library(car)
## Loading required package: carData
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
library(survey)
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
##
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
##
## dotchart
library(questionr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
##
## recode
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v stringr 1.4.0
## v tidyr 1.1.4 v forcats 0.5.1
## v readr 2.1.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x tidyr::expand() masks Matrix::expand()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x tidyr::pack() masks Matrix::pack()
## x dplyr::recode() masks car::recode()
## x purrr::some() masks car::some()
## x tidyr::unpack() masks Matrix::unpack()
library(broom)
library(emmeans)
library(table1)
##
## Attaching package: 'table1'
## The following objects are masked from 'package:base':
##
## units, units<-
library(ggplot2)
library(haven)
GSS2018 <- read_sav("GSS2018.sav")
View(GSS2018)
nams<-names(GSS2018)
head(nams, n=10)
## [1] "ABANY" "ABDEFECT" "ABFELEGL" "ABHELP1" "ABHELP2" "ABHELP3"
## [7] "ABHELP4" "ABHLTH" "ABINSPAY" "ABMEDGOV1"
newnames<-tolower(gsub(pattern = "_",replacement = "",x = nams))
names(GSS2018)<-newnames
GSS2018$sup_dp<-Recode(GSS2018$cappun, recodes="1=1; 2=0;else=NA")
summary(GSS2018$sup_dp, na.rm = TRUE)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0000 0.0000 1.0000 0.6315 1.0000 1.0000 155
GSS2018$polhitok2<-Recode(GSS2018$polhitok, recodes="1=1; 2=0;else=NA")
summary(GSS2018$polhitok2, na.rm = TRUE)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0000 0.0000 1.0000 0.6361 1.0000 1.0000 867
GSS2018$polabuse2<-Recode(GSS2018$polabuse, recodes="1=1; 2=0;else=NA")
summary(GSS2018$polabuse2, na.rm = TRUE)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0000 0.0000 0.0000 0.0984 0.0000 1.0000 824
GSS2018$polmurdr2<-Recode(GSS2018$polmurdr, recodes="1=1; 2=0;else=NA")
summary(GSS2018$polmurdr2, na.rm = TRUE)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0000 0.0000 0.0000 0.1672 0.0000 1.0000 835
GSS2018$polescap2<-Recode(GSS2018$polescap, recodes="1=1; 2=0;else=NA")
summary(GSS2018$polescap2, na.rm = TRUE)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0000 0.0000 1.0000 0.6855 1.0000 1.0000 879
GSS2018$polattak2<-Recode(GSS2018$polattak, recodes="1=1; 2=0;else=NA")
summary(GSS2018$polattak2, na.rm = TRUE)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0000 1.0000 1.0000 0.8574 1.0000 1.0000 819
GSS2018$sex <- as.numeric(GSS2018$sex)
GSS2018$geniden<-Recode (GSS2018$sex, recodes="1='male'; 2='female'; else=NA", as.factor=T)
GSS2018geniden<-relevel(GSS2018$geniden, ref='female')
summary(GSS2018$geniden, na.rm = TRUE)
## female male
## 1296 1052
GSS2018$race <- as.numeric(GSS2018$race)
GSS2018$race_eth2<-Recode(GSS2018$race, recodes="1='white'; 2='black'; 3='other'; else=NA", as.factor=T)
GSS2018race_eth2<-relevel(GSS2018$race_eth2, ref='white')
summary(GSS2018$race_eth2, na.rm = TRUE)
## black other white
## 385 270 1693
GSS2018$fund <- as.numeric(GSS2018$fund)
GSS2018$fund2<-Recode(GSS2018$fund, recodes="1='fundamentalist'; 2='moderate'; 3='liberal'; else=NA", as.factor=T)
GSS2018fund2<-relevel(GSS2018$fund2, ref='fundamentalist')
summary(GSS2018$fund2, na.rm = TRUE)
## fundamentalist liberal moderate NA's
## 544 797 882 125
GSS2018$partyid <- as.numeric(GSS2018$partyid)
GSS2018$polaff<-Recode(GSS2018$partyid, recodes="0:2='dem'; 4:6='repub'; 3='independent'; else=NA", as.factor=T)
GSS2018polaff<-relevel(GSS2018$polaff, ref='dem')
summary(GSS2018$polaff, na.rm = TRUE)
## dem independent repub NA's
## 1038 414 786 110
GSS2018$degree <- as.numeric(GSS2018$degree)
GSS2018$educ_new<-Recode(GSS2018$degree, recodes="0='lsshgh'; 1='hghsch'; 2='smecol'; 3:4='col'; else=NA", as.factor=T)
GSS2018educ_new<-relevel(GSS2018$educ_new, ref='col')
summary(GSS2018$educ_new, na.rm = TRUE)
## col hghsch lsshgh smecol
## 712 1178 262 196
sub<-GSS2018%>%
select(sup_dp, geniden, race_eth2, polaff, educ_new, fund2, polhitok2, polabuse2, polmurdr2, polescap2, polattak2, vstrat, wtssall) %>%
filter( complete.cases( . ))
table1(~ race_eth2 + geniden + educ_new + polaff + fund2| polhitok2, data=sub, overall="Total")
