.exp_w3 + avgSymbBelief.c, data = d)
summary(mj.w3)
##
## Call:
## lm(formula = index_ANexp_w3 ~ education.c + prop.media.exp_w3 +
## avgSymbBelief.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.767 -1.767 0.450 1.637 43.607
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.614662 0.157568 -10.247 <2e-16 ***
## education.c 0.009105 0.039520 0.230 0.818
## prop.media.exp_w3 320.474710 0.484619 661.292 <2e-16 ***
## avgSymbBelief.c -0.052784 0.062973 -0.838 0.402
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.301 on 1011 degrees of freedom
## (12482 observations deleted due to missingness)
## Multiple R-squared: 0.9979, Adjusted R-squared: 0.9979
## F-statistic: 1.572e+05 on 3 and 1011 DF, p-value: < 2.2e-16
m3a.w1 <- lm(sciTrustAvg ~ index_ANexp_w1 * SESladder.c, data = d)
summary(m3a.w1)
##
## Call:
## lm(formula = sciTrustAvg ~ index_ANexp_w1 * SESladder.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4498 -0.5369 0.0241 0.5618 1.7251
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.301e+00 3.956e-02 83.446 < 2e-16 ***
## index_ANexp_w1 1.932e-03 3.561e-04 5.427 7.19e-08 ***
## SESladder.c -1.540e-02 1.982e-02 -0.777 0.437
## index_ANexp_w1:SESladder.c -6.949e-05 1.627e-04 -0.427 0.669
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8112 on 1011 degrees of freedom
## (12482 observations deleted due to missingness)
## Multiple R-squared: 0.03213, Adjusted R-squared: 0.02926
## F-statistic: 11.19 on 3 and 1011 DF, p-value: 3.169e-07
ma.w2 <- lm(sciTrustAvg ~ index_ANexp_w2 * SESladder.c, data = d)
summary(ma.w2)
##
## Call:
## lm(formula = sciTrustAvg ~ index_ANexp_w2 * SESladder.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.40874 -0.56342 0.02857 0.58934 1.78780
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.304e+00 4.060e-02 81.362 < 2e-16 ***
## index_ANexp_w2 2.078e-03 3.861e-04 5.383 9.28e-08 ***
## SESladder.c -2.619e-02 2.012e-02 -1.301 0.193
## index_ANexp_w2:SESladder.c -5.128e-05 1.748e-04 -0.293 0.769
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8125 on 926 degrees of freedom
## (12567 observations deleted due to missingness)
## Multiple R-squared: 0.03569, Adjusted R-squared: 0.03257
## F-statistic: 11.42 on 3 and 926 DF, p-value: 2.323e-07
ma.w3 <- lm(sciTrustAvg ~ index_ANexp_w3 * SESladder.c, data = d)
summary(ma.w3)
##
## Call:
## lm(formula = sciTrustAvg ~ index_ANexp_w3 * SESladder.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.39743 -0.56299 0.03045 0.57001 1.71074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.352e+00 3.690e-02 90.849 < 2e-16 ***
## index_ANexp_w3 1.571e-03 3.612e-04 4.351 1.49e-05 ***
## SESladder.c -1.803e-02 1.866e-02 -0.966 0.334
## index_ANexp_w3:SESladder.c -5.593e-05 1.625e-04 -0.344 0.731
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.815 on 1006 degrees of freedom
## (12487 observations deleted due to missingness)
## Multiple R-squared: 0.02188, Adjusted R-squared: 0.01896
## F-statistic: 7.5 on 3 and 1006 DF, p-value: 5.752e-05
mb.w1 <- lm(sciLitSum ~ index_ANexp_w1 * SESladder.c, data = d)
summary(mb.w1)
##
## Call:
## lm(formula = sciLitSum ~ index_ANexp_w1 * SESladder.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7304 -1.4989 0.4083 1.3731 1.6500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5758256 0.0501123 31.446 <2e-16 ***