## Warning in table1.formula(~race_eth2 + geniden + educ_new + polaff + fund2 | :
## Terms to the right of '|' in formula 'x' define table columns and are expected
## to be factors with meaningful labels.
|
0 (N=413) |
1 (N=757) |
Total (N=1170) |
| race_eth2 |
|
|
|
| black |
128 (31.0%) |
67 (8.9%) |
195 (16.7%) |
| other |
69 (16.7%) |
45 (5.9%) |
114 (9.7%) |
| white |
216 (52.3%) |
645 (85.2%) |
861 (73.6%) |
| geniden |
|
|
|
| female |
259 (62.7%) |
348 (46.0%) |
607 (51.9%) |
| male |
154 (37.3%) |
409 (54.0%) |
563 (48.1%) |
| educ_new |
|
|
|
| col |
68 (16.5%) |
297 (39.2%) |
365 (31.2%) |
| hghsch |
224 (54.2%) |
358 (47.3%) |
582 (49.7%) |
| lsshgh |
83 (20.1%) |
40 (5.3%) |
123 (10.5%) |
| smecol |
38 (9.2%) |
62 (8.2%) |
100 (8.5%) |
| polaff |
|
|
|
| dem |
231 (55.9%) |
314 (41.5%) |
545 (46.6%) |
| independent |
81 (19.6%) |
96 (12.7%) |
177 (15.1%) |
| repub |
101 (24.5%) |
347 (45.8%) |
448 (38.3%) |
| fund2 |
|
|
|
| fundamentalist |
112 (27.1%) |
174 (23.0%) |
286 (24.4%) |
| liberal |
129 (31.2%) |
289 (38.2%) |
418 (35.7%) |
| moderate |
172 (41.6%) |
294 (38.8%) |
466 (39.8%) |
table1(~ race_eth2 + geniden + educ_new + polaff + fund2| polabuse2, data=sub, overall="Total")
## Warning in table1.formula(~race_eth2 + geniden + educ_new + polaff + fund2 | :
## Terms to the right of '|' in formula 'x' define table columns and are expected
## to be factors with meaningful labels.
|
0 (N=1052) |
1 (N=118) |
Total (N=1170) |
| race_eth2 |
|
|
|
| black |
188 (17.9%) |
7 (5.9%) |
195 (16.7%) |
| other |
97 (9.2%) |
17 (14.4%) |
114 (9.7%) |
| white |
767 (72.9%) |
94 (79.7%) |
861 (73.6%) |
| geniden |
|
|
|
| female |
548 (52.1%) |
59 (50.0%) |
607 (51.9%) |
| male |
504 (47.9%) |
59 (50.0%) |
563 (48.1%) |
| educ_new |
|
|
|
| col |
336 (31.9%) |
29 (24.6%) |
365 (31.2%) |
| hghsch |
515 (49.0%) |
67 (56.8%) |
582 (49.7%) |
| lsshgh |
106 (10.1%) |
17 (14.4%) |
123 (10.5%) |
| smecol |
95 (9.0%) |
5 (4.2%) |
100 (8.5%) |
| polaff |
|
|
|
| dem |
510 (48.5%) |
35 (29.7%) |
545 (46.6%) |
| independent |
153 (14.5%) |
24 (20.3%) |
177 (15.1%) |
| repub |
389 (37.0%) |
59 (50.0%) |
448 (38.3%) |
| fund2 |
|
|
|
| fundamentalist |
259 (24.6%) |
27 (22.9%) |
286 (24.4%) |
| liberal |
388 (36.9%) |
30 (25.4%) |
418 (35.7%) |
| moderate |
405 (38.5%) |
61 (51.7%) |
466 (39.8%) |
table1(~ race_eth2 + geniden + educ_new + polaff + fund2| polmurdr2, data=sub, overall="Total")
## Warning in table1.formula(~race_eth2 + geniden + educ_new + polaff + fund2 | :
## Terms to the right of '|' in formula 'x' define table columns and are expected
## to be factors with meaningful labels.
|
0 (N=973) |
1 (N=197) |
Total (N=1170) |
| race_eth2 |
|
|
|
| black |
159 (16.3%) |
36 (18.3%) |
195 (16.7%) |
| other |
83 (8.5%) |
31 (15.7%) |
114 (9.7%) |
| white |
731 (75.1%) |
130 (66.0%) |
861 (73.6%) |
| geniden |
|
|
|
| female |
514 (52.8%) |
93 (47.2%) |
607 (51.9%) |
| male |
459 (47.2%) |
104 (52.8%) |
563 (48.1%) |
| educ_new |
|
|
|
| col |
332 (34.1%) |
33 (16.8%) |
365 (31.2%) |
| hghsch |
462 (47.5%) |
120 (60.9%) |
582 (49.7%) |
| lsshgh |
92 (9.5%) |
31 (15.7%) |
123 (10.5%) |
| smecol |
87 (8.9%) |
13 (6.6%) |
100 (8.5%) |
| polaff |
|
|
|
| dem |
467 (48.0%) |
78 (39.6%) |
545 (46.6%) |
| independent |
140 (14.4%) |
37 (18.8%) |
177 (15.1%) |
| repub |
366 (37.6%) |
82 (41.6%) |
448 (38.3%) |
| fund2 |
|
|
|
| fundamentalist |
235 (24.2%) |
51 (25.9%) |
286 (24.4%) |
| liberal |
361 (37.1%) |
57 (28.9%) |
418 (35.7%) |
| moderate |
377 (38.7%) |
89 (45.2%) |
466 (39.8%) |
table1(~ race_eth2 + geniden + educ_new + polaff + fund2| polescap2, data=sub, overall="Total")
## Warning in table1.formula(~race_eth2 + geniden + educ_new + polaff + fund2 | :
## Terms to the right of '|' in formula 'x' define table columns and are expected
## to be factors with meaningful labels.
|
0 (N=356) |
1 (N=814) |
Total (N=1170) |
| race_eth2 |
|
|
|
| black |
102 (28.7%) |
93 (11.4%) |
195 (16.7%) |
| other |
49 (13.8%) |
65 (8.0%) |
114 (9.7%) |
| white |
205 (57.6%) |
656 (80.6%) |
861 (73.6%) |
| geniden |
|
|
|
| female |
212 (59.6%) |
395 (48.5%) |
607 (51.9%) |
| male |
144 (40.4%) |
419 (51.5%) |
563 (48.1%) |
| educ_new |
|
|
|
| col |
111 (31.2%) |
254 (31.2%) |
365 (31.2%) |
| hghsch |
170 (47.8%) |
412 (50.6%) |
582 (49.7%) |
| lsshgh |
45 (12.6%) |
78 (9.6%) |
123 (10.5%) |
| smecol |
30 (8.4%) |
70 (8.6%) |
100 (8.5%) |
| polaff |
|
|
|
| dem |
205 (57.6%) |
340 (41.8%) |
545 (46.6%) |
| independent |
63 (17.7%) |
114 (14.0%) |
177 (15.1%) |
| repub |
88 (24.7%) |
360 (44.2%) |
448 (38.3%) |
| fund2 |
|
|
|
| fundamentalist |
89 (25.0%) |
197 (24.2%) |
286 (24.4%) |
| liberal |
140 (39.3%) |
278 (34.2%) |
418 (35.7%) |
| moderate |
127 (35.7%) |
339 (41.6%) |
466 (39.8%) |
table1(~ race_eth2 + geniden + educ_new + polaff + fund2| polattak2, data=sub, overall="Total")
## Warning in table1.formula(~race_eth2 + geniden + educ_new + polaff + fund2 | :
## Terms to the right of '|' in formula 'x' define table columns and are expected
## to be factors with meaningful labels.
|
0 (N=152) |
1 (N=1018) |
Total (N=1170) |
| race_eth2 |
|
|
|
| black |
49 (32.2%) |
146 (14.3%) |
195 (16.7%) |
| other |
21 (13.8%) |
93 (9.1%) |
114 (9.7%) |
| white |
82 (53.9%) |
779 (76.5%) |
861 (73.6%) |
| geniden |
|
|
|
| female |
91 (59.9%) |
516 (50.7%) |
607 (51.9%) |
| male |
61 (40.1%) |
502 (49.3%) |
563 (48.1%) |
| educ_new |
|
|
|
| col |
32 (21.1%) |
333 (32.7%) |
365 (31.2%) |
| hghsch |
74 (48.7%) |
508 (49.9%) |
582 (49.7%) |
| lsshgh |
32 (21.1%) |
91 (8.9%) |
123 (10.5%) |
| smecol |
14 (9.2%) |
86 (8.4%) |
100 (8.5%) |
| polaff |
|
|
|
| dem |
88 (57.9%) |
457 (44.9%) |
545 (46.6%) |
| independent |
29 (19.1%) |
148 (14.5%) |
177 (15.1%) |
| repub |
35 (23.0%) |
413 (40.6%) |
448 (38.3%) |
| fund2 |
|
|
|
| fundamentalist |
39 (25.7%) |
247 (24.3%) |
286 (24.4%) |
| liberal |
45 (29.6%) |
373 (36.6%) |
418 (35.7%) |
| moderate |
68 (44.7%) |
398 (39.1%) |
466 (39.8%) |
options(survey.lonely.psu = "adjust")
des<-svydesign(ids= ~1,
strata= ~vstrat,
weights= ~wtssall
, data = sub )
fit.logit1<-svyglm(polhitok2 ~ race_eth2,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit2<-svyglm(polhitok2 ~ race_eth2 + geniden,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit3<-svyglm(polhitok2 ~ race_eth2 + geniden + educ_new,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit4<-svyglm(polhitok2 ~ race_eth2 + geniden + educ_new + polaff,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit5<-svyglm(polhitok2 ~ race_eth2 + geniden + educ_new + polaff + fund2,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit1%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
-0.413 |
0.177 |
-2.330 |
0.020 |
0.662 |
0.468 |
0.937 |
| race_eth2other |
-0.062 |
0.285 |
-0.220 |
0.826 |
0.939 |
0.538 |
1.641 |
| race_eth2white |
1.468 |
0.200 |
7.328 |
0.000 |
4.342 |
2.932 |
6.430 |
fit.logit2%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
-0.801 |
0.193 |
-4.147 |
0.000 |
0.449 |
0.307 |
0.655 |
| race_eth2other |
-0.061 |
0.281 |
-0.218 |
0.828 |
0.941 |
0.542 |
1.633 |
| race_eth2white |
1.507 |
0.202 |
7.464 |
0.000 |
4.513 |
3.038 |
6.704 |
| genidenmale |
0.780 |
0.160 |
4.871 |
0.000 |
2.181 |
1.594 |
2.985 |
fit.logit3%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
-0.075 |
0.244 |
-0.309 |
0.757 |
0.927 |
0.575 |
1.495 |
| race_eth2other |
-0.005 |
0.301 |
-0.017 |
0.987 |
0.995 |
0.552 |
1.794 |
| race_eth2white |
1.460 |
0.212 |
6.875 |
0.000 |
4.307 |
2.840 |
6.530 |
| genidenmale |
0.847 |
0.167 |
5.073 |
0.000 |
2.332 |
1.681 |
3.235 |
| educ_newhghsch |
-0.828 |
0.210 |
-3.949 |
0.000 |
0.437 |
0.290 |
0.659 |
| educ_newlsshgh |
-1.917 |
0.294 |
-6.519 |
0.000 |