## index_ANexp_w1 -0.0002467 0.0004580 -0.539 0.5901
## SESladder.c -0.0502510 0.0260415 -1.930 0.0538 .
## index_ANexp_w1:SESladder.c 0.0001215 0.0002158 0.563 0.5735
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.257 on 1497 degrees of freedom
## (11996 observations deleted due to missingness)
## Multiple R-squared: 0.003954, Adjusted R-squared: 0.001958
## F-statistic: 1.981 on 3 and 1497 DF, p-value: 0.1149
mb.w2 <- lm(sciLitSum ~ index_ANexp_w2 * SESladder.c, data = d)
summary(mb.w2)
##
## Call:
## lm(formula = sciLitSum ~ index_ANexp_w2 * SESladder.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7887 -1.5511 0.3947 1.3821 1.5983
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5948905 0.0516472 30.880 <2e-16 ***
## index_ANexp_w2 -0.0001388 0.0005028 -0.276 0.783
## SESladder.c -0.0429998 0.0263450 -1.632 0.103
## index_ANexp_w2:SESladder.c 0.0002491 0.0002333 1.067 0.286
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.254 on 1352 degrees of freedom
## (12141 observations deleted due to missingness)
## Multiple R-squared: 0.00204, Adjusted R-squared: -0.0001741
## F-statistic: 0.9214 on 3 and 1352 DF, p-value: 0.4297
mb.w3 <- lm(sciLitSum ~ index_ANexp_w3 * SESladder.c, data = d)
summary(mb.w3)
##
## Call:
## lm(formula = sciLitSum ~ index_ANexp_w3 * SESladder.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5179 -0.3552 -0.1465 0.6903 1.0229
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.373e+00 3.629e-02 65.380 < 2e-16 ***
## index_ANexp_w3 -1.174e-03 3.540e-04 -3.316 0.000945 ***
## SESladder.c -3.414e-02 1.839e-02 -1.856 0.063721 .
## index_ANexp_w3:SESladder.c 9.264e-05 1.599e-04 0.579 0.562523
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8038 on 1012 degrees of freedom
## (12481 observations deleted due to missingness)
## Multiple R-squared: 0.01474, Adjusted R-squared: 0.01182
## F-statistic: 5.045 on 3 and 1012 DF, p-value: 0.00179
mc.w1 <- lm(vaxxAttitudes_w1 ~ index_ANexp_w1 * SESladder.c, data = d)
summary(mc.w1)
##
## Call:
## lm(formula = vaxxAttitudes_w1 ~ index_ANexp_w1 * SESladder.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8456 -1.1316 0.4969 1.6951 2.7217
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7286554 0.0292831 24.883 < 2e-16 ***
## index_ANexp_w1 0.0031629 0.0002403 13.164 < 2e-16 ***
## SESladder.c -0.1002395 0.0158194 -6.336 2.44e-10 ***
## index_ANexp_w1:SESladder.c 0.0002455 0.0001252 1.962 0.0498 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.933 on 11171 degrees of freedom
## (2322 observations deleted due to missingness)
## Multiple R-squared: 0.02138, Adjusted R-squared: 0.02111
## F-statistic: 81.34 on 3 and 11171 DF, p-value: < 2.2e-16
md.w1 <- lm(vaxxAttitudes_w2 ~ index_ANexp_w1 * SESladder.c, data = d)
summary(md.w1)
##
## Call:
## lm(formula = vaxxAttitudes_w2 ~ index_ANexp_w1 * SESladder.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4129 -1.3593 -0.0322 1.8143 3.4757
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0192511 0.0644377 -0.299 0.76515
## index_ANexp_w1 0.0046397 0.0005747 8.074 1.05e-15 ***
## SESladder.c -0.1015772 0.0333033 -3.050 0.00231 **
## index_ANexp_w1:SESladder.c 0.0004094 0.0002639 1.551 0.12097
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.068 on 2489 degrees of freedom
## (11004 observations deleted due to missingness)
## Multiple R-squared: 0.03063, Adjusted R-squared: 0.02946
## F-statistic: 26.21 on 3 and 2489 DF, p-value: < 2.2e-16
md.w2 <- lm(vaxxAttitudes_w2 ~ index_ANexp_w2 * SESladder.c, data = d)
summary(md.w2)
##
## Call:
## lm(formula = vaxxAttitudes_w2 ~ index_ANexp_w2 * SESladder.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5464 -1.3598 -0.0028 1.7913 3.5544
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0652966 0.0624523 -1.046 0.295873