0.147 |
0.083 |
0.262 |
| educ_newsmecol |
-1.020 |
0.326 |
-3.134 |
0.002 |
0.360 |
0.190 |
0.682 |
fit.logit4%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
-0.093 |
0.249 |
-0.373 |
0.709 |
0.912 |
0.560 |
1.484 |
| race_eth2other |
-0.104 |
0.302 |
-0.345 |
0.730 |
0.901 |
0.498 |
1.630 |
| race_eth2white |
1.263 |
0.214 |
5.914 |
0.000 |
3.536 |
2.327 |
5.374 |
| genidenmale |
0.815 |
0.167 |
4.874 |
0.000 |
2.260 |
1.628 |
3.137 |
| educ_newhghsch |
-0.860 |
0.212 |
-4.063 |
0.000 |
0.423 |
0.280 |
0.641 |
| educ_newlsshgh |
-1.893 |
0.291 |
-6.496 |
0.000 |
0.151 |
0.085 |
0.267 |
| educ_newsmecol |
-1.038 |
0.329 |
-3.157 |
0.002 |
0.354 |
0.186 |
0.675 |
| polaffindependent |
-0.041 |
0.214 |
-0.190 |
0.849 |
0.960 |
0.631 |
1.461 |
| polaffrepub |
0.563 |
0.194 |
2.901 |
0.004 |
1.756 |
1.200 |
2.568 |
fit.logit5%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
0.022 |
0.274 |
0.081 |
0.935 |
1.023 |
0.597 |
1.751 |
| race_eth2other |
-0.065 |
0.313 |
-0.208 |
0.835 |
0.937 |
0.507 |
1.730 |
| race_eth2white |
1.277 |
0.218 |
5.872 |
0.000 |
3.587 |
2.342 |
5.495 |
| genidenmale |
0.809 |
0.168 |
4.822 |
0.000 |
2.246 |
1.617 |
3.121 |
| educ_newhghsch |
-0.861 |
0.212 |
-4.060 |
0.000 |
0.423 |
0.279 |
0.641 |
| educ_newlsshgh |
-1.909 |
0.288 |
-6.624 |
0.000 |
0.148 |
0.084 |
0.261 |
| educ_newsmecol |
-1.013 |
0.327 |
-3.102 |
0.002 |
0.363 |
0.191 |
0.689 |
| polaffindependent |
-0.031 |
0.217 |
-0.145 |
0.885 |
0.969 |
0.633 |
1.483 |
| polaffrepub |
0.567 |
0.192 |
2.951 |
0.003 |
1.762 |
1.210 |
2.568 |
| fund2liberal |
-0.008 |
0.218 |
-0.036 |
0.972 |
0.992 |
0.647 |
1.522 |
| fund2moderate |
-0.298 |
0.213 |
-1.400 |
0.162 |
0.742 |
0.489 |
1.126 |
exp(coefficients(fit.logit1))
## (Intercept) race_eth2other race_eth2white
## 0.6618501 0.9394464 4.3416400
exp(coefficients(fit.logit2))
## (Intercept) race_eth2other race_eth2white genidenmale
## 0.4487809 0.9405793 4.5129209 2.1811022
exp(coefficients(fit.logit3))
## (Intercept) race_eth2other race_eth2white genidenmale educ_newhghsch
## 0.9273756 0.9949748 4.3067443 2.3321090 0.4368479
## educ_newlsshgh educ_newsmecol
## 0.1469857 0.3604356
exp(coefficients(fit.logit4))
## (Intercept) race_eth2other race_eth2white genidenmale
## 0.9115218 0.9009778 3.5359701 2.2602242
## educ_newhghsch educ_newlsshgh educ_newsmecol polaffindependent
## 0.4232893 0.1506546 0.3541791 0.9600970
## polaffrepub
## 1.7557843
exp(coefficients(fit.logit5))
## (Intercept) race_eth2other race_eth2white genidenmale
## 1.0225020 0.9370084 3.5872484 2.2464328
## educ_newhghsch educ_newlsshgh educ_newsmecol polaffindependent
## 0.4229387 0.1482482 0.3629581 0.9690664
## polaffrepub fund2liberal fund2moderate
## 1.7624438 0.9922520 0.7424940
fit.logit6<-svyglm(polabuse2 ~ race_eth2,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit7<-svyglm(polabuse2 ~ race_eth2 + geniden,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit8<-svyglm(polabuse2 ~ race_eth2 + geniden + educ_new,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit9<-svyglm(polabuse2 ~ race_eth2 + geniden + educ_new + polaff,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit10<-svyglm(polabuse2 ~ race_eth2 + geniden + educ_new + polaff + fund2,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit6%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
-3.766 |
0.411 |
-9.166 |
0 |
0.023 |
0.010 |
0.052 |
| race_eth2other |
2.094 |
0.508 |
4.125 |
0 |
8.117 |
3.001 |
21.953 |
| race_eth2white |
1.641 |
0.429 |
3.828 |
0 |
5.159 |
2.227 |
11.952 |
fit.logit7%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
-3.821 |
0.423 |
-9.032 |
0.00 |
0.022 |
0.010 |
0.050 |
| race_eth2other |
2.095 |
0.507 |
4.131 |
0.00 |
8.125 |
3.007 |
21.955 |
| race_eth2white |
1.639 |
0.429 |
3.824 |
0.00 |
5.151 |
2.223 |
11.935 |
| genidenmale |
0.111 |
0.223 |
0.496 |
0.62 |
1.117 |
0.721 |
1.730 |
fit.logit8%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
-4.264 |
0.464 |
-9.200 |
0.000 |
0.014 |
0.006 |
0.035 |
| race_eth2other |
2.088 |
0.506 |
4.127 |
0.000 |
8.066 |
2.993 |
21.737 |
| race_eth2white |
1.758 |
0.427 |
4.118 |
0.000 |
5.800 |
2.512 |
13.391 |
| genidenmale |
0.021 |
0.223 |
0.095 |
0.924 |
1.022 |
0.659 |
1.583 |
| educ_newhghsch |
0.630 |
0.266 |
2.374 |
0.018 |
1.878 |
1.116 |
3.160 |
| educ_newlsshgh |
0.743 |
0.372 |
1.994 |
0.046 |
2.102 |
1.013 |
4.362 |
| educ_newsmecol |
-0.433 |
0.574 |
-0.753 |
0.452 |
0.649 |
0.211 |
2.000 |
fit.logit9%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
-4.429 |
0.466 |
-9.508 |
0.000 |
0.012 |
0.005 |
0.030 |
| race_eth2other |
1.951 |
0.501 |
3.893 |
0.000 |
7.033 |
2.634 |
18.781 |
| race_eth2white |
1.498 |
0.435 |
3.443 |
0.001 |
4.474 |
1.907 |
10.499 |
| genidenmale |
-0.027 |
0.222 |
-0.123 |
0.902 |
0.973 |
0.630 |
1.502 |
| educ_newhghsch |
0.535 |
0.273 |
1.962 |
0.050 |
1.708 |
1.000 |
2.915 |
| educ_newlsshgh |
0.716 |
0.376 |
1.903 |
0.057 |
2.046 |
0.979 |
4.277 |
| educ_newsmecol |
-0.480 |
0.584 |
-0.821 |
0.412 |
0.619 |
0.197 |
1.945 |
| polaffindependent |
0.703 |
0.326 |
2.155 |
0.031 |
2.019 |
1.066 |
3.825 |
| polaffrepub |
0.737 |
0.266 |
2.765 |
0.006 |
2.089 |
1.239 |
3.521 |
fit.logit10%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
-4.538 |
0.505 |
-8.981 |
0.000 |
0.011 |
0.004 |
0.029 |
| race_eth2other |
1.865 |
0.511 |
3.653 |
0.000 |
6.458 |
2.374 |
17.566 |
| race_eth2white |
1.489 |
0.443 |
3.359 |
0.001 |
4.431 |
1.859 |
10.564 |
| genidenmale |
0.000 |
0.223 |
0.000 |
1.000 |
1.000 |
0.646 |
1.549 |
| educ_newhghsch |
0.526 |
0.273 |
1.930 |
0.054 |
1.693 |
0.992 |
2.889 |
| educ_newlsshgh |
0.707 |
0.380 |
1.860 |
0.063 |
2.028 |
0.963 |
4.272 |
| educ_newsmecol |
-0.532 |
0.582 |
-0.914 |
0.361 |
0.588 |
0.188 |
1.837 |
| polaffindependent |
0.649 |
0.325 |
1.996 |
0.046 |
1.914 |
1.012 |
3.620 |
| polaffrepub |
0.692 |
0.278 |
2.487 |
0.013 |
1.997 |
1.158 |
3.445 |
| fund2liberal |
-0.304 |
0.339 |
-0.896 |
0.371 |
0.738 |
0.380 |
1.434 |
| fund2moderate |
0.492 |
0.276 |
1.780 |
0.075 |
1.636 |
0.952 |
2.812 |
exp(coefficients(fit.logit6))
## (Intercept) race_eth2other race_eth2white
## 0.02313439 8.11742160 5.15949453
exp(coefficients(fit.logit7))
## (Intercept) race_eth2other race_eth2white genidenmale
## 0.02190836 8.12473003 5.15096237 1.11706888
exp(coefficients(fit.logit8))
## (Intercept) race_eth2other race_eth2white genidenmale educ_newhghsch
## 0.01406082 8.06579864 5.79985215 1.02154272 1.87807395
## educ_newlsshgh educ_newsmecol
## 2.10185429 0.64886419
exp(coefficients(fit.logit9))
## (Intercept) race_eth2other race_eth2white genidenmale
## 0.01193024 7.03311505 4.47426367 0.97318552
## educ_newhghsch educ_newlsshgh educ_newsmecol polaffindependent
## 1.70775410 2.04608682 0.61873157 2.01895102
## polaffrepub
## 2.08907270
exp(coefficients(fit.logit10))
## (Intercept) race_eth2other race_eth2white genidenmale
## 0.01068967 6.45767425 4.43122140 0.99999201
## educ_newhghsch educ_newlsshgh educ_newsmecol polaffindependent
## 1.69286376 2.02805943 0.58766955 1.91401785
## polaffrepub fund2liberal fund2moderate
## 1.99726269 0.73822810 1.63564557
fit.logit11<-svyglm(polmurdr2 ~ race_eth2,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit12<-svyglm(polmurdr2 ~ race_eth2 + geniden,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit13<-svyglm(polmurdr2 ~ race_eth2 + geniden + educ_new,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit14<-svyglm(polmurdr2 ~ race_eth2 + geniden + educ_new + polaff,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit15<-svyglm(polmurdr2 ~ race_eth2 + geniden + educ_new + polaff + fund2,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit11%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
-1.493 |
0.205 |
-7.279 |
0.000 |
0.225 |
0.150 |
0.336 |
| race_eth2other |
0.513 |
0.312 |
1.640 |
0.101 |
1.669 |
0.905 |
3.080 |
| race_eth2white |
-0.342 |
0.232 |
-1.475 |
0.140 |
0.711 |
0.451 |
1.119 |
fit.logit12%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
-1.583 |
0.217 |
-7.289 |
0.000 |
0.205 |
0.134 |
0.314 |
| race_eth2other |
0.514 |
0.311 |
1.654 |
0.099 |
1.672 |
0.909 |
3.075 |
| race_eth2white |