## index_ANexp_w2 0.0055652 0.0005912 9.413 < 2e-16 ***
## SESladder.c -0.1088665 0.0323332 -3.367 0.000771 ***
## index_ANexp_w2:SESladder.c 0.0004562 0.0002683 1.700 0.089276 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.055 on 2482 degrees of freedom
## (11011 observations deleted due to missingness)
## Multiple R-squared: 0.0412, Adjusted R-squared: 0.04004
## F-statistic: 35.55 on 3 and 2482 DF, p-value: < 2.2e-16
me.w1 <- lm(vaxxBehavior ~ index_ANexp_w1 * SESladder.c, data = d)
summary(me.w1)
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w1 * SESladder.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1204 -0.3000 0.4903 0.8153 1.4603
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.9241408 0.0547219 53.436 < 2e-16 ***
## index_ANexp_w1 0.0036175 0.0004932 7.334 4.47e-13 ***
## SESladder.c -0.0855644 0.0274113 -3.122 0.00185 **
## index_ANexp_w1:SESladder.c 0.0002032 0.0002250 0.903 0.36673
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.137 on 1040 degrees of freedom
## (12453 observations deleted due to missingness)
## Multiple R-squared: 0.06348, Adjusted R-squared: 0.06077
## F-statistic: 23.5 on 3 and 1040 DF, p-value: 1.019e-14
me.w2 <- lm(vaxxBehavior ~ index_ANexp_w2 * SESladder.c, data = d)
summary(me.w2)
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w2 * SESladder.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3127 -0.2858 0.4877 0.8038 1.4595
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.9395063 0.0556524 52.819 < 2e-16 ***
## index_ANexp_w2 0.0038590 0.0005298 7.284 6.8e-13 ***
## SESladder.c -0.0887943 0.0275457 -3.224 0.00131 **
## index_ANexp_w2:SESladder.c 0.0001695 0.0002404 0.705 0.48099
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.128 on 953 degrees of freedom
## (12540 observations deleted due to missingness)
## Multiple R-squared: 0.06907, Adjusted R-squared: 0.06614
## F-statistic: 23.57 on 3 and 953 DF, p-value: 1.014e-14
me.w3 <- lm(vaxxBehavior ~ index_ANexp_w3 * SESladder.c, data = d)
summary(me.w3)
##
## Call:
## lm(formula = vaxxBehavior ~ index_ANexp_w3 * SESladder.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2164 -0.2700 0.4191 0.8160 1.4732
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.9112281 0.0506152 57.517 < 2e-16 ***
## index_ANexp_w3 0.0044695 0.0004953 9.023 < 2e-16 ***
## SESladder.c -0.0855653 0.0256396 -3.337 0.000877 ***
## index_ANexp_w3:SESladder.c 0.0003159 0.0002228 1.418 0.156522
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.119 on 1010 degrees of freedom
## (12483 observations deleted due to missingness)
## Multiple R-squared: 0.08715, Adjusted R-squared: 0.08444
## F-statistic: 32.14 on 3 and 1010 DF, p-value: < 2.2e-16
mf.w1 <- lm(avgVaxxAttitudes ~ index_ANexp_w1 * SESladder.c, data = d)
summary(mf.w1)
##
## Call:
## lm(formula = avgVaxxAttitudes ~ index_ANexp_w1 * SESladder.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7230 -1.1324 0.4013 1.6767 2.7462
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7068162 0.0287872 24.553 < 2e-16 ***
## index_ANexp_w1 0.0030323 0.0002362 12.838 < 2e-16 ***
## SESladder.c -0.1008260 0.0155515 -6.483 9.35e-11 ***
## index_ANexp_w1:SESladder.c 0.0002875 0.0001231 2.336 0.0195 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.9 on 11171 degrees of freedom
## (2322 observations deleted due to missingness)
## Multiple R-squared: 0.02044, Adjusted R-squared: 0.02018
## F-statistic: 77.7 on 3 and 11171 DF, p-value: < 2.2e-16
mf.w2 <- lm(avgVaxxAttitudes ~ index_ANexp_w2 * SESladder.c, data = d)
summary(mf.w2)
##
## Call:
## lm(formula = avgVaxxAttitudes ~ index_ANexp_w2 * SESladder.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4753 -1.3996 0.1915 1.5997 3.4439
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0411906 0.0583479 0.706 0.480286
## index_ANexp_w2 0.0061805 0.0005524 11.188 < 2e-16 ***
## SESladder.c -0.1079698 0.0301822 -3.577 0.000354 ***
## index_ANexp_w2:SESladder.c 0.0002291 0.0002507 0.914 0.360835
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.92 on 2483 degrees of freedom