-0.345 |
0.232 |
-1.488 |
0.137 |
0.708 |
0.450 |
1.116 |
| genidenmale |
0.181 |
0.179 |
1.015 |
0.310 |
1.199 |
0.845 |
1.702 |
fit.logit13%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
-2.347 |
0.300 |
-7.835 |
0.000 |
0.096 |
0.053 |
0.172 |
| race_eth2other |
0.511 |
0.314 |
1.627 |
0.104 |
1.666 |
0.901 |
3.082 |
| race_eth2white |
-0.227 |
0.241 |
-0.943 |
0.346 |
0.797 |
0.497 |
1.278 |
| genidenmale |
0.120 |
0.182 |
0.658 |
0.511 |
1.127 |
0.789 |
1.610 |
| educ_newhghsch |
0.985 |
0.236 |
4.180 |
0.000 |
2.677 |
1.687 |
4.248 |
| educ_newlsshgh |
1.131 |
0.313 |
3.613 |
0.000 |
3.099 |
1.678 |
5.724 |
| educ_newsmecol |
0.470 |
0.397 |
1.184 |
0.237 |
1.601 |
0.735 |
3.487 |
fit.logit14%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
-2.434 |
0.292 |
-8.326 |
0.000 |
0.088 |
0.049 |
0.155 |
| race_eth2other |
0.427 |
0.316 |
1.350 |
0.177 |
1.533 |
0.825 |
2.849 |
| race_eth2white |
-0.373 |
0.259 |
-1.439 |
0.150 |
0.689 |
0.414 |
1.145 |
| genidenmale |
0.099 |
0.183 |
0.542 |
0.588 |
1.104 |
0.771 |
1.582 |
| educ_newhghsch |
0.922 |
0.239 |
3.864 |
0.000 |
2.514 |
1.575 |
4.012 |
| educ_newlsshgh |
1.090 |
0.319 |
3.415 |
0.001 |
2.973 |
1.591 |
5.556 |
| educ_newsmecol |
0.446 |
0.395 |
1.128 |
0.259 |
1.562 |
0.720 |
3.390 |
| polaffindependent |
0.522 |
0.261 |
1.998 |
0.046 |
1.685 |
1.010 |
2.811 |
| polaffrepub |
0.393 |
0.211 |
1.866 |
0.062 |
1.482 |
0.980 |
2.240 |
fit.logit15%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
-2.418 |
0.321 |
-7.531 |
0.000 |
0.089 |
0.047 |
0.167 |
| race_eth2other |
0.402 |
0.320 |
1.256 |
0.210 |
1.494 |
0.798 |
2.796 |
| race_eth2white |
-0.366 |
0.258 |
-1.417 |
0.157 |
0.694 |
0.418 |
1.151 |
| genidenmale |
0.128 |
0.186 |
0.685 |
0.493 |
1.136 |
0.789 |
1.637 |
| educ_newhghsch |
0.907 |
0.238 |
3.814 |
0.000 |
2.476 |
1.554 |
3.946 |
| educ_newlsshgh |
1.074 |
0.318 |
3.380 |
0.001 |
2.927 |
1.570 |
5.455 |
| educ_newsmecol |
0.415 |
0.392 |
1.058 |
0.290 |
1.514 |
0.702 |
3.266 |
| polaffindependent |
0.515 |
0.261 |
1.971 |
0.049 |
1.673 |
1.003 |
2.791 |
| polaffrepub |
0.361 |
0.216 |
1.673 |
0.095 |
1.435 |
0.940 |
2.191 |
| fund2liberal |
-0.288 |
0.243 |
-1.186 |
0.236 |
0.750 |
0.466 |
1.206 |
| fund2moderate |
0.184 |
0.216 |
0.851 |
0.395 |
1.202 |
0.787 |
1.836 |
exp(coefficients(fit.logit11))
## (Intercept) race_eth2other race_eth2white
## 0.2246056 1.6694990 0.7106853
exp(coefficients(fit.logit12))
## (Intercept) race_eth2other race_eth2white genidenmale
## 0.2053967 1.6720545 0.7081947 1.1988357
exp(coefficients(fit.logit13))
## (Intercept) race_eth2other race_eth2white genidenmale educ_newhghsch
## 0.09565191 1.66624525 0.79669561 1.12715724 2.67705932
## educ_newlsshgh educ_newsmecol
## 3.09918208 1.60060726
exp(coefficients(fit.logit14))
## (Intercept) race_eth2other race_eth2white genidenmale
## 0.08766611 1.53273986 0.68859810 1.10444154
## educ_newhghsch educ_newlsshgh educ_newsmecol polaffindependent
## 2.51389718 2.97280885 1.56221574 1.68496536
## polaffrepub
## 1.48172817
exp(coefficients(fit.logit15))
## (Intercept) race_eth2other race_eth2white genidenmale
## 0.08908622 1.49411970 0.69360512 1.13606587
## educ_newhghsch educ_newlsshgh educ_newsmecol polaffindependent
## 2.47628552 2.92657820 1.51434503 1.67296789
## polaffrepub fund2liberal fund2moderate
## 1.43495920 0.75001820 1.20198698
fit.logit16<-svyglm(polescap2 ~ race_eth2,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit17<-svyglm(polescap2 ~ race_eth2 + geniden,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit18<-svyglm(polescap2~ race_eth2 + geniden + educ_new,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit19<-svyglm(polescap2 ~ race_eth2 + geniden + educ_new + polaff,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit20<-svyglm(polescap2 ~ race_eth2 + geniden + educ_new + polaff + fund2,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit16%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
-0.116 |
0.165 |
-0.703 |
0.482 |
0.891 |
0.645 |
1.230 |
| race_eth2other |
0.435 |
0.275 |
1.581 |
0.114 |
1.544 |
0.901 |
2.647 |
| race_eth2white |
1.241 |
0.190 |
6.521 |
0.000 |
3.458 |
2.381 |
5.020 |
fit.logit17%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
-0.318 |
0.187 |
-1.703 |
0.089 |
0.728 |
0.505 |
1.049 |
| race_eth2other |
0.441 |
0.280 |
1.573 |
0.116 |
1.555 |
0.897 |
2.694 |
| race_eth2white |
1.246 |
0.197 |
6.339 |
0.000 |
3.476 |
2.364 |
5.109 |
| genidenmale |
0.420 |
0.156 |
2.687 |
0.007 |
1.521 |
1.120 |
2.066 |
fit.logit18%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
-0.409 |
0.224 |
-1.822 |
0.069 |
0.665 |
0.428 |
1.031 |
| race_eth2other |
0.451 |
0.283 |
1.591 |
0.112 |
1.570 |
0.901 |
2.735 |
| race_eth2white |
1.274 |
0.197 |
6.460 |
0.000 |
3.576 |
2.429 |
5.264 |
| genidenmale |
0.390 |
0.155 |
2.513 |
0.012 |
1.476 |
1.089 |
2.001 |
| educ_newhghsch |
0.204 |
0.179 |
1.137 |
0.256 |
1.226 |
0.863 |
1.741 |
| educ_newlsshgh |
0.012 |
0.271 |
0.044 |
0.965 |
1.012 |
0.595 |
1.722 |
| educ_newsmecol |
-0.160 |
0.309 |
-0.519 |
0.604 |
0.852 |
0.465 |
1.560 |
fit.logit19%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
-0.439 |
0.226 |
-1.940 |
0.053 |
0.645 |
0.414 |
1.005 |
| race_eth2other |
0.366 |
0.285 |
1.285 |
0.199 |
1.442 |
0.825 |
2.519 |
| race_eth2white |
1.070 |
0.201 |
5.321 |
0.000 |
2.915 |
1.965 |
4.323 |
| genidenmale |
0.352 |
0.156 |
2.250 |
0.025 |
1.421 |
1.046 |
1.931 |
| educ_newhghsch |
0.181 |
0.183 |
0.991 |
0.322 |
1.199 |
0.837 |
1.716 |
| educ_newlsshgh |
0.055 |
0.272 |
0.201 |
0.840 |
1.056 |
0.619 |
1.801 |
| educ_newsmecol |
-0.168 |
0.318 |
-0.531 |
0.596 |
0.845 |
0.453 |
1.575 |
| polaffindependent |
-0.035 |
0.213 |
-0.163 |
0.870 |
0.966 |
0.637 |
1.465 |
| polaffrepub |
0.605 |
0.188 |
3.212 |
0.001 |
1.832 |
1.266 |
2.651 |
fit.logit20%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
-0.487 |
0.247 |
-1.971 |
0.049 |
0.614 |
0.378 |
0.997 |
| race_eth2other |
0.342 |
0.297 |
1.150 |
0.250 |
1.407 |
0.786 |
2.519 |
| race_eth2white |
1.077 |
0.208 |
5.184 |
0.000 |
2.937 |
1.954 |
4.413 |
| genidenmale |
0.366 |
0.156 |
2.345 |
0.019 |
1.443 |
1.062 |
1.960 |
| educ_newhghsch |
0.173 |
0.181 |
0.956 |
0.339 |
1.189 |
0.834 |
1.696 |
| educ_newlsshgh |
0.049 |
0.273 |
0.181 |
0.857 |
1.051 |
0.615 |
1.794 |
| educ_newsmecol |
-0.195 |
0.319 |
-0.611 |
0.541 |
0.823 |
0.440 |
1.538 |
| polaffindependent |
-0.046 |
0.214 |
-0.216 |
0.829 |
0.955 |
0.628 |
1.452 |
| polaffrepub |
0.586 |
0.192 |
3.045 |
0.002 |
1.796 |
1.232 |
2.619 |
| fund2liberal |
-0.074 |
0.216 |
-0.342 |
0.732 |
0.929 |
0.608 |
1.419 |
| fund2moderate |
0.198 |
0.209 |
0.946 |
0.344 |
1.218 |
0.809 |
1.835 |
exp(coefficients(fit.logit16))
## (Intercept) race_eth2other race_eth2white
## 0.8907585 1.5444004 3.4575499
exp(coefficients(fit.logit17))
## (Intercept) race_eth2other race_eth2white genidenmale
## 0.7277883 1.5546247 3.4755599 1.5213948
exp(coefficients(fit.logit18))
## (Intercept) race_eth2other race_eth2white genidenmale educ_newhghsch
## 0.6646000 1.5695601 3.5762761 1.4764999 1.2257727
## educ_newlsshgh educ_newsmecol
## 1.0118723 0.8520505
exp(coefficients(fit.logit19))
## (Intercept) race_eth2other race_eth2white genidenmale
## 0.6446743 1.4415989 2.9147538 1.4213781
## educ_newhghsch educ_newlsshgh educ_newsmecol polaffindependent
## 1.1987337 1.0563774 0.8449382 0.9658730
## polaffrepub
## 1.8320953
exp(coefficients(fit.logit20))
## (Intercept) race_eth2other race_eth2white genidenmale
## 0.6142428 1.4071341 2.9367824 1.4426139
## educ_newhghsch educ_newlsshgh educ_newsmecol polaffindependent
## 1.1892307 1.0505912 0.8226156 0.9547823
## polaffrepub fund2liberal fund2moderate
## 1.7964887 0.9286652 1.2184614
fit.logit21<-svyglm(polattak2 ~ race_eth2,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit22<-svyglm(polattak2 ~ race_eth2 + geniden,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit23<-svyglm(polattak2 ~ race_eth2 + geniden + educ_new,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit24<-svyglm(polattak2 ~ race_eth2 + geniden + educ_new + polaff,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit25<-svyglm(polattak2 ~ race_eth2 + geniden + educ_new + polaff + fund2,