## (11010 observations deleted due to missingness)
## Multiple R-squared: 0.05697, Adjusted R-squared: 0.05583
## F-statistic: 50 on 3 and 2483 DF, p-value: < 2.2e-16
mf.w3 <- lm(avgVaxxAttitudes ~ index_ANexp_w3 * SESladder.c, data = d)
summary(mf.w3)
##
## Call:
## lm(formula = avgVaxxAttitudes ~ index_ANexp_w3 * SESladder.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9421 -1.3492 0.2074 1.6526 3.2876
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1896249 0.0873168 2.172 0.03011 *
## index_ANexp_w3 0.0060543 0.0008519 7.107 2.24e-12 ***
## SESladder.c -0.1366105 0.0442538 -3.087 0.00208 **
## index_ANexp_w3:SESladder.c 0.0003903 0.0003848 1.014 0.31072
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.934 on 1012 degrees of freedom
## (12481 observations deleted due to missingness)
## Multiple R-squared: 0.05993, Adjusted R-squared: 0.05714
## F-statistic: 21.5 on 3 and 1012 DF, p-value: 1.658e-13
mg.w1 <- lm(d$trustExpert_w1 ~ index_ANexp_w1 * SESladder.c, data = d)
summary(mg.w1)
##
## Call:
## lm(formula = d$trustExpert_w1 ~ index_ANexp_w1 * SESladder.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.4489 -0.5879 0.5041 0.9672 1.9801
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.254e+00 2.273e-02 55.183 < 2e-16 ***
## index_ANexp_w1 1.607e-03 1.866e-04 8.616 < 2e-16 ***
## SESladder.c -5.216e-02 1.228e-02 -4.246 2.19e-05 ***
## index_ANexp_w1:SESladder.c -2.953e-04 9.719e-05 -3.038 0.00238 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.5 on 11162 degrees of freedom
## (2331 observations deleted due to missingness)
## Multiple R-squared: 0.0179, Adjusted R-squared: 0.01764
## F-statistic: 67.82 on 3 and 11162 DF, p-value: < 2.2e-16
mh.w1 <- lm(trustExpert_w2 ~ index_ANexp_w1 * SESladder.c, data = d)
summary(mh.w1)
##
## Call:
## lm(formula = trustExpert_w2 ~ index_ANexp_w1 * SESladder.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.3424 -0.8533 0.4524 1.0313 1.9158
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.117e+00 4.454e-02 25.08 <2e-16 ***
## index_ANexp_w1 4.896e-03 3.971e-04 12.33 <2e-16 ***
## SESladder.c -7.345e-03 2.297e-02 -0.32 0.749
## index_ANexp_w1:SESladder.c -2.931e-05 1.826e-04 -0.16 0.873
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.438 on 2517 degrees of freedom
## (10976 observations deleted due to missingness)
## Multiple R-squared: 0.05743, Adjusted R-squared: 0.0563
## F-statistic: 51.12 on 3 and 2517 DF, p-value: < 2.2e-16
mh.w2 <- lm(trustExpert_w2 ~ index_ANexp_w2 * SESladder.c, data = d)
summary(mh.w2)
##
## Call:
## lm(formula = trustExpert_w2 ~ index_ANexp_w2 * SESladder.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.7719 -0.7551 0.4443 1.0289 1.9386
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.131e+00 4.355e-02 25.977 <2e-16 ***
## index_ANexp_w2 5.223e-03 4.123e-04 12.666 <2e-16 ***
## SESladder.c -1.556e-02 2.253e-02 -0.691 0.490
## index_ANexp_w2:SESladder.c -9.554e-06 1.871e-04 -0.051 0.959
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.433 on 2483 degrees of freedom
## (11010 observations deleted due to missingness)
## Multiple R-squared: 0.06185, Adjusted R-squared: 0.06071
## F-statistic: 54.56 on 3 and 2483 DF, p-value: < 2.2e-16
mi.w1 <- lm(avgTrustExpert ~ index_ANexp_w1 * SESladder.c, data = d)
summary(mi.w1)
##
## Call:
## lm(formula = avgTrustExpert ~ index_ANexp_w1 * SESladder.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.4373 -0.6120 0.4828 1.0256 1.9607
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.263e+00 2.225e-02 56.764 < 2e-16 ***
## index_ANexp_w1 1.609e-03 1.827e-04 8.808 < 2e-16 ***
## SESladder.c -4.984e-02 1.203e-02 -4.143 3.45e-05 ***
## index_ANexp_w1:SESladder.c -2.881e-04 9.516e-05 -3.027 0.00248 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.468 on 11162 degrees of freedom
## (2331 observations deleted due to missingness)
## Multiple R-squared: 0.01787, Adjusted R-squared: 0.0176
## F-statistic: 67.68 on 3 and 11162 DF, p-value: < 2.2e-16
mi.w2 <- lm(avgTrustExpert ~ index_ANexp_w2 * SESladder.c, data = d)