design = des,
family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit21%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
1.065 |
0.185 |
5.749 |
0.000 |
2.902 |
2.018 |
4.173 |
| race_eth2other |
0.466 |
0.322 |
1.446 |
0.149 |
1.593 |
0.847 |
2.995 |
| race_eth2white |
1.180 |
0.231 |
5.101 |
0.000 |
3.254 |
2.068 |
5.121 |
fit.logit22%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
0.923 |
0.204 |
4.520 |
0.000 |
2.516 |
1.686 |
3.754 |
| race_eth2other |
0.469 |
0.323 |
1.449 |
0.148 |
1.598 |
0.848 |
3.012 |
| race_eth2white |
1.178 |
0.232 |
5.079 |
0.000 |
3.249 |
2.062 |
5.120 |
| genidenmale |
0.310 |
0.210 |
1.478 |
0.140 |
1.364 |
0.904 |
2.059 |
fit.logit23%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
1.349 |
0.301 |
4.483 |
0.000 |
3.854 |
2.137 |
6.952 |
| race_eth2other |
0.547 |
0.332 |
1.645 |
0.100 |
1.728 |
0.901 |
3.315 |
| race_eth2white |
1.124 |
0.235 |
4.773 |
0.000 |
3.076 |
1.939 |
4.879 |
| genidenmale |
0.289 |
0.206 |
1.404 |
0.161 |
1.336 |
0.892 |
2.001 |
| educ_newhghsch |
-0.284 |
0.258 |
-1.100 |
0.272 |
0.753 |
0.454 |
1.248 |
| educ_newlsshgh |
-1.208 |
0.314 |
-3.849 |
0.000 |
0.299 |
0.161 |
0.553 |
| educ_newsmecol |
-0.796 |
0.432 |
-1.843 |
0.066 |
0.451 |
0.194 |
1.052 |
fit.logit24%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
1.325 |
0.303 |
4.373 |
0.000 |
3.762 |
2.077 |
6.814 |
| race_eth2other |
0.492 |
0.340 |
1.448 |
0.148 |
1.635 |
0.840 |
3.182 |
| race_eth2white |
0.960 |
0.245 |
3.924 |
0.000 |
2.612 |
1.617 |
4.220 |
| genidenmale |
0.260 |
0.208 |
1.253 |
0.210 |
1.297 |
0.863 |
1.949 |
| educ_newhghsch |
-0.303 |
0.259 |
-1.169 |
0.243 |
0.738 |
0.444 |
1.228 |
| educ_newlsshgh |
-1.182 |
0.316 |
-3.739 |
0.000 |
0.307 |
0.165 |
0.570 |
| educ_newsmecol |
-0.803 |
0.439 |
-1.828 |
0.068 |
0.448 |
0.189 |
1.060 |
| polaffindependent |
-0.029 |
0.286 |
-0.101 |
0.920 |
0.972 |
0.554 |
1.703 |
| polaffrepub |
0.502 |
0.267 |
1.881 |
0.060 |
1.653 |
0.979 |
2.789 |
fit.logit25%>%
tidy()%>%
mutate(OR = exp(estimate),
LowerOR_Ci = exp(estimate - 1.96*std.error),
UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
knitr::kable(digits = 3)
| (Intercept) |
1.292 |
0.314 |
4.115 |
0.000 |
3.639 |
1.967 |
6.732 |
| race_eth2other |
0.509 |
0.364 |
1.398 |
0.162 |
1.663 |
0.815 |
3.392 |
| race_eth2white |
0.938 |
0.258 |
3.632 |
0.000 |
2.556 |
1.540 |
4.241 |
| genidenmale |
0.235 |
0.211 |
1.114 |
0.265 |
1.266 |
0.836 |
1.915 |
| educ_newhghsch |
-0.281 |
0.253 |
-1.110 |
0.267 |
0.755 |
0.460 |
1.240 |
| educ_newlsshgh |
-1.161 |
0.315 |
-3.681 |
0.000 |
0.313 |
0.169 |
0.581 |
| educ_newsmecol |
-0.768 |
0.436 |
-1.762 |
0.078 |
0.464 |
0.198 |
1.090 |
| polaffindependent |
-0.034 |
0.282 |
-0.120 |
0.904 |
0.967 |
0.556 |
1.681 |
| polaffrepub |
0.541 |
0.270 |
2.004 |
0.045 |
1.717 |
1.012 |
2.913 |
| fund2liberal |
0.279 |
0.295 |
0.947 |
0.344 |
1.322 |
0.742 |
2.355 |
| fund2moderate |
-0.131 |
0.283 |
-0.464 |
0.643 |
0.877 |
0.503 |
1.528 |
exp(coefficients(fit.logit21))
## (Intercept) race_eth2other race_eth2white
## 2.902028 1.592924 3.254086
exp(coefficients(fit.logit22))
## (Intercept) race_eth2other race_eth2white genidenmale
## 2.515996 1.598052 3.249156 1.364091
exp(coefficients(fit.logit23))
## (Intercept) race_eth2other race_eth2white genidenmale educ_newhghsch
## 3.8542543 1.7278606 3.0758941 1.3356643 0.7529232
## educ_newlsshgh educ_newsmecol
## 0.2987259 0.4513491
exp(coefficients(fit.logit24))
## (Intercept) race_eth2other race_eth2white genidenmale
## 3.7623368 1.6352366 2.6122019 1.2973922
## educ_newhghsch educ_newlsshgh educ_newsmecol polaffindependent
## 0.7383418 0.3065829 0.4479648 0.9715862
## polaffrepub
## 1.6525716
exp(coefficients(fit.logit25))
## (Intercept) race_eth2other race_eth2white genidenmale
## 3.6388381 1.6629629 2.5556833 1.2655237
## educ_newhghsch educ_newlsshgh educ_newsmecol polaffindependent
## 0.7551509 0.3132332 0.4641247 0.9666251
## polaffrepub fund2liberal fund2moderate
## 1.7169574 1.3217200 0.8768025