summary(mi.w2)
##
## Call:
## lm(formula = avgTrustExpert ~ index_ANexp_w2 * SESladder.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.5724 -0.7316 0.3083 0.9670 1.9096
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1075307 0.0398072 27.822 <2e-16 ***
## index_ANexp_w2 0.0049989 0.0003769 13.264 <2e-16 ***
## SESladder.c -0.0038198 0.0205914 -0.186 0.853
## index_ANexp_w2:SESladder.c -0.0002649 0.0001710 -1.549 0.122
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.31 on 2483 degrees of freedom
## (11010 observations deleted due to missingness)
## Multiple R-squared: 0.06793, Adjusted R-squared: 0.0668
## F-statistic: 60.32 on 3 and 2483 DF, p-value: < 2.2e-16
mj.w1 <- lm(index_ANexp_w1 ~ SESladder.c + prop.media.exp_w1 + avgSymbBelief.c, data = d)
summary(mj.w1)
##
## Call:
## lm(formula = index_ANexp_w1 ~ SESladder.c + prop.media.exp_w1 +
## avgSymbBelief.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -90.232 -19.514 -2.421 21.831 240.518
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.4440 0.4695 30.767 < 2e-16 ***
## SESladder.c -0.9978 0.1649 -6.052 1.48e-09 ***
## prop.media.exp_w1 394.6010 1.7483 225.702 < 2e-16 ***
## avgSymbBelief.c -0.5345 0.2012 -2.656 0.00791 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 32.15 on 11166 degrees of freedom
## (2327 observations deleted due to missingness)
## Multiple R-squared: 0.8219, Adjusted R-squared: 0.8219
## F-statistic: 1.718e+04 on 3 and 11166 DF, p-value: < 2.2e-16
mj.w1 <- lm(index_ANexp_w1 ~ SESladder.c * avgSymbBelief.c + prop.media.exp_w1, data = d)
summary(mj.w1)
##
## Call:
## lm(formula = index_ANexp_w1 ~ SESladder.c * avgSymbBelief.c +
## prop.media.exp_w1, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -90.232 -19.514 -2.421 21.831 240.518
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.444e+01 4.701e-01 30.726 < 2e-16 ***
## SESladder.c -9.978e-01 1.649e-01 -6.051 1.49e-09 ***
## avgSymbBelief.c -5.345e-01 2.014e-01 -2.654 0.00797 **
## prop.media.exp_w1 3.946e+02 1.749e+00 225.638 < 2e-16 ***
## SESladder.c:avgSymbBelief.c -3.294e-05 1.054e-01 0.000 0.99975
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 32.15 on 11165 degrees of freedom
## (2327 observations deleted due to missingness)
## Multiple R-squared: 0.8219, Adjusted R-squared: 0.8219
## F-statistic: 1.288e+04 on 4 and 11165 DF, p-value: < 2.2e-16
mj.w2 <- lm(index_ANexp_w2 ~ SESladder.c + prop.media.exp_w2 + avgSymbBelief.c, data = d)
summary(mj.w2)
##
## Call:
## lm(formula = index_ANexp_w2 ~ SESladder.c + prop.media.exp_w2 +
## avgSymbBelief.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.9921 -2.3551 0.5093 2.0309 29.7838
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.00206 0.11202 -17.872 <2e-16 ***
## SESladder.c 0.05575 0.03686 1.513 0.131
## prop.media.exp_w2 319.92095 0.33385 958.273 <2e-16 ***
## avgSymbBelief.c -0.11048 0.04492 -2.460 0.014 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.514 on 2483 degrees of freedom
## (11010 observations deleted due to missingness)
## Multiple R-squared: 0.9975, Adjusted R-squared: 0.9975
## F-statistic: 3.288e+05 on 3 and 2483 DF, p-value: < 2.2e-16
mj.w3 <- lm(index_ANexp_w3 ~ SESladder.c + prop.media.exp_w3 + avgSymbBelief.c, data = d)
summary(mj.w3)
##
## Call:
## lm(formula = index_ANexp_w3 ~ SESladder.c + prop.media.exp_w3 +
## avgSymbBelief.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.567 -1.761 0.444 1.643 43.791
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.61890 0.15661 -10.337 <2e-16 ***
## SESladder.c 0.06890 0.05318 1.295 0.195
## prop.media.exp_w3 320.50594 0.48380 662.475 <2e-16 ***
## avgSymbBelief.c -0.04577 0.06306 -0.726 0.468
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.297 on 1012 degrees of freedom
## (12481 observations deleted due to missingness)
## Multiple R-squared: 0.9979, Adjusted R-squared: 0.9979
## F-statistic: 1.579e+05 on 3 and 1012 DF, p-value: < 2.2e-16